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Foreword
by John Kenelly, Clemson University

In the explosion of the information age and the resulting instructional reforms,
we have all had to deal repeatedly with the question: “When machines do
mathematics, what do mathematicians do?” Many feel that our historical role
has not changed, but that the emphasis is now clearly on selection and
interpretation rather than manipulation and methods. As teachers, we continue
to sense the need for a major shift in the instructional means we employ to
impart mathematical understanding to our students. At the same time, we
recognize that behind any technology there must be human insight.

In a world of change, we must build on the past and take advantage of the future.
Applications and carefully chosen examples still guide us through what works.
Challenges and orderly investigations still develop mature thinking and insights.
As much as the instructional environment might change, quality education
remains our goal. What we need are authors and texts that bridge the transition.
It is in this regard that Paul Foerster and his texts provide outstanding answers.

In Calculus: Concepts and Applications, Second Edition, Paul is again at his
famous best. The material is presented in an easily understood fashion with
ample technology-based examples and exercises. The applications are intimately
connected with the topic and amplify the key elements in the section. The
material is a wealth of both fresh items and ancient insights that have stood the
test of time. For example, alongside Escalante’s “cross hatch” method of
repeated integration by parts, you’ll find Heaviside’s thumb trick for solving
partial fractions! The students are repeatedly sent to their “graphers.” Early on,
when differentiation is introduced, Paul discusses local linearity, and later he
utilizes the zoom features of calculators in the coverage of l’Hospital’s
rule—that’s fresh. Later still, he presents the logistic curve and slope fields in
differential equations. All of these are beautiful examples of how computing
technology has changed the calculus course.

The changes and additions found in this second edition exhibit the timeliness of
the text. Exponentials and logarithms have been given an even more prominent
role that reflects their greater emphasis in today’s calculus instruction. The
narrative, problem sets, Explorations, and tests all support the position that the
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choice between technology and traditional methods is not exclusively “one or
the other” but correctly both. Rich, substantive, in-depth questions bring to
mind superb Advanced Placement free response questions, or it might be that
many AP questions remind you of Foerster’s style!

Throughout, you see how comprehensive Paul is in his study of the historical
role of calculus and the currency of his understanding of the AP community and
collegiate “calculus reform.” Brilliant, timely, solid, and loaded with tons of
novel applications—your typical Foerster!

John Kenelly has been involved with the Advanced Placement Calculus program
 for over 30 years. He was Chief Reader and later Chair of the AP Calculus
Committee when Paul Foerster was grading the AP exams in the 1970s. He is a
leader in development of the graphing calculator and in pioneering its use in
college and school classrooms. He served as president of the IMO 2001 USA, the
organization that acts as host when the International Mathematical Olympiad
(IMO) comes to the United States.
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 A Note to the Student
 from the Author
In earlier courses you have learned about functions. Functions express
the way one variable quantity, such as distance you travel, is related to
another quantity, such as time. Calculus was invented over 300 years
ago to deal with the rate at which a quantity varies, particularly if that
rate does not stay constant.
In your calculus course you will learn the algebraic formulas for
variable rates that will tie together the mathematics you have learned
in earlier courses. Fortunately, computers and graphing calculators
(“graphers”) will give you graphical and numerical methods to
understand the concepts even before you develop the formulas. In this
way you will be able to work calculus problems from the real world
starting on day one. Later, once you understand the concepts, the
formulas will give you time-efficient ways to work these
problems.

The time you save by using technology for solving problems and
learning concepts can be used to develop your ability to write about
mathematics. You will be asked to keep a written journal recording the
concepts and techniques you have been learning, and verbalizing
things you may not yet have mastered. Thus, you will learn calculus in
four ways—algebraically, graphically, numerically, and verbally. In
whichever of these areas your talents lie, you will have the opportunity
to excel.

As in any mathematics course, you must learn calculus by doing it.
Mathematics is not a “spectator sport.” As you work on the
Explorations that introduce you to new concepts and techniques, you
will have a chance to participate in cooperative groups, learning from
your classmates and improving your skills.

The Quick Review problems at the beginning of each problem set ask
you to recall quickly things that you may have forgotten from earlier in
the text or from previous courses. Other problems, marked by a
shaded star, will prepare you for a topic in a later section. Prior to the
Chapter Test at the end of each chapter, you will find review problems
keyed to each section. Additionally, the Concept Problems give you a
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chance to apply your knowledge to new and challenging situations. So,
keeping up with your homework will help to ensure your success.
At times you may feel you are becoming submerged in details. When
that happens, just remember that calculus involves only four concepts:

•  Limits
•  Derivatives
•  Integrals (one kind)
•  Integrals (another kind)

Ask yourself, “Which of these concepts does my present work apply
to?” That way, you will better see the big picture. Best wishes as you
venture into the world of higher mathematics!

Paul A. Foerster
Alamo Heights High School
San Antonio, Texas

xiv © 2005 Key Curriculum Press  
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C H A P T E R

11Limits, Derivatives,
Integrals, and IntegralsIntegrals, and Integrals

Automakers have recently begun to produce electric cars, which
utilize electricity instead of gasoline to run their engines. Engineers
are constantly looking for ways to design an electric car that can
match the performance of a conventional gasoline-powered car.
Engineers can predict a car’s performance characteristics even
before the first prototype is built. From information about the
acceleration, they can calculate the car’s velocity as a function of
time. From the velocity, they can predict the distance it will travel
while it is accelerating. Calculus provides the mathematical tools
to analyze quantities that change at variable rates.

1
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Mathematical Overview

Calculus deals with calculating things that change at variable rates.
The four concepts invented to do this are

•Limits

•Derivatives

•Integrals (one kind)

•Integrals (another kind)

In Chapter 1, you will study three of these concepts in four ways.

GraphicallyGraphically

x

c d a b

f (x)

Limit

Derivative

IntegralThe icon at the top of each
even-numbered page of this chapter
illustrates a limit, a derivative, and one
type of integral.

NumericallyNumerically x x − d Slope

2.1 0.1 1.071666...
2.01 0.01 1.007466...
2.001 0.001 1.000749...

...
...

...

AlgebraicallyAlgebraically Average rate of change = f (x) − f (2)

x − 2

VerballyVerbally I have learned that a definite integral is used to measure the product
of x and f(x). For instance, velocity multiplied by time gives the
distance traveled by an object. The definite integral is used to find
this distance i f the velocity varies.

2 Chapter 1: Limits, Derivatives, Integrals, and Integrals
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1-1 The Concept of Instantaneous Rate

If you push open a door that has an automatic closer, it opens fast at first, slows
down, stops, starts closing, then slams shut. As the door moves, the number of
degrees, d, it is from its closed position depends on how many seconds it has
been since you pushed it. Figure 1-1a shows such a door from above.

Door

d 

Figure 1-1a

The questions to be answered here are, “At any particular instant in time, is the
door opening or closing?” and “How fast is it moving?” As you progress through
this course, you will learn to write equations expressing the rate of change of
one variable quantity in terms of another. For the time being, you will answer
such questions graphically and numerically.

OBJECTIVE Given the equation for a function relating two variables, estimate the
instantaneous rate of change of the dependent variable with respect to the
independent variable at a given point.

100

1

d

t
7

Figure 1-1b

Suppose that a door is pushed open at time t = 0 s and slams shut again at time
t = 7 s. While the door is in motion, assume that the number of degrees, d, from
its closed position is modeled by this equation.

d = 200t · 2−t for 0 ≤ t ≤ 7

How fast is the door moving at the instant when t = 1 s? Figure 1-1b shows this
equation on a grapher (graphing calculator or computer). When t is 1, the graph
is going up as t increases from left to right. So the angle is increasing and the
door is opening. You can estimate the rate numerically by calculating values of d
for values of t close to 1.

t = 1: d = 200(1) · 2−1 = 100◦

t = 1.1: d = 200(1.1) · 2−1.1 = 102.633629...◦

The door’s angle increased by 2.633...◦ in 0.1 s, meaning that it moved at a rate
of about (2.633...)/0.1, or 26.33... deg/s. However, this rate is an average rate,
and the question was about an instantaneous rate. In an “instant” that is 0 s
long, the door moves 0◦. Thus, the rate would be 0/0, which is awkward because
division by zero is undefined.

To get closer to the instantaneous rate at t = 1 s, find d at t = 1.01 s and at
t = 1.001 s.

t = 1.01: d = 200(1.01) · 2−1.01 = 100.30234..., a change of 0.30234...◦

t = 1.001: d = 200(1.001) · 2−1.001 = 100.03064..., a change of 0.03064...◦

Here are the average rates for the time intervals 1 s to 1.01 s and 1 s to 1.001 s.

1 s to 1.01 s: average rate = 0.30234...
0.01

= 30.234...deg/s

1 s to 1.001 s: average rate = 0.03064...
0.001

= 30.64...deg/s

Section 1-1: The Concept of Instantaneous Rate 3
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The important thing for you to notice is that as the time interval gets smaller
and smaller, the number of degrees per second doesn’t change much.
Figure 1-1c shows why. As you zoom in on the point (1, 100), the graph appears
to be straighter, so the change in d divided by the change in t becomes closer to
the slope of a straight line.

If you list the average rates in a table, another interesting feature appears. The
values stay the same for more and more decimal places.

100

1

d

t
7

0.01

t = 1  t = 1.01

d = 100
0.30…

d = 100.3023…

Figure 1-1c

t (s) Average Rate

1 to 1.01 30.23420...
1 to 1.001 30.64000...
1 to 1.0001 30.68075...
1 to 1.00001 30.68482...
1 to 1.000001 30.68524...

There seems to be a limiting number that the values are approaching.

To estimate the instantaneous rate at t = 3 s, follow the same steps as for t = 1 s.

t = 3: d = 200(3) · 2−3 = 75◦

t = 3.1: d = 200(3.1) · 2−3.1 = 72.310056...◦

t = 3.01: d = 200(3.01) · 2−3.01 = 74.730210...◦

t = 3.001: d = 200(3.001) · 2−3.001 = 74.973014...◦

Here are the corresponding average rates.

3 s to 3.1 s: average rate = 72.310056... − 75

3.1 − 3
=−26.899...deg/s

3 s to 3.01 s: average rate = 74.730210... − 75

3.01 − 3
=−26.978...deg/s

3 s to 3.001 s: average rate = 74.973014... − 75

3.001 − 3
=−26.985...deg/s

Again, the rates seem to be approaching some limiting number, this time,
around −27. So the instantaneous rate at t = 3 s should be somewhere close
to −27 deg/s. The negative sign tells you that the number of degrees, d, is
decreasing as time goes on. Thus, the door is closing when t = 3 s. It is opening
when t = 1 because the rate of change is positive.

For the door example shown above, the angle is said to be a function of time.
Time is the independent variable and angle is the dependent variable. These
names make sense, because the number of degrees the door is open depends on
the number of seconds since it was pushed. The instantaneous rate of change of
the dependent variable is said to be the limit of the average rates as the time
interval gets closer to zero. This limiting value is called the derivative of the
dependent variable with respect to the independent variable.

4 Chapter 1: Limits, Derivatives, Integrals, and Integrals
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Problem Set 1-1

1. Pendulum Problem: A pendulum hangs from
the ceiling (Figure 1-1d). As the pendulum
swings, its distance, d, in centimeters from one
wall of the room depends on the number
of seconds, t , since it was set in motion.
Assume that the equation for d as a function
of t is

d = 80 + 30 cos π
3 t, t ≥ 0

You want to find out how fast the pendulum
is moving at a given instant, t , and whether
it is approaching or going away from the
wall.

d

Figure 1-1d

a. Find d when t = 5. If you don’t get 95 for the
answer, make sure your calculator is in
radian mode.

b. Estimate the instantaneous rate of change of
d at t = 5 by finding the average rates from
t = 5 to 5.1, t = 5 to 5.01, and t = 5 to 5.001.

c. Why can’t the actual instantaneous rate of
change of d with respect to t be calculated
using the method in part b?

d. Estimate the instantaneous rate of change of
d with respect to t at t = 1.5. At that time, is
the pendulum approaching the wall or
moving away from it? Explain.

e. How is the instantaneous rate of change
related to the average rates? What name is
given to the instantaneous rate?

f. What is the reason for the domain
restriction t ≥ 0? Can you think of any
reason that there would be an upper bound
to the domain?

2. Board Price Problem: If you check the prices of
various lengths of lumber, you will find that a
board twice as long as another of the same
type does not necessarily cost twice as much.
Let x be the length, in feet, of a 2′′ × 6′′ board
(Figure 1-1e) and let y be the price, in cents,
that you pay for the board. Assume that y is
given by

y = 0.2x3 − 4.8x2 + 80x

x
6″

2″

2-by-6

Figure 1-1e

a. Find the price of 2′′ × 6′′ boards that are 5 ft
long, 10 ft long, and 20 ft long.

b. Find the average rate of change of the price
in cents per foot for x= 5 to 5.1, x= 5 to
5.01, and x= 5 to 5.001.

c. The average number of cents per foot in
part b is approaching an integer as the
change in x gets smaller and smaller. What
integer? What is the name given to this rate
of change?

d. Estimate the instantaneous rate of change in
price if x is 10 ft and if x is 20 ft. You should
find that each of these rates is an integer.

e. One of the principles of marketing is that
when you buy in larger quantities, you
usually pay less per unit. Explain how the
numbers in Problem 2 show that this
principle does not apply to buying longer
boards. Think of a reason why it does not
apply.

Section 1-1: The Concept of Instantaneous Rate 5
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1-2 Rate of Change by Equation, Graph,
or Table

In Section 1-1, you explored functions for which an equation related two variable
quantities. You found average rates of change of f (x) over an interval of x-values,
and used these to estimate the instantaneous rate of change at a particular value
of x. The instantaneous rate is called the derivative of the function at that value
of x. In this section you will estimate instantaneous rates for functions specified
graphically or numerically, as well as algebraically (by equations).

OBJECTIVE Given a function y = f (x) specified by a graph, a table of values, or an
equation, describe whether the y-value is increasing or decreasing as x
increases through a particular value, and estimate the instantaneous rate of
change of y at that value of x.

Background: Function Terminology and
Types of Functions

The price you pay for a certain type of board depends on how long it is. In
mathematics the symbol f (x) (pronounced “f of x” or “f at x”) is often used for
the dependent variable. The letter f is the name of the function, and the number
in parentheses is either a value of the independent variable or the variable itself.
If f (x)= 3x + 7, then f (5) is 3(5) + 7, or 22.

The equation f (x)= 3x + 7 is the particular equation for a linear function. The
general equation for a linear function is written y =mx + b, or f (x)=mx + b,
where m and b represent the constants. The following box shows the names of
some types of functions and their general equations.

DEFINITIONS: Types of FunctionsDEFINITIONS: Types of Functions
Linear: f (x)=mx + b; m and b stand for constants, m ≠ 0

Quadratic: f (x)= ax2 + bx + c; a, b, and c stand for constants, a ≠ 0

Polynomial: f (x)= a0 + a1x + a2x2 + a3x3 + a4x4 + · · · + anxn; a0, a1, . . .
stand for constants, n is a positive integer, an ≠ 0 (nth degree polynomial
function)

Power: f (x)= axn; a and n stand for constants

Exponential: f (x)= abx; a and b stand for constants, a ≠ 0, b > 0, b ≠ 1

Rational Algebraic: f (x)= (polynomial)/(polynomial)

Absolute value: f (x) contains |(variable expression)|
Trigonometric or Circular: f (x) contains cos x, sin x, tan x, cot x, sec x, or csc x

6 Chapter 1: Limits, Derivatives, Integrals, and Integrals



P1: GEL

PB279-01 PB279/Foerster October 11, 2003 17:34 Char Count= 0

�

EXAMPLE 1

a x

y

c b

Figure 1-2a

Figure 1-2a shows the graph of a function. At x= a,
x= b, and x= c, state whether y is increasing,
decreasing, or neither as x increases. Then state
whether the rate of change is fast or slow.

Solution At x= a, y is increasing quickly as you go from left
to right.

At x= b, y is decreasing slowly because y is
dropping as x goes from left to right, but it’s not
dropping very quickly.

At x= c, y is neither increasing nor decreasing,
as shown by the fact that the graph has leveled off
at x= c. �

�

EXAMPLE 2 Figure 1-2b shows the graph of a
function that could represent the
height, h(t ), in feet, of a soccer
ball above the ground as a
function of the time, t , in seconds
since it was kicked into the air.

2 4 6 8 10

20

40

60

t (s)

h(t) (ft)

Figure 1-2b

a. Estimate the instantaneous
rate of change of h(t ) at
time t = 5.

b. Give the mathematical name
of this instantaneous rate,
and state why the rate is
negative.

Solution a. Draw a line tangent to the graph at x= 5 by laying a ruler against it, as
shown in Figure 1-2c. You will be able to estimate the tangent line more
accurately if you put the ruler on the concave side of the graph.

The instantaneous rate is the slope of this tangent line. From the point
where t = 5, run over a convenient distance in the t-direction, say
4 seconds. Then draw a vertical line to the tangent line. As shown in the
figure, this rise is about 56 feet in the negative direction.

Instantaneous rate= slope of tangent ≈ −56

4
=−14 ft/s2 4 6 8 10

20

40

60

t (s)

h (t) (ft)

Ruler

Tangent line

Run 4

Rise
–56

Figure 1-2c
b. The mathematical name is derivative. The rate is negative because h(t ) is

decreasing at t = 5. �

Section 1-2: Rate of Change by Equation, Graph, or Table 7
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EXAMPLE 3 Figure 1-2d shows a graph of
P (x)= 40(0.6x ), the probability
that it rains a number of inches,
x, at a particular place during a
particular thunderstorm.

a. The probability that it rains
1 inch is P (1)= 24%. By how
much, and in which direction,
does the probability change
from x= 1 to x= 1.1? What is
the average rate of change
from 1 inch to 1.1 inches?
Make sure to include units in
your answer. Why is the rate negative?

1 2 3 4

10
20
30
40
50

P (x)

x (in.)

Figure 1-2d

b. Write an equation for r (x), the average rate of change of P (x) from 1 to x.
Make a table of values of r (x) for each 0.01 unit of x from 0.97 to 1.03.
Explain why r (x) is undefined at x= 1.

c. The instantaneous rate at x= 1 is the limit that the average rate approaches
as x approaches 1. Estimate the instantaneous rate using information from
part b. Name the concept of calculus that is given to this instantaneous rate.

Solution a. To find the average rate, first you must find P (1) and P (1.1).

P (1)= 40(0.61)= 24

P (1.1)= 40(0.61.1)= 22.8048...
Change= 22.8048... − 24=−1.1951... Change is always final

minus initial.

Average rate= −1.1951...
0.1

=−11.1951 %/in.

The rate is negative because the probability decreases as the number of
inches increases.

b. The average rate of change of P (x) from 1 to x is equal to the change in P (x)
divided by the change in x.

r (x)= P (x) − 24

x − 1
= 40(0.6x ) − 24

x − 1
change in P (x)

change in x

Store P (x) as y1 and r (x) as y2 in your grapher. Make a table of values of x
and r (x).

x r (x)

0.97 −12.3542...
0.98 −12.3226...
0.99 −12.2911...
1.00 Error
1.01 −12.2285...
1.02 −12.1974...
1.03 −12.1663...

Note that r (1) is undefined because you would be dividing by zero. When
x= 1, x − 1= 0.

8 Chapter 1: Limits, Derivatives, Integrals, and Integrals
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c. Average r (0.99) and r (1.01), the values in the table closest to x= 1.

Instantaneous rate ≈ 1

2
[r (0.99) + r (1.01)]=−12.2598...

The percentage is decreasing at about 12.26% per inch. (The percentage
decreases because it is less likely to rain greater quantities.) The name is
derivative. �

�

EXAMPLE 4 A mass is bouncing up and down on a spring hanging from the ceiling
(Figure 1-2e). Its distance, y , in feet, from the ceiling is measured by a calculator
distance probe each 1/10 s, giving this table of values, in which t is time in
seconds.

t (s) y (ft)

0.2 3.99
0.3 5.84
0.4 7.37
0.5 8.00
0.6 7.48
0.7 6.01
0.8 4.16
0.9 2.63
1.0 2.00
1.1 2.52

y

y

Mass

Figure 1-2e

a. How fast is y changing at each time?

i. t = 0.3
ii. t = 0.6

iii. t = 1.0

b. At time t = 0.3, is the mass going up or down? Justify your answer.

Solution a. If data are given in numerical form, you cannot get better estimates of the
rate by taking values of t closer and closer to 0.3. However, you can get a
better estimate by using the closest t-values on both sides of the given
value. A time-efficient way to do the computations is shown in the
following table. If you like, do the computations mentally and write only
the final answer.

t y Difference Rate Average Rate

0.2 3.99
0.3 5.84
0.4 7.37
0.5 8.00
0.6 7.48
0.7 6.01
0.8 4.16
0.9 2.63
1.0 2.00
1.1 2.52

1.85 1.85/0.1= 18.5
1.53 1.53/0.1= 15.3

−0.52 −0.52/0.1= −5.2
−1.47 −1.47/0.1=−14.7

−0.63 −0.63/0.1= −6.3
0.52 0.52/0.1= 5.2

16.9

−9.95

−0.55

Section 1-2: Rate of Change by Equation, Graph, or Table 9
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All you need to write on your paper are the results, as shown here.

i. t = 0.3: increasing at about 16.9 ft/s

ii. t = 0.6: decreasing at about 9.95 ft/s

iii. t = 1.0: decreasing at about 0.55 ft/s Write real-world answers with units.

b. At t = 0.3, the rate is about 16.9 ft/s, a positive number. This fact implies
that y is increasing. As y increases, the mass goes downward. �

Note that although a graph is not asked for in Example 4, plotting the data either
on graph paper or by scatter plot on the grapher will help you understand what
is happening. Figure 1-2f shows such a scatter plot.

1

5

y

t

Figure 1-2f

The technique in Example 4 for estimating instantaneous rates by going forward
and backward from the given value of x can also be applied to functions
specified by an equation. The result is usually more accurate than the rate
estimated by only going forward as you did in the last section.

As you learned in Section 1-1, the instantaneous rate of change of f (x) at x= c
is the limit of the average rate of change over the interval from c to x as x
approaches c. The value of the instantaneous rate is called the derivative of f (x)
with respect to x at x= c. The meaning of the word derivative is shown here. You
will learn the precise definition when it is time to calculate derivatives exactly.

Meaning of DerivativeMeaning of Derivative
The derivative of function f (x) at x= c is the instantaneous rate of change of
f (x) with respect to x at x= c. It is found

•numerically, by taking the limit of the average rate over the interval from c
to x as x approaches c

•graphically, by finding the slope of the line tangent to the graph at x= c

Note that “with respect to x” implies that you are finding how fast y changes as
x changes.

Preview: Definition of Limit

In Section 1-1, you saw that the average rate of change of the y-value of a
function got closer and closer to some fixed number as the change in the x-value
got closer and closer to zero. That fixed number is called the limit of the average
rate as the change in x approaches zero. The following is a verbal definition of
limit. The full meaning will become clearer to you as the course progresses.

Verbal Definition of LimitVerbal Definition of Limit
L is the limit of f (x) as x approaches c
if and only if
L is the one number you can keep f (x) arbitrarily close to
just by keeping x close enough to c, but not equal to c.

10 Chapter 1: Limits, Derivatives, Integrals, and Integrals
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Problem Set 1-2

Quick Review
5min

From now on, there will be ten short problems at
the beginning of most problem sets. Some of the
problems will help you review skills from previous
sections or chapters. Others will test your general
knowledge. Speed is the key here, not detailed work.
You should be able to do all ten problems in less
than five minutes.

Q1. Name the type of function: f (x)= x3.

Q2. Find f (2) for the function in Problem Q1.

Q3. Name the type of function: g(x)= 3x.

Q4. Find g(2) for the function in Problem Q3.

Q5. Sketch the graph: h(x)= x2.

Q6. Find h(5) for the function in Problem Q5.

Q7. Write the general equation for a quadratic
function.

Q8. Write the particular equation for the function in
Figure 1-2g.

x

y

1

1

Figure 1-2g

x

y

1

1

Figure 1-2h

Q9. Write the particular equation for the function in
Figure 1-2h.

Q10. What name is given to the instantaneous rate of
change of a function?

Problems 1–10 show graphs of functions with
values of x marked a, b, and so on. At each marked
value, state whether the function is increasing,
decreasing, or neither as x increases from left to
right, and also whether the rate of increase or
decrease is fast or slow.

1. 2.

a b

x

f (x)

a b

x

f (x)

3. 4.

a
b x

f (x)

a
xb

f (x)

5. 6.

a

b c d

x

f (x)

a
b

c
d x

f (x)

7. 8.

a

b c
x

f (x)

a b

c x

f (x)

9. 10.

a

b c d

x

f (x)

a b c d

x

f (x)

Section 1-2: Rate of Change by Equation, Graph, or Table 11
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11. Boiling Water Problem: Figure 1-2i shows the
temperature, T (x), in degrees Celsius, of a
kettle of water at time x, in seconds, since the
burner was turned on.

100 200

50

100

x (s)

T(x) (°C)

Figure 1-2i

a. On a copy of the figure, draw tangent lines
at the points where x= 40, 100, and 140.
Use the tangent lines to estimate the
instantaneous rate of change of temperature
at these times.

b. What do you suppose is happening to the
water for 0 < x < 80? For 80 < x < 120? For
x > 120?

12. Roller Coaster Velocity Problem: Figure 1-2j
shows the velocity, v(x), in ft/s, of a roller
coaster car at time x, in seconds, after it starts
down the first hill.

1 2 3 4 5 6 7 8

10
20
30
40
50
60
70

x (s)

v (x) (ft/s)

Figure 1-2j

a. On a copy of the figure, draw tangent lines
at the points where x= 2,5, and 6. Use the
tangent lines to estimate the instantaneous
rate of change of velocity at these times.

b. The instantaneous rates in part a are
derivatives of v(x) with respect to x. What
units must you include in your answers?
What physical quantity is this?

13. Rock in the Air Problem: A small rock is tied to
an inflated balloon, then the rock and balloon
are thrown into the air. While the rock and

balloon are moving, the height of the rock is
given by

h(x)=−x2 + 8x + 2

where h(x) is in feet above the ground at
time x, in seconds, after the rock was thrown.

a. Plot the graph of function h. Sketch the
result. Based on the graph, is h(x) increasing
or decreasing at x= 3? At x= 7?

b. How high is the rock at x= 3? At x= 3.1?
What is the average rate of change of its
height from 3 to 3.1 seconds?

c. Find the average rate of change from 3 to
3.01 seconds, and from 3 to 3.001 seconds.
Based on the answers, what limit does the
average rate seem to be approaching as the
time interval gets shorter and shorter?

d. The limit of the average rates in part c is
called the instantaneous rate at x= 3. It is
also called the derivative of h(x) at x= 3.
Estimate the derivative of h(x) at x= 7. Make
sure to include units in your answer. Why is
the derivative negative at x= 7?

14. Fox Population Problem: The population of
foxes in a particular region varies periodically
due to fluctuating food supplies. Assume that
the number of foxes, f (t ), is given by

f (t )= 300 + 200 sin t

where t is time in years after a certain date.

a. Store the equation for f (t ) as y1 in your
grapher, and plot the graph using a window
with [0, 10] for t . Sketch the graph. On the
sketch, show a point where f (t ) is
increasing, a point where it is decreasing,
and a point where it is not changing much.

b. The change in f (t ) from 1 year to t is
(f (t ) − f (1)). So for the time interval
[1, t ], f (t ) changes at the average rate r (t )
given by

r (t )= f (t ) − f (1)

t − 1

Enter r (t ) as y2 in your grapher. Then make
a table of values of r (t ) for each 0.01 year
from 0.97 through 1.03.

c. The instantaneous rate of change of f (t ) at
t = 1 is the limit f (t ) approaches as t

12 Chapter 1: Limits, Derivatives, Integrals, and Integrals
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approaches 1. Explain why your grapher
gives an error message if you try to calculate
r (1). Find an estimate for the instantaneous
rate by taking values of t closer and closer
to 1. What special name is given to this
instantaneous rate?

d. At approximately what instantaneous rate is
the fox population changing at t=4? Explain
why the answer is negative.

15. Bacteria Culture Problem: Bacteria in a
laboratory culture are multiplying in such a
way that the surface area of the culture, a(t ), in
mm2, is given by

a(t )= 200(1.2t )

where t is the number of hours since the
culture was started.

a. Find the average rate of increase of bacteria
from t = 2 to t = 2.1.

b. Write an equation for r (t ), the average rate
of change of a(t ), from 2 hours to t . Plot the
graph of r using a friendly window that
includes t = 2 as a grid point. What do you
notice when you trace the graph of r to
t = 2?

c. The instantaneous rate of change (the
derivative) of a(t ) at t = 2 is
52.508608...mm2/h. How close to this value
is r (2.01)? How close must t be kept to 2 on
the positive side so that the average rate is
within 0.01 unit of this derivative?

16. Sphere Volume Problem: Recall from geometry
that the volume of a sphere is

V (x)= 4

3
πx3

where V (x) is volume in cubic centimeters and
x is the radius in centimeters.

a. FindV (6). Write the answer as a multiple ofπ .

b. Find the average rate of change of V (x) from
x= 6 to x= 6.1. Find the average rate from
x= 5.9 to x= 6. Use the answers to find an
estimate of the instantaneous rate at x= 6.

c. Write an equation for r (x), the average rate
of change of V (x) from 6 to x. Plot the graph
of r using a friendly window that has x= 6
as a grid point. What do you notice when
you trace the graph to x= 6?

d. The derivative of V (x) at x= 6 equals 4π62,
the surface area of a sphere of radius 6 cm.
How close is r (6.1) to this derivative? How
close to 6 on the positive side must the
radius be kept for r (x) to be within 0.01 unit
of this derivative?

17. Rolling Tire Problem: A pebble is stuck in the
tread of a car tire (Figure 1-2k). As the wheel
turns, the distance, y , in inches, between the
pebble and the road at various times, t , in
seconds, is given by the table below.

t (s) y (in.)

1.2 0.63
1.3 0.54
1.4 0.45
1.5 0.34
1.6 0.22
1.7 0.00
1.8 0.22
1.9 0.34
2.0 0.45

y

Figure 1-2k

a. About how fast is y changing at each time?

i. t = 1.4
ii. t = 1.7

iii. t = 1.9
b. At what time does the stone strike the

pavement? Justify your answer.

Section 1-2: Rate of Change by Equation, Graph, or Table 13
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18. Flat Tire Problem: A tire is punctured by a nail.
As the air leaks out, the distance, y , in inches,
between the rim and the pavement (Figure 1-2l)
depends on the time, t , in minutes, since the
tire was punctured. Values of t and y are given
in the table below.

t (min) y (in.)

0 6.00
2 4.88
4 4.42
6 4.06
8 3.76

10 3.50
12 3.26
14 3.04
16 2.84

y

Figure 1-2l

a. About how fast is y changing at each time?

i. t = 2 ii. t = 8 iii. t = 14

b. How do you interpret the sign of the rate at
which y is changing?

For Problems 19–28,

a. Give the type of function (linear, quadratic,
and so on).

b. State whether f (x) is increasing or
decreasing at x= c, and how you know this.

19. f (x)= x2 + 5x + 6, c = 3

20. f (x)=−x2 + 8x + 5, c = 1

21. f (x)= 3x, c = 2

22. f (x)= 2x, c =−3

23. f (x)= 1

x − 5
, c = 4

24. f (x)=−1

x
, c =−2

25. f (x)=−3x + 7, c = 5

26. f (x)= 0.2x − 5, c = 8

27. f (x)= sin x, c = 2 (Radian mode!)

28. f (x)= cos x, c = 1 (Radian mode!)

29. Derivative Meaning Problem: What is the
physical meaning of the derivative of a
function? How can you estimate the derivative
graphically? Numerically? How does the
numerical computation of a derivative
illustrate the meaning of limit?

30. Limit Meaning Problem: From memory, write
the verbal meaning of limit. Compare it with
the statement in the text. If you did not state
all parts correctly, try writing it again until you
get it completely correct. How do the results of
Problems 13 and 14 of this problem set
illustrate the meaning of limit?

1-3 One Type of Integral of a Function

The title of this chapter is Limits, Derivatives,
Integrals, and Integrals. In Section 1-2, you

30

60

70 100

v (t) (ft/s)

t (s)

Area =
distance
traveled

Figure 1-3a

estimated the derivative of a function, which is
the instantaneous rate of change of y with respect
to x. In this section you will learn about one type
of integral, the definite integral.

Suppose you start driving your car. The velocity
increases for a while, then levels off. Figure 1-3a
shows the velocity, v(t ), increasing from zero,
then approaching and leveling off at 60 ft/s.

14 Chapter 1: Limits, Derivatives, Integrals, and Integrals
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In the 30 seconds between time t = 70 and t = 100, the velocity is a constant
60 ft/s. Because distance= rate × time, the distance you go in this time
interval is

60 ft/s × 30 s= 1800 ft

Geometrically, 1800 is the area of the rectangle shown in Figure 1-3a. The width
is 30 and the length is 60. Between 0 s and 30 s, where the velocity is changing,
the area of the region under the graph also equals the distance traveled. Because
the length varies, you cannot find the area simply by multiplying two numbers.

The process of evaluating a product in which one factor varies is called finding
a definite integral. You can evaluate definite integrals by finding the
corresponding area. In this section you will find the approximate area by
counting squares on graph paper (by “brute force”!). Later, you will apply the
concept of limit to calculate definite integrals exactly.

OBJECTIVE Given the equation or the graph for a function, estimate on a graph the
definite integral of the function between x= a and x= b by counting squares.

If you are given only the equation, you can plot it with your grapher’s grid-on
feature, estimating the number of squares in this way. However, it is more
accurate to use a plot on graph paper to count squares. You can get plotting data
by using your grapher’s TRACE or TABLE feature.

�

EXAMPLE 1 Estimate the definite integral of the exponential function f (x)= 8(0.7)x from
x= 1 to x= 7.

Solution You can get reasonable accuracy by plotting f (x) at each integer value of x
(Figure 1-3b).

x f (x)

0 f (0)= 8
1 f (1)= 5.6
2 f (2) ≈ 3.9
3 f (3) ≈ 2.7
4 f (4) ≈ 1.9
5 f (5) ≈ 1.3
6 f (6) ≈ 0.9
7 f (7) ≈ 0.7

x

7

8

1

f (x)

Figure 1-3b

The integral equals the area under the graph from x= 1 to x= 7. “Under” the
graph means “between the graph and the x-axis.” To find the area, first count
the whole squares. Put a dot in each square as you count it to keep track, then
estimate the area of each partial square to the nearest 0.1 unit. For instance, less
than half a square is 0.1, 0.2, 0.3, or 0.4. You be the judge. You should get about
13.9 square units for the area, so the definite integral is approximately 13.9.
Answers anywhere from 13.5 to 14.3 are reasonable. �

Section 1-3: One Type of Integral of a Function 15
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If the graph is already given, you need only count the squares. Be sure you know
how much area each square represents! Example 2 shows you how to do this.

�

EXAMPLE 2

0.5 1

10

20

30

v (t) (ft/s)

t (s)

Figure 1-3c

Figure 1-3c shows the graph of the velocity function
v(t )=−100t2 + 90t + 14, where t is in seconds and
v(t ) is in feet per second. Estimate the definite
integral of v(t ) with respect to t from t = 0.1 to t = 1.

Solution Notice that each space in the t-direction is 0.1 s and
each space in the direction of v(t ) is 2 ft/s. Thus,
each square represents (0.1)(2), or 0.2 ft. You should
count about 119.2 squares for the area. So, the
definite integral will be about

(119.2)(0.2) ≈ 23.8 ft

�

The following box gives the meaning of definite integral. The precise definition
is given in Chapter 5, where you will learn an algebraic technique for calculating
exact values of definite integrals.

Meaning of Definite IntegralMeaning of Definite Integral
The definite integral of the function f from x= a to x= b gives a way to find
the product of (b − a) and f (x), even if f (x) is not a constant. See Figure 1-3d.

(b – a)

f (x)
varies

x

ba

Integral = area,
representing
f(x) . (b – a)

f (x)

Figure 1-3d

Problem Set 1-3

Quick Review
5min

6 ft

10 ft

14 ft

1

1 x

y

1

1
x

y

1

1 x

y

1

1 x

y

Figure 1-3e Figure 1-3f Figure 1-3g Figure 1-3h Figure 1-3i

Q1. Find the area of the trapezoid in Figure 1-3e.

Q2. Write the particular equation for the function
graphed in Figure 1-3f.

Q3. Write the particular equation for the function
graphed in Figure 1-3g.

Q4. Write the particular equation for the function
graphed in Figure 1-3h.

Q5. Write the particular equation for the function
graphed in Figure 1-3i.

Q6. Find f (5) if f (x)= x − 1.

16 Chapter 1: Limits, Derivatives, Integrals, and Integrals
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Q7. Sketch the graph of a linear function with
positive y-intercept and negative slope.

Q8. Sketch the graph of a quadratic function
opening downward.

Q9. Sketch the graph of a decreasing exponential
function.

Q10. At what value(s) of x is f (x)= (x − 4)/(x − 3)
undefined?

For Problems 1–4, estimate the definite integral by
counting squares on a graph.

1. f (x)=−0.1x2 + 7

a. x= 0 to x= 5

b. x=−1 to x= 6

2. f (x)=−0.2x2 + 8

a. x= 0 to x= 3

b. x=−2 to x= 5

3. h(x)= sin x
a. x= 0 to x= π
b. x= 0 to x= π/2

4. g(x)= 2x + 5

a. x= 1 to x= 2

b. x=−1 to x= 1

5. In Figure 1-3j, a car is slowing down from
velocity v = 60 ft/s. Estimate the distance it
travels from time t = 5 s to t = 25 s by finding
the definite integral.

60

t (s)

v (ft/s)

5 25

Figure 1-3j

6. In Figure 1-3k, a car slowly speeds up from
v = 55 mi/h during a long trip. Estimate the
distance it travels from time t = 0 h to t = 4 h
by finding the definite integral.

t (h)

v (mi/h)
70

1 2 3 4

Figure 1-3k

For Problems 7 and 8, estimate the derivative of the
function at the given value of x.

7. f (x)= tan x, x= 1

8. h(x)=−7x + 100, x= 5

9. Electric Car Problem: You have been hired by an
automobile manufacturer to analyze the
predicted motion of a new electric car they are
building. When accelerated hard from a
standing start, the velocity of the car, v(t ), in
ft/s, is expected to vary exponentially with
time, t , in seconds, according to the equation

v(t )= 50(1 − 0.9t )

a. Plot the graph of function v in the domain
[0, 10]. What is the corresponding range of
the function?

b. Approximately how many seconds will it
take the car to reach a velocity of 30 ft/s?

c. Approximately how far will the car have
traveled when it reaches 30 ft/s? Which of
the four concepts of calculus is used to find
this distance?

d. At approximately what rate is the velocity
changing when t = 5? Which of the four
concepts of calculus is used to find this rate?
What is the physical meaning of the rate of
change of velocity?

Section 1-3: One Type of Integral of a Function 17
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10. Slide Problem: Phoebe sits atop the swimming
pool slide (Figure 1-3l). At time t = 0 s she
pushes off. Calvin finds that her velocity, v(t ),
in ft/s, is given by

v(t )= 10 sin 0.3t

Figure 1-3l

Phoebe splashes into the water at time t = 4 s.

a. Plot the graph of function v . Use radian mode.

b. How fast was Phoebe going when she hit the
water? What, then, are the domain and range
of the velocity function?

c. Find, approximately, the definite integral of
the velocity function from t=0 to t=4. What
are the units of the integral? What real-world
quantity does this integral give you?

d. What, approximately, was the derivative of
the velocity function when t = 3? What are

the units of the derivative? What is the
physical meaning of the derivative in this
case?

11. Negative Velocity Problem: Velocity differs from
speed in that it can be negative. If the velocity
of a moving object is negative, then its distance
from its starting point is decreasing as time
increases. The graph in Figure 1-3m shows
v(t ), in cm/s, as a function of t , in seconds,
after its motion started. How far is the object
from its starting point when t = 9?

1 9

5

–5

t (s)

v (t) (cm/s)

Figure 1-3m

12. Write the meaning of derivative.

13. Write the meaning of definite integral.

14. Write the verbal definition of limit.

1-4 Definite Integrals by Trapezoids,
from Equations and Data

In Section 1-3, you learned that the definite integral of a function is the product
of x- and y-values, where the y-values may be different for various values of x.
Because the integral is represented by the area of a region under the graph, you
were able to estimate it by counting squares. In this section you will learn a
more efficient way of estimating definite integrals.

0.1 0.4 0.7 1

10

20

30

22

34

28

4
x

f (x)

0.3

Figure 1-4a

Figure 1-4a shows the graph of

f (x)=−100x2 + 90x + 14

which is the function in Example 2 of Section 1-3 using f (x) instead of v(t ).
Instead of counting squares to find the area of the region under the graph, the
region is divided into vertical strips. Line segments connect the points where the
strip boundaries meet the graph. The result is a set of trapezoids whose areas
add up to a number approximately equal to the area of the region.

18 Chapter 1: Limits, Derivatives, Integrals, and Integrals
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Recall from geometry that the area of a trapezoid is the altitude times the
average of the lengths of the parallel sides. Figure 1-4a shows that for three
trapezoids, the parallel sides are f (0.1)= 22, f (0.4)= 34, f (0.7)= 28, and
f (1)= 4. The “altitude” of each trapezoid is the change in x, which equals 0.3 in
this case. Using T3 to represent the sum of the areas of the three trapezoids,

T3 = 1
2 (22 + 34)(0.3) + 1

2 (34 + 28)(0.3) + 1
2 (28 + 4)(0.3)= 22.5

which is approximately equal to the definite integral. The answer is slightly
smaller than the 23.8 found by counting squares in Example 2 of Section 1-3
because the trapezoids are inscribed, leaving out small parts of the region. You
can make the approximation more accurate by using more trapezoids. You can
also do the procedure numerically instead of graphically.

OBJECTIVE Estimate the value of a definite integral by dividing the region under the graph
into trapezoids and summing the areas.

To accomplish the objective in a time-efficient way, observe that each y-value in
the sum appears twice, except for the first and the last values. Factoring out 0.3
leads to

T3 = 0.3
[

1
2 (22) + 34 + 28 + 1

2
(4)
]
= 22.5

Inside the brackets is the sum of the y-values at the boundaries of the vertical
strips, using half of the first value and half of the last value. (There is one more
boundary than there are strips.) The answer is multiplied by the width of each
strip.

�

EXAMPLE 1 Use trapezoids to estimate the definite integral of f (x)=−100x2 + 90x + 14
from x= 0.1 to x= 1. Use 9 increments (that is, 9 strips, with 9 trapezoids).

Solution From x= 0.1 to x= 1, there is 0.9 x-unit. So the width of each strip is 0.9/9= 0.1.
An efficient way to compute this is to make a list of the y-values in your grapher,
taking half of the first value and half of the last value. Then sum the list.

L1 = x L2 = f (x)

0.1 11 Half of f (0.1)

0.2 28
0.3 32
0.4 34
0.5 34
0.6 32
0.7 28
0.8 22
0.9 14
1.0 2 Half of f (1)

237

Integral ≈ T9 = 0.1(237)= 23.7 �

Section 1-4: Definite Integrals by Trapezoids, from Equations and Data 19
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Note that using more increments gives an answer closer to 23.8 than counting
squares, which you used in Example 2 of Section 1-3. This is to be expected. As
Figure 1-4b shows, using more trapezoids reduces the area of the region left out
by the trapezoids.

0.1 0.4 0.7 1

10

20

30

x

f (x)

Figure 1-4b

You can generalize the preceeding example to any number of increments, n. The
result is called the trapezoidal rule.

PROPERTY: The Trapezoidal RulePROPERTY: The Trapezoidal Rule
The definite integral of f (x) from x= a to x= b is approximately equal to

Tn = ∆x
(

1
2 f (a) + f (x1) + f (x2) + f (x3) + · · · + f (xn−1) + 1

2 f (b)
)

where n is the number of increments (trapezoids), ∆x= (b − a)/n is the width
of each increment, and the values of x1, x2, x3, . . . are spaced ∆x units apart.

Verbally: “Add the values of f (x), taking half of the first value and half of the
last value, then multiply by the width of each increment.”

The exact value of the integral is the limit of the areas of the trapezoids as the
number of increments becomes very large.

T9 = 23.7
T20 = 23.819625

T100 = 23.8487850...
T1000 = 23.84998785...

The answers appear to be approaching 23.85 as n becomes very large. The exact
value of the integral is the limit of the sum of the areas of the trapezoids as the
number of trapezoids becomes infinitely large. In Chapter 5, you will learn how
to calculate this limit algebraically.

PROPERTY: Exact Value of a Definite IntegralPROPERTY: Exact Value of a Definite Integral
The exact value of a definite integral equals the limit of the trapezoidal rule
sum Tn as n approaches infinity, provided the limit exists. The exact value can
be estimated numerically by taking trapezoidal sums with more and more
increments and seeing whether the sums approach a particular number.

The trapezoidal rule is advantageous if you must find the definite integral of a
function specified by a table, rather than by equation. Example 2 shows you how
to do this.

20 Chapter 1: Limits, Derivatives, Integrals, and Integrals
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EXAMPLE 2 On a ship at sea, it is easier to measure how fast you are going than it is to
measure how far you have gone. Suppose you are the navigator aboard a
supertanker. The velocity of the ship is measured every 15 min and recorded in
the table. Estimate the distance the ship has gone between 7:30 p.m. and
9:15 p.m.

Time mi/h Time mi/h

7:30 28 8:30 7
7:45 25 8:45 10
8:00 20 9:00 21
8:15 22 9:15 26

Solution Figure 1-4c shows the given points. Because no information is known for times
between the given ones, the simplest thing to assume is that the graph is a
sequence of line segments. Because distance equals (miles/hour)(hours), the
answer will equal a definite integral. You can find the integral from the area of
the shaded region in Figure 1-4c, using the trapezoidal rule.

T7 = 0.25
[

1
2

(28) + 25 + 20 + 22 + 7 + 10 + 21 + 1
2

(26)
]
= 33

Why 0.25? Why
7 increments?

∴ the distance is about 33 mi.

7:30 9:15
Time

Velocity (mi/h)

10

20

30

Figure 1-4c �

Problem Set 1-4

Quick Review
5min

Q1. The value of y changes by 3 units when x
changes by 0.1 unit. About how fast is y
changing?

Q2. The value of y changes by −5 units when x
changes by 0.01 unit. Approximately what does
the derivative equal?

Q3. Sketch the graph of the absolute value function,
y = |x|.

Q4. Find f (3) if f (x)= x2.

Q5. What is 50 divided by 1/2?

Q6. Evaluate: sin (π/2)

Q7. How many days are there in a leap year?

Q8. The instantaneous rate of change of a function
y is called the —?— of function y .

Q9. The product of x and y for a function is called
the —?— of the function.

Q10. At what value(s) of x is f (x)= (x − 4)/(x − 3)
equal to zero?

1. Spaceship Problem: A spaceship is launched
from Cape Canaveral. As the last stage of the
rocket motor fires, the velocity is given by

v(t )= 1600 × 1.1t

where v(t ) is in feet per second and t is the
number of seconds since the last stage
started.

a. Plot the graph of v(t ) versus t , from t = 0 to
t = 30. Sketch trapezoids with parallel sides
at 5-s intervals, extending from the t-axis to
the graph.

Section 1-4: Definite Integrals by Trapezoids, from Equations and Data 21
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b. Find, approximately, the definite integral of
v(t ) with respect to t from t = 0 to t = 30 by
summing the areas of the trapezoids. Will
the sum overestimate the integral or
underestimate it? How can you tell?

c. Based on the units of the definite integral,
explain why it represents the distance the
spaceship traveled in the 30-s interval.

d. To go into orbit around Earth, the spaceship
must be traveling at least 27,000 ft/s. Will it
be traveling this fast when t = 30? How can
you tell?

2. Walking Problem: Pace Walker enters an AIDS
walkathon. She starts off at 4 mi/h, speeds up
as she warms up, then slows down as she gets
tired. She estimates that her speed is given by

v(t )= 4 + sin 1.4t

where t is the number of hours since she
started and v(t ) is in miles per hour.

a. Pace walks for 3 h. Plot the graph of v(t ) as a
function of t for these three hours. Sketch
the result on your paper. (Be sure your
calculator is in radian mode!)

b. Explain why a definite integral is used to
find the distance Pace has gone in 3 h.

c. Estimate the integral in part b, using six
trapezoids. Show these trapezoids on your
graph. About how far did Pace walk in the
3 h?

d. How fast was Pace walking at the end of the
3 h? When did her maximum speed occur?
What was her maximum speed?

3. Aircraft Carrier Landing Problem: Assume that
as a plane comes in for a landing on an aircraft
carrier, its velocity, in ft/s, takes on the values
shown in the table. Find, approximately, how
far the plane travels as it comes to a stop.

t (s) y (ft/s)

0.0 300
0.6 230
1.2 150
1.8 90
2.4 40
3.0 0

In 1993, Kara Hultgreen became one of the first
female pilots authorized to fly navy planes in
combat.

4. Water over the Dam Problem: The amount of
water that has flowed over the spillway on a
dam can be estimated from the flow rate and
the length of time the water has been flowing.
Suppose that the flow rate has been recorded
every 3 h for a 24-h period, as shown in the
table. Estimate the number of cubic feet of
water that has flowed over the dam in this
period.

Time ft3/h Time ft3/h

12:00 a.m. 5,000 12:00 p.m. 11,000
3:00 a.m. 8,000 3:00 p.m. 7,000
6:00 a.m. 12,000 6:00 p.m. 4,000
9:00 a.m. 13,000 9:00 p.m. 6,000

12:00 a.m. 9,000

5. Program for Trapezoidal Rule Problem:
Download or write a program for your grapher
to evaluate definite integrals using the

22 Chapter 1: Limits, Derivatives, Integrals, and Integrals
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trapezoidal rule. Store the equation as y1. For
the input, use a and b, the initial and final
values of x, and n, the number of increments.
The output should be the value of n that you
used, and the approximate value of the
integral. Test your program by using it to find
T3 from Example 1. Then find T20 and see if
you get 23.819625.

6. Program for Trapezoidal Rule from Data
Problem: Download or modify the program
from Problem 5 to evaluate an integral,
approximately, for a function specified by a
table of data. Store the data points in L1 on
your grapher. For the input, use n, the number
of increments, and ∆x, the spacing between
x-values. It is not necessary to input the actual
x-values. Be aware that there will be n + 1 data
points for n increments. Test your program by
finding T7 for the function in Example 2.

7. For the definite integral of f (x)=−0.1x2 + 7
from x= 1 to x= 4,

a. Sketch the region corresponding to the
integral.

b. Approximate the integral by finding T10, T20,
and T50 using the trapezoidal rule. Do these
values overestimate the integral or
underestimate it? How do you know?

c. The exact value of the integral is 18.9. How
close do T10, T20, and T50 come to this value?
How many increments, n, do you need to
use until Tn is first within 0.01 unit of the
limit? Give evidence to suggest that Tn is
within 0.01 unit of 18.9 for all values of n
greater than this.

8. For the definite integral of g(x)= 2x from x= 1
to x= 3,

a. Sketch the region corresponding to the
integral.

b. Approximate the integral by finding T10, T20,
and T50 using the trapezoidal rule. Do these
values overestimate the integral or
underestimate it? How do you know?

c. The exact value of the integral is
8.65617024... . How close do T10, T20, and T50

come to this value? How many increments,
n, do you need to use until Tn is first within
0.01 unit of the limit? Give evidence to
suggest that Tn is within 0.01 unit of the

exact value for all values of n greater than
this.

9. Elliptical Table Problem: Figure 1-4d shows the
top of a coffee table in the shape of an ellipse.
The ellipse has the equation
( x

110

)2
+
( y

40

)2
= 1

where x and y are in centimeters. Use the
trapezoidal rule to estimate the area of the
table. Will this estimate be too high or too
low? Explain. What is the exact area of the
ellipse?

x

y

Figure 1-4d

10. Football Problem: The table shows the
cross-sectional area, A, of a football at various
distances, d, from one end. The distances are
in inches and the areas are in square inches.
Use the trapezoidal rule to find, approximately,
the integral of area with respect to distance.
What are the units of this integral? What, then,
do you suppose the integral represents?

d (in.) A (in.2) d (in.) A (in.2)

0 0.0 7 29.7
1 2.1 8 23.8
2 7.9 9 15.9
3 15.9 10 7.9
4 23.8 11 2.1
5 29.7 12 0.0
6 31.8

11. Exact Integral Conjecture Problem 1: Now that
you have a program to calculate definite
integrals approximately, you can see what
happens to the value of the integral as you use
narrower trapezoids. Estimate the definite
integral of f (x)= x2 from x= 1 to x= 4, using
10, 100, and 1000 trapezoids. What number do
the values seem to be approaching as the
number of trapezoids gets larger and larger?
Make a conjecture about the exact value of the
definite integral as the width of each trapezoid

Section 1-4: Definite Integrals by Trapezoids, from Equations and Data 23
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approaches zero. This number is the —?— of
the areas of the trapezoids as their widths
approach zero. What word goes in the
blank?

12. Exact Integral Conjecture Problem 2: The exact
definite integral of g(x)= x3 from x= 1 to x= 5

is an integer. Make a conjecture about what
this integer is equal to. Justify your answer.

13. Trapezoidal Rule Error Problem: How can you
tell whether the trapezoidal rule overestimates
or underestimates an integral? Draw a sketch
to justify your answer.

1-5 Calculus Journal

You have been learning calculus by reading, listening, and discussing, and also
by working problems. An important ability to develop for any subject you study
is the ability to write about it. To gain practice in this technique, you will be
asked to record what you’ve been learning in a journal. (Journal comes from the
same source as the French word jour, meaning “day.” Journey comes from the
same source and means “a day’s travel.”)

OBJECTIVE Start writing a journal in which you can record things you’ve learned about
calculus and questions you still have about certain concepts.

c x

f (x)

f (c)

y

x

y

x
a b

Topic: Limits                                                                                             9/15
I learned that both definite integrals and derivatives use limits. For 
derivatives, the instantaneous rate is the limit of the average rate.  For 
integrals, the exact area under the graph is the limit of the areas of the 
trapezoids. You can't get the instantaneous rate directly because you'd have to 
divide by zero. You can't get the exact integral directly because you can't add 
an infinite number of trapezoids. So you just have to use a smaller and 
smaller change in x or more and more trapezoids, and see what happens.
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Use a bound notebook or spiral-bound notebook with large index cards for
pages. You can write narrative and equations on the lined side of the card and
draw graphs on the facing blank side. A typical entry might look like the index
card on the previous page.

Your journal should not be a simple transcription of your class notes. Nor
should you take notes directly in it. Save it for concise summaries of things you
have learned, conjectures that have been made, and topics about which you are
not yet certain.

Problem Set 1-5

1. Start a journal in which you will record your
understandings about calculus. The first entry
should include such things as

•The four concepts of calculus

•The distinctions among derivative, definite
integral, and limit

•The fact that you still don’t know what the
other kind of integral is

•The techniques you know for calculating
derivatives, definite integrals, and limits

•Any questions that still aren’t clear in your
mind

1-6 Chapter Review and Test

In this chapter you have had a brief introduction to the major concepts of
calculus.

Limits

Derivatives

Definite integrals

Another type of integrals

The derivative of a function is its instantaneous rate of change. A definite
integral of a function involves a product of the dependent and independent
variables, such as (rate)(time). A limit is a number that y can be kept close to,
just by keeping x suitably restricted. The other type of integral is called an
indefinite integral, also known as an antiderivative. You will see why two
different concepts use the word “integral” when you learn the fundamental
theorem of calculus in Chapter 5.

You have learned how to calculate approximate values of derivatives by dividing
small changes in y by the corresponding change in x. Definite integrals can be
found using areas under graphs and can thus be estimated by counting squares.
Limits of functions can be calculated by finding the y-value of a removable
discontinuity in the graph. Along the way you have refreshed your memory
about the shapes of certain graphs.

Section 1-6: Chapter Review and Test 25
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The Review Problems are numbered according to the sections of this chapter.
Answers are provided at the back of the book. The Concept Problems allow you
to apply your knowledge to new situations. Answers are not provided, and in
later chapters you may be required to do research to find answers to open-ended
problems. The Chapter Test resembles a typical classroom test your instructor
might give you. It has a calculator part and a no-calculator part, and the answers
are not provided.

Review Problems

R1. Bungee Problem: Lee Per attaches himself to a
strong bungee cord and jumps off a bridge. At
time t = 3 s, the cord first becomes taut. From
that time on, Lee’s distance, d, in feet, from the
river below the bridge is given by the equation

d = 90 − 80 sin [1.2 (t − 3)]

a. How far is Lee from the water when t = 4?

b. Find the average rate of change of d with
respect to t for the interval t = 3.9 to t = 4,
and for the interval t = 4 to t = 4.1.
Approximately what is the instantaneous
rate of change at t = 4? Is Lee going up or
going down at time t = 4? Explain.

c. Estimate the instantaneous rate of change of
d with respect to t when t = 5.

d. Is Lee going up or down when t = 5? How
fast is he going?

e. Which concept of calculus is the
instantaneous rate of change?

R2. a. What is the physical meaning of the
derivative of a function? What is the
graphical meaning?

b. For the function in Figure 1-6a, explain how
f (x) is changing (increasing or decreasing,
quickly or slowly) when x equals −4, 1, 3,
and 5.

–4 1 3 5
x

f (x)

Figure 1-6a

c. If f (x)= 5x, find the average rate of change
of f (x) from x= 2 to x= 2.1, from x= 2 to
x= 2.01, and from x= 2 to x= 2.001. How
close are these average rates to the
instantaneous rate, 40.235947...? Do the
average rates seem to be approaching this
instantaneous rate as the second value of x
approaches 2? Which concept of calculus is
the instantaneous rate? Which concept of
calculus is used to find the instantaneous
rate?

d. Mary Thon runs 200 m in 26 s! Her distance,
d, in meters from the start at various times
t , in seconds, is given in the table. Estimate
her instantaneous velocity in m/s when
t = 2, t = 18, and t = 24. For which time
intervals did her velocity stay relatively
constant? Why is the velocity at t = 24

26 Chapter 1: Limits, Derivatives, Integrals, and Integrals
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reasonable in relation to the velocities at
other times?

t (s) d (m) t (s) d (m)

0 0 14 89
2 7 16 103
4 13 18 119
6 33 20 138
8 47 22 154

10 61 24 176
12 75 26 200

R3. Izzy Sinkin winds up his toy boat and lets it
run on the pond. Its velocity is given by

v(t )= (2t )(0.8t )

as shown in Figure 1-6b. Find, approximately,
the distance the boat travels between t = 2 and
t = 10. Which concept of calculus is used to
find this distance?

2 4 6 8 10 12

1

2

3

4

t (s)

v (t) (ft/s)

Figure 1-6b

R4. The graph in Figure 1-6c shows

f (x)=−0.5x2 + 1.8x + 4

a. Plot the graph of f . Sketch your results.
Does your graph agree with Figure 1-6c?

x

5

f (x)

1 4

Figure 1-6c

b. Estimate the definite integral of f (x) with
respect to x from x= 1 to x= 4 by counting
squares.

c. Estimate the integral in part b by drawing
trapezoids each 0.5 unit of x and summing
their areas. Does the trapezoidal sum
overestimate the integral or underestimate
it? How can you tell?

d. Use your trapezoidal rule program to
estimate the integral using 50 increments
and 100 increments. How close do T50 and
T100 come to 15, the exact value of the
integral? Do the trapezoidal sums seem to
be getting closer to 15 as the number of
increments increases? Which concept of
calculus is used to determine this?

R5. In Section 1-5, you started a calculus journal. In
what ways do you think keeping this journal
will help you? How can you use the completed
journal at the end of the course? What is your
responsibility throughout the coming year to
ensure that keeping the journal will be a
worthwhile project?

Concept Problems

C1. Exact Value of a Derivative Problem: You have
been calculating approximate values of
derivatives by finding the change in y for a
given change in x, then dividing. In this
problem you will apply the concept of limit to
the concept of derivative to find the exact value
of a derivative. Let y = f (x)= x2 − 7x + 11.

a. Find f (3).

b. Suppose that x is slightly different from 3.
Find an expression in terms of x for the
amount by which y changes, f (x) − f (3).

c. Divide the answer to part b by x − 3 to get
an expression for the approximate rate of
change of y . Simplify.

d. Find the limit of the fraction in part c as
x approaches 3. The answer is the exact
rate of change at x= 3.
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C2. Tangent to a Graph Problem: If you worked
Problem C1 correctly, you found that the
instantaneous rate of change of f (x) at x= 3 is
exactly −1 y-unit per x-unit. Plot the graph of
function f . On the same screen, plot a line
through the point (3, f (3)) with slope −1. What
do you notice about the line and the curve as
you zoom in on the point (3, f (3))?

C3. Formal Definition of Limit Problem: In
Chapter 2, you will learn that the formal
definition of limit is

L= lim
x→c

f (x) if and only if

for any positive number epsilon, no
matter how small

there is a positive number delta such that

if x is within delta units of c, but not
equal to c,

then f (x) is within epsilon units of L.

Notes: “lim
x→c

f (x)” is read “the limit of f (x) as x
approaches c.” Epsilon is the Greek lowercase
letter ε. Delta is the Greek lowercase letter δ.

1 2 3 4 5 6

1

2

3

4

5

6

x (s)

f (x) (ft)

Figure 1-6d

Figure 1-6d shows the graph of the average
velocity in ft/s for a moving object from 3 s to
x s given by the function

f (x)= 4x2 − 19x + 21

x − 3

From the graph you can see that 5 is the limit
of f (x) as x approaches 3 (the instantaneous
velocity at x= 3), but that r (3) is undefined
because of division by zero.

a. Show that the (x − 3) in the denominator
can be canceled out by first factoring the
numerator, and that 5 is the value of the
simplified expression when x= 3.

b. If ε = 0.8 unit, on a copy of Figure 1-6d show
the range of permissible values of f (x) and
the corresponding interval of x-values that
will keep f (x) within 0.8 unit of 5.

c. Calculate the value of δ to the right of 3 in
part b by substituting 3 + δ for x and 5.8 for
f (x), then solving for δ. Show that you get
the same value of δ to the left of 3 by
substituting 3 − δ for x and 4.2 for f (x).

d. Suppose you must keep f (x) within ε units
of 5, but you haven’t been told the value of
ε. Substitute 3 + δ for x and 5 + ε for f (x).
Solve for δ in terms of ε. Is it true that there
is a positive value of δ for each positive
value of ε, no matter how small, as required
by the definition of limit?

e. In this problem, what are the values of L and
c in the definition of limit? What is the
reason for the clause “. . . but not equal to c”
in the definition?

Chapter Test

PART 1: No calculators allowed (T1–T8)
T1. Write the four concepts of calculus.

T2. Write the verbal definition of limit.

T3. Write the physical meaning of derivative.

T4. Sketch the graph of a function that is
increasing quickly at (2, 3) and decreasing
slowly at (5, 6).

T5. Figure 1-6e shows the graph of the velocity,
v(t ), in feet per second of a roller coaster as a
function of time, t , in seconds since it started.
Which concept of calculus is used to find the
distance the roller coaster travels from t = 0 to
t = 35? Estimate this distance graphically by
counting squares.
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T6. On a copy of Figure 1-6e, sketch trapezoids
that you would use to find T7, the distance
in Problem T5 using the trapezoidal rule with
7 increments. Estimate T7 by trapezoidal rule.
Will T7 overestimate or underestimate the
actual distance? How do you know?

5 10 15 20 25 30 35 40 45

5

10

15

20

25

t (s)

v (t) (ft/s)

Figure 1-6e

T7. In Problem T5, which concept of calculus is
used to find the rate of change of velocity at
the instant when t = 30? Estimate this rate
graphically. Give the units of this rate of
change, and the physical name for this
quantity.

T8. At what time is the roller coaster in Problem T5
first at the bottom of a hill? How do you
explain the fact that the graph is horizontal
between t = 0 and t = 10?

PART 2: Graphing calculators allowed (T9–T18)
On the no-calculator part of this test, you estimated
graphically the distance a roller coaster traveled
between 0 s and 35 s. The equation is

y = 5, if 0 ≤ x ≤ 10

y = 15 + 10 cos π
15 (x − 25), if 10 ≤ x ≤ 35

where x is in seconds and y is in ft/s. Use this
information for Problems T9–T15.

T9. How far did the roller coaster go from x= 0 to
x= 10?

T10. Use your trapezoidal rule program (radian
mode) to estimate the integral of y with

respect to x from x= 10 to x= 35 by finding
the trapezoidal sums T5,T50, and T100.

T11. The exact value of the integral in Problem T10
is 416.349667..., the limit of Tn as n approaches
infinity. Give numerical evidence that Tn is
getting closer to this limit as n increases.

T12. Find (without rounding) the average rate of
change of y with respect to x from

x = 30 to x= 31

x = 30 to x= 30.1
x = 30 to x= 30.01

T13. Explain why the average rates in Problem T12
are negative.

T14. The instantaneous rate of change of y at 30 s is
−1.81379936..., the limit of the average rates
from 30 to x as x approaches 30. Find the
difference between the average rate and this
limit for the three values in Problem T12. How
does the result confirm that the average rate
is approaching the instantaneous rate as
x approaches 30?

T15. About how close would you have to keep x to
30 (on the positive side) so that the average
rates are within 0.01 unit of the limit given in
Problem T14?

T16. Name the concept of calculus that means
instantaneous rate of change.

T17. You can estimate derivatives numerically from
tables of data. Estimate f ′(4) (read “f -prime of
four”), the derivative of f (x) at x= 4.

x f (x)

3.4 24
3.7 29
4.0 31
4.3 35
4.7 42

T18. What did you learn from this test that you did
not know before?
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Properties of Limits

Finding the average velocity of a moving vehicle requires dividing
the distance it travels by the time it takes to go that distance. You
can calculate the instantaneous velocity by taking the limit of the
average velocity as the time interval approaches zero. You can also
use limits to find exact values of definite integrals. In this chapter
you’ll study limits, the foundation for the other three concepts
of calculus.
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Mathematical Overview

 Informally, the limit of a function f as x approaches c is the
 y-value that f(x) stays close to when x is kept close enough to c
 but not equal to c. In Chapter 2, you will formalize the concept of
 limit by studying it in four ways.

Graphically

Numerically x  f(x)

3.01 3.262015
3.001 3.251200...
3.0001 3.250120...
3.00001 3.250012...

···
···

Algebraically 0 < |x – c| <   | f(x) – L| <  , f(x) is within  units of L
whenever x is within  units of c, the definition of limit.

Verbally I have learned that a limit is a y-value that f(x) can be kept
arbitrarily close to just by keeping x close enough to c but not equal
to c. Limits involving infinity are related to vertical and horizontal
asymptotes. Limits are used to find exact values of derivatives.

The icon at the top of each
even-numbered page of this chapter
shows that f(x) is close to L when x is
close enough to c but not equal to c.



2-1   Numerical Approach to the Definition

Exploratory Problem Set 2-1

1.  Figure 2-1a shows the function

Figure 2-1a

a.  Show that f(2) takes the indeterminate form
0/0. Explain why there is no value for f(2).

b.  The number y = 3 is the limit of f(x) as x
approaches 2. Make a table of values of f(x)
for each 0.001 unit of x from 1.997 to 2.003.
Is it true that f(x) stays close to 3 when x is
kept close to 2 but not equal to 2?

c.  How close to 2 would you have to keep x for
 f(x) to stay within 0.0001 unit of 3? Within
0.00001 unit of 3? How could you keep f(x)
arbitrarily close to 3 just by keeping x close
enough to 2 but not equal to 2?

d.  The missing point at x = 2 is called a
     removable discontinuity. Why do you
     suppose this name is used?

2.  Let g(x) = (x – 3) sin 

Plot the graph of g using a window that
includes y = 2 with x = 3 as a grid point. Then
zoom in on the point (3, 2) by a factor of 10 in
both the x- and y-directions. Sketch the
resulting graph. Does g(x) seem to be
approaching a limit as x approaches 3? If
so, what does the limit equal? If not, explain
why not.

3.  Let h(x) = sin 

Plot the graph of h using a window with a
 y-range of about 0 to 3 with x = 3 as a grid
point. Then zoom in on the point (3, 2) by a
factor of 10 in the x-direction. Leave the y-scale
the same. Sketch the resulting graph. Does h(x)
appear to approach a limit as x approaches 3?
If so, what does the limit equal? If not, explain
why not.
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     OBJECTIVE Find the limit of f(x) as x approaches c if f(c) is undefined.

In Section 1-2 you learned that L is the limit of f(x) as x approaches c if and
only if you can keep f(x) arbitrarily close to L by keeping x close enough to c but
not equal to c. In this chapter you’ll acquire a deeper understanding of the
meaning and properties of limits.

           of Limit



2-2   Graphical and Algebraic Approaches
           

Here is the formal definition of limit. You should commit this definition to
memory so that you can say it orally and write it correctly without having to
look at the text. As you progress through the chapter, the various parts of the
definition will become clearer to you.

Notes:

•   f(x) is pronounced “the limit of f(x) as x approaches c.”

•  “For any number  > 0” can also be read as “for any positive number .”
The same is true for  > 0.

•  The optional words “no matter how small” help you focus on keeping f(x)
close to L.

•  The restriction “but x  c” is needed because the value of f(c) may be
undefined or different from the limit.

EXAMPLE 1 State whether the function graphed in Figure 2-2a has a limit at the given
x-value, and explain why or why not. If there is a limit, give its value.

a.  x = 1 b.  x = 2 c.  x = 3
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      OBJECTIVE Given a function f , state whether f(x) has a limit L as x approaches c, and if
 so, explain how close you can keep x to c for f(x) to stay within a given

 number  units of L.

 
 DEFINITION:   Limit
 L =  f(x) if and only if
 for any number  > 0, no matter how small
 there is a number  > 0 such that
 if x is within  units of c, but x  c,
 then f(x) is within  units of L.
 

In Figure 2-1a, you saw a function for which f(x) stays close to 3 when x is kept
close to 2, even though f(2) itself is undefined. The number 3 fits the verbal
definition of limit you learned in Section 1-2: You can keep f(x) arbitrarily close
to 3 by keeping x close enough to 2 but not equal to 2. In this section you’ll use
two Greek letters:  (lowercase epsilon) to specify how arbitrarily close f(x) must
be kept to the limit L, and  (lowercase delta) to specify how close x must be
kept to c in order to do this. The result leads to a formal definition of limit.

to the Definition of
Limit



Solution

 f(x) = 5

c.  If x is close to 3 on the left, then f(x) is close to 10. If x is close to 3 on the
right, then f(x) is close to 8. Therefore, there is no one number you can
keep f(x) close to just by keeping x close to 3 but not equal to 3. The fact
that f(3) exists and is equal to 10 does not mean that 10 is the limit.

 f(x) does not exist.

Figure 2-2a

Note: The discontinuity at x = 1 in Figure 2-2a is called a removable
discontinuity. If f(1) were defined to be 2, there would no longer be a
discontinuity. The discontinuity at x = 3 is called a step discontinuity. You
cannot remove a step discontinuity simply by redefining the value of the function.

Figure 2-2b

Figure 2-2b shows the graph of function f for which
 f(2) is undefined.

a.  What number does  f(x) equal? Write the
definition of this limit using proper limit
terminology.

b.  If  = 0.6, estimate to one decimal place the
largest possible value of  you can use to keep
 f(x) within  units of the limit by keeping x
within  units of 2 (but not equal to 2).

c.  What name is given to the missing point at
x = 2?

Solution

Figure 2-2c

a.         f(x) = 4

4 =  f(x) if and only if Use separate lines for the various
parts of the definition.for any number  > 0, no matter how small,

there is a number  > 0 such that
if x is within  units of 2, but x  2,
then f(x) is within units of 4.

b.  Because  = 0.6, you can draw lines 0.6 unit above and below y = 4, as in
Figure 2-2c. Where these lines cross the graph, go down to the x-axis and
estimate the corresponding x-values to get x  1.6 and x  2.8.

So, x can go as far as 0.4 unit to the left of x = 2 and 0.8 unit to the right.
The smaller of these units, 0.4, is the value of .

c.  The graphical feature is called a removable discontinuity.

EXAMPLE 2
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a.  If x is kept close to 1 but not equal to 1, you can make f(x) stay within
      units of 2, no matter how small  is. This is true even though there is
     no value for f(1).

 f(x) = 2

b.  If x is kept close to 2, you can make f(x) stay within  units of 5 no matter
     how small  is. The fact that f(2) = 5 has no bearing on whether f(x) has a
     limit as x approaches 2.



Figure 2-2d shows the graph of
 f(x) = (x – 3)1/3 + 2. The limit of f(x) as
x approaches 3 is L = 2, the same as the value
of f(3).

a.  Find graphically the largest value of δ for
which f(x) is within  = 0.8 unit of 2
whenever x is kept within δ units of 3.

b.  Find the value of δ in part a algebraically.

c.  Substitute (3 + δ) for x and (2 + ) for f(x).
Solve algebraically for δ in terms of . Use the result to conclude that there
is a positive value of δ for any positive value of , no matter how small  is.

Solution a.  Figure 2-2e shows the graph of f with horizontal lines plotted 0.8 unit
above y = 2 and 0.8 unit below. Using the intersect feature of your grapher,
you will find

x = 2.488 for y = 1.2 and x = 3.512 for y = 2.8

6

Figure 2-2e

Each of these values is 0.512 unit away from x = 3, so the maximum value
of δ is 0.512.

b.  By symmetry, the value of δ is the same on either side of x = 3. Substitute
2.8 for f(x) and (3 + δ) for x.

[(3 + δ) – 3]1/3 + 2 = 2.8
δ1/3 = 0.8

δ = 0.83 = 0.512

which agrees with the value found graphically.

c. [(3 + δ) – 3]1/3 + 2 = 2 + 
δ1/3 = 

δ = 3

 there is a positive value of δ for any positive number , no matter
how small  is.

Let f(x) = 0.2(2x).
a.  Plot the graph on your grapher.

b.  Find         f(x). .

c.  Find graphically the maximum value of δ you can use for  = 0.5 at x = 3.

d.  Show algebraically that there is a positive value of δ for any   0, no
matter how small.

Solution a.  Figure 2-2f shows the graph.

b.  By tracing to x = 3, you will find that f(3) = 1.6, which is the same as   f(x).
c.  Plot the lines y = 1.1 and y = 2.1, which are  = 0.5 unit above and below

1.6, as shown in Figure 2-2f.

EXAMPLE 3
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EXAMPLE 4

Figure 2-2d



 

Figure 2-2f

Use the intersect feature of your grapher to find the x-values where these
lines cross the graph of f.

x = 2.4594... and x = 3.3923...,   respectively

The candidates for  are 1 = 3 – 2.4594... = 0.5403... and
2 = 3.3923... – 3 = 0.3923... .

The largest possible value of  is the smaller of these two, namely
 = 0.3923... .

d.  Because the slope of the graph is positive and increasing as x increases, the
more restrictive value of  is the one on the positive side of x = 3.
Substituting (1.6 + ) for f(x) and (3 + ) for x gives

0.2(23 +δ ) = 1.6 + 
(23+δ ) = 8 + 5

log(23+δ ) = log(8 + 5 )
(3 + ) log 2 = log(8 + 5 )

Because (log 8) / (log 2) = 3, because 8 + 5  is greater than 8 for any positive
number , and because log is an increasing function, the expression
log(8 + 5 ) / (log 2) is greater than the 3 that is subtracted from it. So  will
be positive for any positive number , no matter how small  is.

Problem Set 2-2

Q1.  Sketch the graph of y = 2x.

Q2.  Sketch the graph of y = cos x.

Q3.  Sketch the graph of y = –0.5x + 3.

Q4.  Sketch the graph of y = –x2.

Q5.  Sketch the graph of a function with a
removable discontinuity at the point (2, 3).

Q6.   Name a numerical method for estimating the
value of a definite integral.

Q7.  What graphical method can you use to
estimate the value of a definite integral?

Q8.  Write the graphical meaning of derivative.

Q9.  Write the physical meaning of derivative.

Q10.  If log3 x = y, then

A.  3x = y B.  3y = x C.  x3 = y
D.  y3 = x E.  xy = 3

1.  Write the definition of limit without looking at
the text. Then check the definition in this
section. If any part of your definition is
wrong, write the entire definition over again.
Keep doing this until you can write the
definition from memory without looking at
the text.

2.  What is the reason for the restriction “ . . . but
x ≠ c . . .” in the definition of limit?

For Problems 3–12, state whether the function
has a limit as x approaches c; if so, tell what
the limit equals.

3. 4.
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Quick Review



5.

9. 10.

11. 12.

For Problems 13–18, photocopy or sketch the
graph. For the point marked on the graph, use
proper limit notation to write the limit of f(x).
For the given value of , estimate to one
decimal place the largest possible value of 
that you can use to keep f(x) within  units of
the marked point when x is within  units of
the value shown.

13.  x = 3,  = 0.5 14.  x = 2,  = 0.5

15.  x = 6,  = 0.7 16.  x = 4,  = 0.8

17.  x = 5,  = 0.3 18.  x = 3,  = 0.4

For Problems 19–24,

a.  Plot the graph on your grapher. How does
the graph relate to Problems 13–18?

b.  Find the limit of the function as
x approaches the given value.

c.  Find the maximum value of  that can be
used for the given value of  at the point.

d.  Calculate algebraically a positive value of 
for any  > 0, no matter how small.

19.  f(x) = 5 – 2 sin(x – 3)
x = 3,  = 0.5

20.  f(x) = (x – 2)3 + 3
x = 2,  = 0.5

21.  f(x) = 1 + 
x = 6,  = 0.7

22.  f(x) = 1 + 24–x
x = 4,  = 0.8

23.  

x = 5,  = 0.3

24.  f(x) = 6 – 2(x – 3)2/3

x = 3,  = 0.4
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6.

7. 8.



25.  Removable Discontinuity Problem 1: Function

Figure 2-2g

a.  Show that f(2) has the indeterminate form
0/0. What feature does the graph of f have at
x = 2? Do an appropriate calculation to show
that 5 is the limit of f(x) as x approaches 2.

b.  Find the interval of x-values close to 2, but
not including 2, for which f(x) is within
0.1 unit of 5. Keep at least six decimal places
for the x-values at the ends of the interval.
Based on your answer, what is the largest
value of  for which f(x) is within  = 0.1
unit of 5 when x is kept within  unit of 2?

c.  Draw a sketch to show how the numbers L,
c, , and  in the definition of limit are
related to the graph of f in this problem.

26.  Removable Discontinuity Problem 2: Function

is undefined at x = 2.
a.  Plot the graph of f using a friendly window

that includes x = 2 as a grid point. What do
you notice about the shape of the graph? What
feature do you notice at x = 2? What does the
limit of f(x) appear to be as x approaches 2?

b.  Try to evaluate f(2) by direct substitution.
What form does your result take? What is

the name for an expression of the form
taken by f(2)?

c.  Algebraically find the limit of f(x) as x
approaches 2 by factoring the numerator,
then canceling the (x – 2) factors. How does
the clause “ . . . but x ≠  c . . .” in the definition
of limit allow you to do this canceling?

d.  “If x is within —?— unit of 2, but not equal
to 2, then f(x) is within 0.001 unit of the
limit.” What is the largest number that can
go in the blank? Show how you find this.

e.  Write the values for L, c, , and  in the
definition of limit that appears in part d.

27.  Limits Applied to Derivatives Problem: Suppose
you start driving off from a traffic light. Your
distance, d(t), in feet, from where you started
is given by

d(t) = 3t2

where t is time, in seconds, since you started.

a.  Figure 2-2h shows d(t) versus t. Write the
average speed, m(t), as an algebraic fraction
for the time interval from 4 seconds to
t seconds.

Figure 2-2h

b.  Plot the graph of function m on your
grapher. Use a friendly window that includes
t = 4. What feature does this graph have at
the point t = 4? Sketch the graph.

c.  Your speed at the instant t = 4 is the limit of
your average speed as t approaches 4. What
does this limit appear to equal? What are the
units of this limit?

d.  How close to 4 would you have to keep t for
m(t) to be within 0.12 unit of the limit?
(This is an easy problem if you simplify the
algebraic fraction first.)

e.  Explain why the results of this problem give
the exact value for a derivative.
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is undefined at x = 2. However, if x ≠ 2, you can
cancel the (x – 2) factors, and the equation becomes

 f(x) = x2 – 6x + 13,   x  ≠ 2

 So f is a quadratic function with a removable
 discontinuity at x = 2 (Figure 2-2g). The
 y-value at this missing point is the limit of f(x)
 as x approaches 2.



2-3   The Limit Theorems

 f(4) is undefined because it
has an indeterminate form.

Because the numerator is also zero, there may be a limit of f(x) as x approaches
4. Limits such as this arise when you try to find exact values of derivatives.
Simplifying the fraction before substituting 4 for x gives

= 3x + 12, provided x ≠  4

From Section 2-2, recall that 0/0 is called an indeterminate form. Its limit can
be different numbers depending on just what expressions go to zero in the
numerator and denominator. Fortunately, several properties (called the limit
theorems) allow you to find such limits by making substitutions, as shown
above. In this section you will learn these properties so that you can find exact
values of derivatives and integrals the way Isaac Newton and Gottfried Leibniz
did more than 300 years ago.

Limit of a Product or a Sum of Two Functions
Suppose that g(x) = 2x + 1 and h(x) = 5 – x. Let function f be defined by the
product of g and h.

 f(x) = g(x) · h(x) = (2x + 1)(5 – x)

Figure 2-3a

You are to find the limit of f(x) as x approaches 3. Figure 2-3a shows the graphs
of functions f, g, and h. Direct substitution gives

 f(3) = (2 · 3 + 1)(5 – 3) = (7)(2) = 14

The important idea concerning limits is that f(x) stays close to 14 when x is
kept close to 3. You can demonstrate this fact by making a table of values of
x, g(x), h(x), and f(x).
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     OBJECTIVE For the properties listed in the property box in this section, be able to state
 them, use them in a proof, and explain why they are true.

Surprisingly, you can find the limit by substituting 4 for x in the simplified
expression

Suppose that f(x) is given by the algebraic fraction

You may have seen this fraction in Problem 27 of Problem Set 2-2. There is no
value for f(4) because of division by zero. Substituting 4 for x gives



x

2.97 6.94 2.03 14.0882 When g(x) and h(x) are close
to 7 and 2, respectively,
 f(x) is close to14.

2.98 6.96 2.02 14.0592
2.99 6.98 2.01 14.0298

3.01 7.02 1.99 13.9698
3.02 7.04 1.98 13.9392
3.03 7.06 1.97 13.9082
3.04 7.08 1.96 13.8768

You can keep the product as close to 14 as you like by keeping x close enough
to 3, even if x is not allowed to equal 3. From this information you should be able
to see that the limit of a product of two functions is the product of the two
limits. A similar property applies to sums of two functions. By adding the values
of g(x) and h(x) in the preceding table, you can see that the sum g(x) + h(x) is
close to 7 + 2, or 9, when x is close to, but not equal to, 3.

Limit of a Quotient of Two Functions

The limit of a quotient of two functions is equal to the quotient of the two
limits, provided that the denominator does not approach zero. Suppose that
function f is defined by

and you want to find the limit of f(x) as x approaches 3. The values of g(3) and
h(3) are 7 and 2, respectively. By graphing or by compiling a table of values, you
can see that if x is close to 3, then f(x) is close to 7/2 = 3.5. You can keep f(x) as
close as you like to 3.5 by keeping x close enough to 3. (When x is equal to 3 ,
 f(x) happens to equal 3.5, but that fact is of no concern when you are dealing
with limits.)

Figure 2-3b

There is no limit of f(x) as x approaches 5. The denominator goes to zero, but
the numerator does not. Thus, the absolute value of the quotient becomes
infinitely large, as shown in this table. Figure 2-3b shows that the graph of f has
a vertical asymptote at x = 5.

x  g (x) h
(x)

 f (x)  =  g (x)/h (x)

4.96 10.92 0.04 273
4.97 10.94 0.03 364.6...
4.98 10.96 0.02 548
4.99 10.98 0.01 1098
5.00 11.00 0.00 None (infinite)
5.01 11.02 –0.01 –1102
5.02 11.04 –0.02 –552
5.03 11.06 –0.03 –368.6...
5.04 11.08 –0.04 –277
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 g
(x)

h (x)  f (x)  =  g (x) · h (x)

2.95
2.96

6.9
6.92

2.05
2.04

14.145
14.1168
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Some important properties of limits are summarized in this box. You can prove
the properties by the epsilon, delta techniques of Section 2-2, as you will see in
later courses in mathematics.

Verbally: The limit of a constant times a function equals the constant times

Use the limit properties to prove that 

then  [g(x) · h(x)] =  g(x) ·  h(x) = L1 · L2.

Verbally: Limit distributes over multiplication, or the limit of a product equals
the product of the limits.

Limit of a Sum of Two Functions: If  g(x) = L1 and  h(x) = L2,

then  [g(x) + h(x)] =  g(x) +  h(x) = L1 + L2.

Verbally: Limit distributes over addition, or the limit of a sum equals the sum
of the limits.

Limit of a Quotient of Two Functions: If  g(x) = L1 and  h(x) = L2,
where L2 ≠ 0,

then 

Verbally: Limit distributes over division, except for division by zero, or the
limit of a quotient equals the quotient of the limits.

Limit of a Constant Times a Function: If  g(x) = L,

then  [k · g(x)] = k ·  g(x) = kL.

the limit.

Limit of the Identity Function (Limit of x):  x = c

Verbally: The limit of x as x approaches c is simply c.

Limit of a Constant Function: If f(x) = k, where k is a constant,

then  f(x) = k.

Verbally: The limit of a constant is that constant.

EXAMPLE 1

SOME PROPERTIES OF LIMITS:   The Limit Theorems

Limit of a Product of Two Functions: If  g(x) = L1 and  h(x)

= L2,



Solution

Use the results of synthetic substitution.

Canceling is allowed because the definition
of limit says, “ . . . but not equal to 3.”

Limit of a sum (applied to three terms).

Limit of a product (x · x), limit of x, limit of a
constant times a function, and limit of a constant.
Q.E.D. stands for the Latin quod erat  demonstrandum,
“which was to be demonstrated.”

This proof reveals a simple way to find a limit of the indeterminate form 0/0. If
you can remove the expression that makes the denominator equal zero, you can
substitute the value x = c into the remaining expression. The result is the limit.

Problem Set 2-3

Q1.   Find the limit of 13x/x as x approaches zero.

Q2.   Sketch the graph of a function if 3 is the limit
as x approaches 2 but f(2) is undefined.

Q3.   Sketch the graph of a function that is
decreasing slowly when x = –4.

Q4.   Sketch the graph of a quadratic function.

Q5.   Sketch the graph of y = x3.

Q6.   Factor: x2 – 100

Q7.   Thirty is what percentage of 40?

Q8.   What is meant by definite integral?

Q9.   Divide quickly, using synthetic substitution:

Q10.   When simplified, the expression (12x30)/(3x10)
becomes

A.  9x3 B.  9x20 C.  4x3 D.  4x20

E.  None of these

1.  Limit of a Function Plus a Function Problem: Let
g(x) = x2 and h(x) = 12/x. Plot the two graphs
on your grapher, along with the graph of
 f(x) = g(x) + h(x). Sketch the result, showing
that the limit of f(x) as x approaches 2 is equal
to the sum of the limits of g(x) and h(x) as
x approaches 2. Make a table of values that
shows f(x) is close to the limit when x is close,
but not equal, to 2.

2.  Limit of a Constant Times a Function Problem:
Plot g(x) = x2 and f(x) = 0.2x2 on your grapher.
Sketch the result. Find the limit of f(x) as
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Quick Review

The expression approaches the indeterminate form 0/0 as x approaches 3.

as x  3

Use synthetic substitution to factor the numerator, then cancel the (x – 3) factors.



 

x approaches 3 and the limit of g(x) as x
approaches 3. Show that the limit of f(x) is 0.2
multiplied by the limit of g(x). Make a table 
that shows f(x) is close to the limit when x is 
close, but not equal, to 3.

grapher!) Then explain why the limit of f(x) as
x approaches 6 must be equal to 6.

5.  Limit of a Product Problem: Let
 f(x) = (2x2)(3 sin  x). Plot the graphs of
 y1 = 2x2 and y2 = 3 sin  x, and y3 = y1 · y2 on
your grapher. Use a window with x  [0, 2].
Sketch the results, showing the limits of each
of the three functions as x approaches 1.
Demonstrate that the limit of f(x) as
x approaches 1 is the product of the other two
limits by making a table of values that shows
that y3 is close to the product of the other two
limits when x is close to 1 but not equal to 1.

6.  Limit of a Quotient Problem: Let

Write the values of 23 and sin , then divide
them to find r(3). Make a table of values of r(x)
starting at x = 2.9997 and stepping by
0.0001 unit. Use the results to show that y3 stays
close to the quotient of the limits when x is close
to 3 but not equal to 3. Explain why the limit of
a quotient property cannot be applied to f(x).

For Problems 7 and 8, find the limit as x approaches
the given value. Prove that your answer is correct by
naming the limit theorems used at each step.

7.  f(x) = x2 – 9x + 5,   x  3

8.  f(x) = x2 + 3x – 6,   x  –1
For Problems 9–14, plot the graph using a friendly
window with the given value of x as a grid point.
Sketch the result. Show that the function takes the
indeterminate form 0/0 as x approaches the given

value. Then simplify the given fraction, find the
limit, and prove that your answer is correct by
naming the limit theorems used at each step.

9. 

10.

11.

13.

14.

15.  Check the Answer by Table Problem: For
Problem 11, make a table of values of f(x) for
each 0.001 unit of x starting at x = 4.990. Use
the table to find the largest interval of x-values
around x = 5 for which you can say that f(x) is
within 0.1 unit of the limit whenever x is within
the interval, but not equal to 5.

16.  Check the Answer by Graph Problem: For the
graph you plotted in Problem 13, use TRACE on
both sides of x = –1 to show that f(x) is close
to the limit when x is close to –1.

For Problems 17 and 18, show that even though the
function takes on the indeterminate form 0/0, you
cannot find the limit by the techniques of Example 1.

17.

18.

19.  Pizza Delivery Problem: Ida Livermore starts
off on her route. She records her truck’s speed,
v(t), in mi/h, at various times, t, in seconds,
since she started.
a.  Show Ida that these data fit the equation

v(t) = 5t1/2.
t (s) v (t) (mi/h)

0 0
1 5
4 10
9 15

16 20

13.
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12.

3.  Limit of a Constant Problem: Let f(x) = 7. Sketch
the graph of f. (Don’t waste time using your
grapher!) On the graph, show that the limit of
 f(x) as x approaches 3 is 7. Does it bother you
that f(x) = 7, even if x is not equal to 3?

4.  Limit of x Problem: Let f(x) = x. Sketch the
graph of f. (Don't waste time using your



d.  Approximately how far did Ida’s truck travel
from t = 1 to t = 9?

20.  Exact Derivative Problem: Let f(x) = x3.
a.  Find, approximately, the derivative of f at

x = 2 by dividing the change in f(x) from
x = 2 to x = 2.1 by the corresponding
change in x.

b.  In part a, you evaluated the fraction
[ f(x) – f(2)] / (x – 2) to get an approximate
value of the derivative. The exact value is
the limit of this fraction as x approaches 2.
Find this limit by first simplifying the
fraction. Prove that your answer is correct
by citing limit properties.

c.  Plot the graph of f. Construct a line through
the point (2, 8), whose slope is the value of
the derivative in part b. What relationship
does the line seem to have to the graph?

21.  Find, approximately, the derivative of
 f(x) = 0.7x when x = 5.

22.  Find, approximately, the definite integral of
 f(x) = 1.4x from x = 1 to x = 5.

23.  Mathematical Induction Problem––The Limit of
a Power: Recall that x2 = x · x, so you can use
the limit of a product property to prove that

x2 = c2

Prove by mathematical induction that

xn = cn

for any positive integer value of n. The recursive
definition of xn, which is xn = x · xn–1, should
be helpful in doing the induction part of the
proof.

24.  Journal Problem: Update your calculus journal.
You should consider

•  The one most important thing you have
learned since your last journal entry

•  What you now understand more fully about
the definition of limit

•  How the shortened definition of limit
corresponds to the definition you learned in
Chapter 1

•  Why the limit properties for sums, products,
and quotients are so obviously true

•  What may still bother you about the
definition of limit

2-4   Continuity and Discontinuity

Figure 2-4a

A function such as

has a discontinuity at x = 3 because the denominator
is zero there. It seems reasonable to say that the
function is “continuous” everywhere else because
the graph seems to have no other “gaps” or “jumps”
(Figure 2-4a). In this section you will use limits to
define the property of continuity precisely.
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b.  The truck’s acceleration, a(t), is the
instantaneous rate of change of v(t).
Estimate a(9) by using v(9) and v(9.001).
Make a conjecture about the exact value
of a(9). What are the units of a(t)?

c.  Note that a(9) is exactly equal to the limit
of [v(t) – v(9)] / (t – 9) as t approaches 9.
Factor the denominator as a difference
of two “squares.” Then find the limit as
t approaches 9 by applying the limit
properties. Does this limit agree with your
conjecture in part b?



Figure 2-4b Figure 2-4c Figure 2-4d

Figure 2-4e Figure 2-4f Figure 2-4g

The first two functions have a limit as x approaches c. In Figure 2-4b, f is
discontinuous at c because there is no value for f(c). In Figure 2-4c, f is
discontinuous at c because f(c)  L. Both are removable discontinuities. You
can define or redefine the value of f(c) to make f continuous there.

In Figure 2-4d, f has a step discontinuity at x = c. Although there is a value
for f(c), f(x) approaches different values from the left of c and the right of c.
So, there is no limit of f(x) as x approaches c. You cannot remove a step
discontinuity simply by redefining f(c).

In Figure 2-4e, function f has an infinite discontinuity at x = c. The graph
approaches a vertical asymptote there. As x gets closer to c, the value of f(x)
becomes large without bound. Again, the discontinuity is not removable just by
redefining f(c). In Section 2-5, you will study such infinite limits.

Figures 2-4f and 2-4g show graphs of functions that are continuous at x = c. The
value of f(c) equals the limit of f(x) as x approaches c. The branches of the
graph are “connected” by f(c).

These examples lead to a formal definition of continuity.
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      OBJECTIVE Define continuity. Learn the definition by using it several ways.

Figures 2-4b through 2-4g show graphs of six functions, some of which are
continuous at x = c and some of which are not.



Note that the graph can have a cusp (an abrupt change in direction) at x = c and
still be continuous there (Figure 2-4f). The word bicuspid in relation to a tooth
comes from the same root word.

Figures 2-4h, 2-4i, and 2-4j illustrate why a function must satisfy all three parts
of the continuity definition. In Figure 2-4h, the graph has a limit as x approaches
c, but it has no function value. In Figure 2-4i, the graph has a function value,
 f(c), but no limit as x approaches c. In Figure 2-4j, the graph has both a function
value and a limit, but they are not equal.

Figure 2-4h Figure 2-4i Figure 2-4j

One-Sided Limits and Piecewise Functions

The graph in Figure 2-4i is an example of a function that has different one-sided
limits as x approaches c. As x approaches c from the left side, f(x) stays close
to 4. As x approaches c from the right side, f(x) stays close to 7. This box shows
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Continuity at a Point: Function f is continuous at x = c if and only if

1.  f(c) exists,

2.         f(x) exists, and

3.         f(x) = f(c).

Continuity on an Interval: Function f is continuous on an interval of x-values
if and only if it is continuous at each value of x in that interval. At the end
points of a closed interval, only the one-sided limits need to equal the
function value.

DEFINITION:  Continuity

 
  
  
  
  
  
  
 

DEFINITION:  Cusp

A cusp is a point on the graph at which the function is continuous but the
derivative is discontinuous.

Verbally: A cusp is a sharp point or an abrupt change in direction.
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EXAMPLE 1

 
  
  
  
  
  
  
  
 

L =           f(x) if and only if     L =  f(x) and L = 

the symbols used for such one-sided limits, and a property relating one-sided
limits to the limit from both sides.

 f(x)

Figure 2-4k

A step discontinuity can result if f(x) is defined
by a different rule for x in the piece of the
domain to the right of c than it is for the piece
to the left. Figure 2-4k shows such a
piecewise function.

Each part of the function is called a branch. You can plot the three branches on
your grapher by entering the three equations, then dividing by the appropriate
Boolean variable (named for British mathematician George Boole, 1815–1864).
A Boolean variable, such as (x  2), equals 1 if the condition inside the
parentheses is true and 0 if the condition is false. Example 1 shows you how to
plot a piecewise function on your grapher and how to decide whether the
function has a limit at the transition points where the rule changes.

For the piecewise function f shown in Figure 2-4k,

a.  Plot the function f on your grapher.

b.  Does f(x) have a limit as x approaches 2? Explain. Is f continuous at x = 2?

c.  Does f(x) have a limit as x approaches 5? Explain. Is f continuous at x = 5?

Solution Notice where the open and closed points are in Figure 2-4k.

a.  Use a friendly window that includes x = 2 and x = 5 as grid points. Enter
these three functions in the Y = menu:

 y1 = x + 4 / (x  2) Divide any term of the equation
by the Boolean variable.

 y2 = –x2 + 8x – 8 / (2  x and x  5)

 y3 = x + 2 / (x  5)

Dividing by the Boolean variable (x  2) in y1 divides by 1 when x  2, and
divides by 0 when x is not less than or equal to 2. So the grapher plots the

PROPERTY:  One-Sided Limits

 f(x)     x  c from the left (through values of x on the negative side of c)

 f(x)     x  c from the right (through values of x on the positive side of c)



   

left branch by plotting y1 in the appropriate part of the domain, and plots
nothing for y1 elsewhere.

          f(x) does not exist. There is a step discontinuity.

The function f is discontinuous at x = 2.

c.  f(x) = 7 and     f(x) = 7 The left and right limits are equal.

 f(x) = 7 = f(5) The open circle at the right end of the middle branch is filled
with the closed dot on the left end of the right branch.

The function f is continuous at x = 5 because the limit as x approaches 5 is
equal to the function value at 5.

Let the function h(x) =

a.  Find the value of k that makes the function continuous at x = 2.

b.  Plot and sketch the graph.

Solution a. h(x) = k · 22 = 4k

h(x) = |2 – 3| + 4 = 5

For h to be continuous at x = 2, the two limits must be equal.
4k = 5    k = 1.25

Figure 2-4l

b.  Enter:

 y1 = 1.25x2 / (x < 2)
 y2 = abs(x – 3) + 4 / (x  2)

The graph is shown in Figure 2-4l. The missing point at the end of the left
branch is filled by the point at the end of the right branch, showing
graphically that h is continuous at x = 2.

Problem Set 2-4

Q1.  What is meant by the derivative of a function?

Q2.  What is meant by the definite integral of a
function?

Q3.  If f(x) = 200x + 17, what is the maximum value
of  that ensures f(x) is within 0.1 unit of f(3)
when x is within  units of 3?

Q4.  Draw a pair of alternate interior angles.

Q5.  What type of function has a graph like that in
Figure 2-4m?

Figure 2-4m
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EXAMPLE 2

Quick Review

b.          f(x) = 6 and                  f(x) = 4 The left and right limits are unequal.



Q6.  Sketch the graph of y = cos x.

c.  Is continuous at the marked value of x. If it
is not continuous there, explain why.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

For Problems 11–20, sketch the graph of a function
that has the indicated features.

11.  Is continuous at x = 3 but has a cusp there.

12.  Is continuous at x = 4 and is “smooth” there.

13.  Has no value for f(5) but has a limit as
x approaches 5.

14.  Has a value for f(–2) but has no limit as
x approaches –2.

15.  Has a vertical asymptote at x = 6.

16.  Has a value for f(2) and a limit as x approaches
2, but is not continuous at x = 2.

17.  Has a step discontinuity at x = –2, and
 f(–2) = 10.

18.  The limit of f(x) as x approaches 5 is –2, and
the value for f(5) is also –2.

19.  The limit of f(x) as x approaches 1 is 4, but
 f(1) = 6.

20.  f(3) = 5, but f(x) has no limit as x approaches 3
and no vertical asymptote there.

For Problems 21–24, state where, if anywhere, the
function is discontinuous.

21.  f(x) = 

22.  f(x) = 

23.  g(x) = tan x
24.  g(x) = cos x

For Problems 25–30, the function is discontinuous
at x = 2. State which part of the definition of
continuity is not met at x = 2. Plot the graph on
your grapher. (Note: The symbol int(n) indicates the
greatest integer less than or equal to n. Graph in dot
mode.) Sketch the graph.

25.  f(x) = x + int(cos x)
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Q7.  Factor: x2 + 5x – 6

Q8.  Evaluate: 532001/532000

Q9.  Evaluate: 5!

Q10.  Quick! Divide 50 by  and add 3.

For Problems 1–10, state whether the graph
illustrates a function that

a.  Has left and right limits at the marked value
of x.

b.  Has a limit at the marked value of x.



26.  g(x) = x + int(sin x)

 f(x) •  f(x) •  f(x)

• Continuity or kind of discontinuity

31.  c = {1, 2, 4, 5}

32.  c = {1, 2, 3, 5}

For the piecewise functions in Problems 33–36,

a.  Plot the graph using Boolean variables to
restrict the branches. Use a friendly window
including as a grid point any transition point
where the rule changes. Sketch the graph.

b.  Find the left and right limits at the transition
point, and state whether the function is
continuous at the transition point.

33.  d(x) = 

34.  h(x) = 

35.  m(x) = 

36.  q(x) = 

For the piecewise functions in Problems 37–40, use
one-sided limits in an appropriate manner to find
the value of the constant k that makes the function
continuous at the transition point where the
defining rule changes. Plot the graph using Boolean
variables. Sketch the result.

37.  g(x) = 

38.  f(x) = 

39.  u(x) = 

40.  v(x) = 

41.  Two Constants Problem: Let a and b stand for
constants and let

 f(x) = 

a.  Find an equation relating a and b if f is to
be continuous at x = 1.

b.  Find b if a = –1. Show by graphing that f is
continuous at x = 1 for these values of a
and b.
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27.  s(x) = 3 + 

28.  p(x) = int(x2 – 6x + 9)

29.  h(x) = 

30. 

For the piecewise functions graphed in Problems 31
and 32, make a table showing these quantities for
each value of c, or stating that the quantity does not
exist.

•  f(c) •



43.  River Crossing Problem: Calvin stands at the
beginning of a bridge that is perpendicular to
the banks of a 120-ft-wide river (Figure 2-4n).
He can walk across the bridge at 5 ft/s, or
take a scenic trip in a rowboat at 3 ft/s, making
an angle , in degrees, with the riverbank. The
time he takes to get to the other side of the
river is a piecewise function of . Write an
equation for this function. Plot the graph in a
suitable domain and sketch the result.

Figure 2-4n

44.  Surprise Function Problem! Let

a.  Plot the graph on your grapher.
b.  What appears to be the limit of f(x) as

x approaches 1?

c.  Show that f(x) is very close to the number in
part b when x = 1.0000001.

d.  Function f is not continuous at x = 1
because there is no value for f(1). What type
of discontinuity occurs at x = 1? (Be careful!)

45.  Continuity of Polynomial Functions: The general
polynomial function of degree n has an

equation of the form

P(x) = a0 + a1x + a2x2 + a3x3 + ··· + anxn

Based on the closure axioms for real numbers
and the properties of limits you have learned,
explain why any polynomial function is
continuous for all real values of x.

46.  The Signum Function: Figure 2-4o shows the
graph of the signum function, f(x) = sgn x. The
value of the function is 1 when x is positive, –1
when x is negative, and 0 when x is zero. This
function is useful in computing for testing a
value of x to see what sign it has (hence the
name signum). Here is the formal definition:

sgn x = 

Figure 2-4o

In this problem you will explore various
compositions of the signum function.
a.  Does r(x) = |sgn x| have a limit as

x approaches 0? Does it have a function
value at x = 0? Is it continuous at x = 0?

b.  Sketch the graph of g(x) = 3 sgn(x – 2).
c.  Sketch the graph of h(x) = x2 – sgn x.
d.  Show that the function a(x) = |x| / x is equal

to sgn x for all x except zero.
e.  Sketch the graph of f(x) = cos x + sgn x.

2-5   Limits Involving Infinity
Suppose the demand for doctors in a particular community has increased. The
number of people who choose to pursue that career will increase to meet the
demand. After a while there may be too many doctors, causing the number of
people who want to enter the medical profession to decrease. Eventually, the
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c.  Pick another value of a and find b. Show that
 f is continuous for these values of a and
b.42.  Two Values of Constant Problem: For function f,

use one-sided limits in an appropriate way to find
the two values of k that make f continuous at x = 2.



number of doctors stabilizes, say at 1000 (Figure 2-5a). This steady-state value is
the limit of the number of doctors as time approaches infinity.

You can visualize another type of limit involving infinity by imagining you are
pointing a flashlight straight at a wall (Figure 2-5b). If you begin to turn with the
flashlight in your hand, the length of the light beam, L, increases. When the
angle, x, is /2 radians (90°), the beam is parallel to the wall, so its length
becomes infinite. The graph of the function has a vertical asymptote at x = /2,
so it has an infinite discontinuity there.

Figure 2-5b

In this section you’ll learn some terminology to use if the value of f(x) becomes
infinitely large as x approaches c, or if x itself becomes infinitely large.

Figure 2-5c

x  f (x)

x  2+
2.1
2.01
2.001

13
103

1003
 f(x) = 

2 Undefined

x  2–
1.999
1.99
1.9

–997
–97
–7

 f(x) = –

Figure 2-5c shows the graph of

As x approaches 2, the denominator approaches zero. The reciprocal of a
number close to zero is very large. The table shows that as x approaches 2 from
the positive side, f(x) becomes infinitely large in the positive direction. As
x approaches 2 from the negative side, f(x) becomes infinitely large in the
negative direction. The symbol  represents infinity. You can express the
behavior of f(x) for values of x close to 2 by writing one-sided limits this way:

 f(x) = and  f(x) = –

Note that the  symbol does not stand for a number. It represents the fact that
the value of f(x) increases without bound as x gets closer to 2. Be careful to use

 only in conjunction with limits. Because the “=” sign connects two numbers, it
is not correct to write statements like “f(2) = .”
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        OBJECTIVE Find limits of functions where either x becomes infinite or the limit is infinite.
  

Figure 2-5a



 

Function f in Figure 2-5c gets closer and closer to 3 as x gets larger and larger.
This happens because the reciprocal of a large number is close to zero, leaving a
bit more than 3 for f(x). A similar thing happens as x becomes very large in the
negative direction.

2.99900199...
2.990196...
2.9166...

 f(x) = 3

···
···

x  
10

100
1000

3.125
3.0102...
3.001002...

 f(x) = 3

You can express this behavior by writing

 f(x) = 3 and  f(x) = 3

Again, the  symbol is used only in conjunction with limits.

The lines y = 3 and x = 2 in Figure 2-5c are horizontal and vertical asymptotes,
respectively. The definition of limits involving infinity can be used to give a
more precise definition of the concept of asymptote.
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DEFINITIONS:  Limits Involving Infinity
 f(x) =  if and only if f(x) can be kept arbitrarily far away from zero in the

positive direction just by keeping x close enough to c but not equal to c.
 f(x) = –  is similarly defined.

 f(x) is infinite if and only if f(x) can be kept arbitrarily far away from zero

just by keeping x close enough to c but not equal to c.

 f(x) = L if and only if f(x) can be made to stay arbitrarily close to L just by

making x large enough in the positive direction.
 f(x) = L is similarly defined.

 f(x) =  if and only if f(x) can be kept arbitrarily far away from zero in

the positive direction just by making x large enough.
 f(x) = – ,  f(x) = , and  f(x) = –  are similarly defined.

 
  
  
  
  
  
  
 

DEFINITIONS:  Horizontal and Vertical Asymptotes

If  f(x) = L, then the line y = L is a horizontal asymptote. The same applies
if x approaches – .

If | f(x)| = , then the line x = c is a vertical asymptote.

x  –
–1000
–100
–10

x  f (x)



 

Note that the graph of a function never crosses a vertical asymptote because
functions have only one value of y for any one value of x. This fact agrees with
the origin of the name, the Greek asymptotos, meaning “not due to coincide.” It
is customary to use “asymptote” for a horizontal limit line like the one in
Figure 2-5a, even though the graph does cross the line.

 f(x) =  and  f(x) = 3.

a.  What value of x > 2 makes f(x) = 500? Choose several values of x closer to
2 than this number and show numerically that f(x) > 500 for each of them.
What does it mean to say that the limit of f(x) is infinity as x approaches 2
from the positive side? What feature does the graph of f have at x = 2?

b.  What value of x > 2 makes f(x) = 3.004? Choose several values of x greater
than this number and show numerically that f(x) is within 0.004 unit of 3
for each of these numbers. What does it mean to say that the limit of f(x)
is 3 as x approaches infinity? How is the line y = 3 related to the graph?

Solution a. Substitute  500 for f(x).

This value of x makes f(x) = 500.

Particle accelerators, like
this one located at the
Center for European
Nuclear Research in
Meyrin, Switzerland, make
subatomic particles move
close to the speed of light.
According to the Theory of
Relativity, the particle
would need an infinite
amount of energy to reach
the speed of light.

Pick x = 2.002, x = 2.001, and x = 2.0005, for example.

x   f (x)

2.002 503
2.001 1003
2.0005 2003

In each case, f (x) > 500.
The equation   f(x) =  means that you can make f(x) arbitrarily far

away from zero by picking values of x close enough to 2 on the positive
side (but not equal to 2).

There is a vertical asymptote at x = 2.

b. Substitute  3.004 for f(x).

This value of x makes f(x) = 3.004.

Pick x = 260, x = 500, and x = 1000.
x

260 3.00387
500 3.002008...

1000 3.001002...
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EXAMPLE 1

 f (x)

For in Figure 2-5c,



 

In each case, f(x) is within 0.004 unit of 3.

Figure 2-5d

For the piecewise function f in Figure 2-5d, what do
the following limits appear to be?

•  f(x) •  f(x) •  f(x)

•  f(x) •  f(x) •  f(x)

•  f(x)

Solution •  f(x)= 4  f(x) stays close to 4 when x is very large. (There is a horizontal
asymptote at y = 4.)

•  f(x) = 6  f(x) stays close to 6 when x is close to 3 on the negative side.

•  f(x) = 2  f(x) stays close to 2 when x is close to 3 on the positive side.

•  f(x) = –  f(x) becomes infinitely large in the negative direction.

•  f(x) =  f(x) becomes infinitely large in the positive direction.

•  f(x) = 4  f is continuous at x = 0.

•  f(x) = 2  f(x) stays close to 2 when x is very large in the negative direction.
(There is a horizontal asymptote at y = 2.)

56 © 2005 Key Curriculum Press Chapter 2:   Properties of Limits

EXAMPLE 2

 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

Notes on Undefined, Infinite, and Indeterminate

•  An expression, A, is undefined at any value x = c that causes division by
zero. (An expression can also be undefined for other reasons, such as
sin–1 3 or log(–4).)

•  If the undefined expression, A, takes the form (nonzero)/(zero), A is said
to be an infinite form, or simply to be infinite. Its absolute value gets larger
than any real number as the denominator gets closer to zero. The graph of
 f(x) = A has an infinite discontinuity (a vertical asymptote) at x = c.

•  If the undefined expression, A, takes the form 0/0, A is said to be an
indeterminate form. You can’t determine the limit of A as x approaches c
just by looking at 0/0.

•  If an indeterminate form has a finite limit, L, as x approaches c, then the
function f(x) = A has a removable discontinuity at the point (c, L).

Thus,  f(x) = 3 means that you can keep f(x) arbitrarily close to 3 by
making x large enough.

The line y = 3 is a horizontal asymptote.



                        

Problem Set 2-5

Figure 2-5e

 f(x) = —?—

Q2.   f(x) = —?—

Q3.   f(x) = —?—

Q4.   f(x) = —?—

Q5.   f(x) = —?—

Q6.  Is f continuous at x = 1?

Q7.  Is f continuous at x = 2?

Q8.  Is f continuous at x = 3?

Q9.  Is f continuous at x = 4?

Q10.  Is f continuous at x = 5?

1.  For piecewise function f in Figure 2-5f, what do
these limits appear to be?

•  f(x) •  f(x)

•  f(x) •  f(x)

•  f(x) •  f(x)

•  f(x) •  f(x)

Figure 2-5f

2.  For piecewise function g in Figure 2-5g, what
do these limits appear to be?

• g(x) • g(x)

• g(x) • g(x)

• g(x) • g(x)

• g(x)

Figure 2-5g

For Problems 3–6, sketch the graph of a function
that has the given features.

3.  f(x) =  and  f(x) = 

4.  f(x) =  and  f(x) = –

5.  f(x) = –5 and   f(x) = 7

6.  f(x) =  and  f(x) = 

7.  Let 

a.  Sketch the graph of f.
b.  Find

c.  Find a value of x on the positive side of 3 for
which f(x) = 100. Choose several values of x
closer to 3 than this, and show numerically
that f(x) > 100 for all of these values. What
does it mean to say that the limit of f(x) is
infinity as x approaches 3 from the positive
side? How is the line x = 3 related to the
graph of f ?

d.  What value of x > 3 makes f(x) = 2.001?
Choose several values of x greater than this
number and show numerically that f(x) is
within 0.001 unit of 2 for each of these
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Quick Review

Refer to Figure 2-5e for Problems Q1–Q10.

Q1.  



numbers. What does it mean to say that the
limit of f(x) is 2 as x approaches infinity?
How is the line y = 2 related to the graph?

infinite, it is not correct to say that
What feature does the

graph of g have at x = /2?

c.  Find a value of x close to /2 on the positive
side for which g(x) = –1000. Choose several
values of x closer to /2 than this, and
show numerically that g(x) < –1000 for all
of these values. What does it mean to
say that the limit of g(x) is negative infinity as
x approaches /2 from the positive side? How
is the line x = /2 related to the graph of g?

9.  Let 

a.  Plot the graph of r. Use a friendly window
with an x-range of about –20 to 20 for
which x = 0 is a grid point. Sketch the result.

b.  Find the limit, L, of r(x) as x approaches
infinity.

c.  Show that r(28) is within 0.01 unit of 2, but
that there are values of x > 28 for which
r(x) is more than 0.01 unit away from 2. Use
a suitable window to show this graphically,
and sketch the result. Find a value x = D
large enough so that r(x) is within 0.01 unit
of 2 for all x > D.

d.  In part b, if you draw a horizontal line at
 y = L, will it be an asymptote? Explain.

e.  Make a conjecture about the limit of r(x) as
x approaches zero. Give evidence to support
your conjecture.

10.  Let  

a.  Plot the graph of h. Use a friendly window
with an x-range of 0 to about 100. You will
have to explore to find a suitable y-range.
Sketch the result.

b.  As x becomes large, 1/x approaches zero, so
h(x) takes on the form . You realize that
1 to any power is 1, but the base is always

greater than 1, and a number greater than 1
raised to a large positive power becomes
infinite. Which phenomenon “wins” as
x approaches infinity: 1, infinity, or some
“compromise” number in between?

11.  Figure 2-5h shows the graph of

 y = log x

Does the graph level off and approach a finite
limit as x approaches infinity, or is the limit
infinite? Justify your answer. The definition of
logarithm is helpful here ( y = log x if and only
if 10y = x).

Figure 2-5h

12.  Wanda Wye wonders why the form 1/0 is
infinite and why the form 1/  is zero. Explain
to her what happens to the size of fractions
such as 1/0.1, 1/0.0001, and so on, as the
denominator gets close to zero. Explain what
happens as the denominator becomes very
large.

13.  Limits Applied to Integrals Problem: Rhoda
starts riding down the driveway on her tricycle.
Being quite precocious, she figures her velocity,
v, in ft/s is

where t is time, in seconds, since she started.
Figure 2-5i shows v as a function of t.

Figure 2-5i
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8.  Let g(x) = sec x.

a.  Sketch the graph of g.

b.  Find and
Explain why, even though  s is



 

a.  Explain why the definite integral from t = 0

d.  Figure out how many trapezoids are needed
so that the approximation of the integral is
within 0.01 unit of the limit. Explain how
you go about getting the answer.

14.  Work Problem: The work done as you drag a
box across the floor is equal to the product of
the force you exert on the box and the distance
the box moves. Suppose that the force varies
with distance, and is given by

where F(x) is the force, in pounds, and x is the
distance, in feet, the box is from its starting
point. Figure 2-5j shows the graph of F.

Figure 2-5j

a.  Explain why a definite integral is used to
calculate the amount of work done.

b.  Use the trapezoidal rule with n = 10 and
n = 100 increments to estimate the value of
the integral from x = 0 to x = 4. What are the
units of work in this problem?

c.  The exact amount of work is the limit of the
trapezoidal sums as n approaches infinity.
In this case the answer is an integer. What
do you suppose the integer is?

d.  What is the minimum number, D, such that
the trapezoidal sums are closer than 0.01
unit to the limit in part c whenever n > D?

15.  Searchlight Problem: A searchlight shines on a
wall as shown in Figure 2-5k. The
perpendicular distance from the light to the
wall is 100 ft. Write an equation for the length,
L, of the beam of light as a function of the
angle, x, in radians, between the perpendicular
and the beam. How close to /2 must the angle
be for the length of the beam to be at least
1000 ft, assuming that the wall is long
enough?

Figure 2-5k

16.  Zero Times Infinity Problem: You have learned
that 0/0 is called an indeterminate form. You
can’t determine what it equals just by looking
at it. Similarly, 0 ·  is an indeterminate form.
In this problem you will see three possibilities
for the limit of a function whose form goes to
0 · . Let f, g, and h be functions defined as
follows.

 f(x) = 5x(x – 2) · 

g(x) = 5x(x – 2) · 

h(x) = 5x(x – 2)2 ·

a.  Show that each of the three functions takes
the form 0 ·  as x approaches 2.

b.  Find the limit of each function as x
approaches 2.

c.  Describe three things that the indeterminate
form 0 ·  could approach.
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to t = 9 represents the distance Rhoda rode
in the first 9 seconds.

b.  Use the trapezoidal rule to estimate the
     integral in part a. Try 9, 45, 90, and 450
     trapezoids. Record all the decimal places
     your program gives you.

c.  What number (an integer in this case) do
     you think is the exact value of the integral?
     Explain why this number is a limit. Why are
     the approximate answers by trapezoids all
     smaller than this number?

F(x) = 10 – 3



2-6   The Intermediate Value Theorem

Figure 2-6a The property of continuous functions that guarantees there is an exact value is
called the intermediate value theorem. Informally, it says that if you pick a value
of y between any two values of f(x), there is an x-value in the domain that gives
exactly that y-value for f(x). Because 1.813 = 5.929741 and 1.823 = 6.028568,
and because 6 is between 5.929741 and 6.028568, there must be a number x
between 1.81 and 1.82 for which  f(x) = 6 exactly. The function y = x3 must be
continuous for this property to apply.

Figure 2-6b illustrates the theorem. Pick y between f(a) and f(b). If f is
continuous, you can go over to the graph, then go down to the x-axis and find c,
a corresponding value of x. The value of f(c) will thus equal y exactly. The proof
of this theorem relies on the completeness axiom. This axiom, which comes in
several forms, says that there is a real number corresponding to every point on
the number line, and vice versa. Thus, the set of real numbers is “complete.” It
has no “holes,” as does the set of rational numbers.Figure 2-6b

A formal proof of the intermediate value theorem usually appears in later
courses on analysis of real numbers. The gist of the proof is that for any y-value
you pick in the interval, there will be a point on the graph because the graph is
continuous. Going vertically to the x-axis gives a point on the number line. This
point corresponds to a real number x = c, because the set of real numbers is
complete. Reversing the steps shows that f(c) really does equal y.

In addition, you will investigate a corollary of the intermediate value theorem,
called the image theorem, which relies on the extreme value theorem for
its proof.
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         OBJECTIVE Given an equation for a continuous function f and a value of y between f(a)
 and f(b), find a value of x = c between a and b for which f(c) = y.
  

 
  
  
  
  
  
 

PROPERTY:  The Intermediate Value Theorem

If the function f is continuous for all x in the closed interval [a, b], and y
is a number between f(a) and f(b), then there is a number x = c in (a, b) for
which f(c) = y.

and Its Consequences

 Suppose you try to find a solution of the equation x3 = 6 by tracing the graph of

 y = x3 (Figure 2-6a). The cursor never quite hits a value of x that makes y equal
 exactly 6. That’s because graphers plot discrete points that only approximately

 there really is a value of x (an irrational number) that, when cubed, gives exactly 6.
 represent the continuous graph. However, because y = x3 is continuous,



       

Figure 2-6c

a.  Because polynomial functions are continuous
for all values of x (see Problem 45 in
Section 2-4), f is continuous on [1, 3]. Because
 f(1) = 6 and f(3) = 4, the intermediate value
theorem applies, and a value of x = c occurs
in (1, 3) for which f(c) = 5.

b.  By solver or by plotting the line y = 5 and using
the intersect feature, you can find that
c  1.3111078..., which is between 1 and 3 (as
Figure 2-6c shows).

Problem Set 2-6

Q1.  Evaluate f(2) if f(x) = 3x4 + 5.

Q2.  Find  f(x) if f(x) =3x4 + 5.

Q3.  Evaluate h(3) if h(x) = 5(x – 3)/(x – 3).

Q4.  Find h(x) if h(x) = 5(x – 3)/(x – 3).

Q5.  Evaluate s(0) if s(x) = |x|/x.

Q6.  Find s(x) if s(x) = |x|/x.

Q7.  Evaluate: sin ( /2)

Q8.  Fill in the blank with the correct operation:
log (xy) = log x ––?–– log y.

Q9.  The expression 0/0 is called a(n) ––?–– form.

Q10.  Which of these definitely is not true if  f(x)
takes the form 0/0 as x approaches c?

A.  f(c) is undefined.
B.  f is discontinuous at x = c.
C.  f(x)  1 as x  c.
D.  f(x) may approach 0 as x  c.
E.  f(x) may approach 3 as x  c.

For Problems 1 and 2, explain why the intermediate
value theorem applies on the given closed interval.
Then find an approximation for the value of c in the
corresponding open interval for which f(c) is exactly
equal to the given y-value. Illustrate by graph.

1.  f(x) = (x – 3)4 + 2, [1, 4], y = 8

2.  f(x) = 0.001x5 – 8, [0, 6], y = –1

3.  Converse of the Intermediate Value Theorem?
The intermediate value theorem is not an “if
and only if” theorem. The conclusion can be
true even if the hypotheses are not met.
a.  The graph on the left in Figure 2-6d (on the

next page) shows

Explain why the conclusion of the
intermediate value theorem could be true or
false for the interval [1, 5], depending on the
value of y you pick in the interval [2, 8].

b.  The graph on the right in Figure 2-6d shows
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EXAMPLE 1

Quick Review

Solution

a.  If f(x) = x3 – 4x2 + 2x + 7, use the intermediate value theorem to conclude
     that a value of x = c occurs between 1 and 3 for which f(c) is exactly equal
     to 5.

b.  Find an approximation for this value of c numerically.

 f(x) = 2 + x + 

g(x) = 2 + x – 



Explain why the intermediate value theorem
is always true for the interval [1, 5], no
matter what value of y you pick between
g(1) and g(5), even though the function is
discontinuous at x = 2.

Figure 2-6d

4.  Figure 2-6e shows the graph of

if x is rational
if x is irrational

a.  Find f(2), f(3), f(0.5), and f( ).
b.  Is f continuous at x = 3? Explain.
c.  Where else is f continuous? Surprising?
d.  Because f(0) = 1 and f(2) = 4, is the

intermediate value theorem true for all
values of y between 1 and 4? Explain.

Figure 2-6e

5.  Use the intermediate value theorem to prove
that there is a real number equal to That is,
prove that there is a number c such that c2 = 3.

6.  Use the intermediate value theorem to prove
that if f is continuous, and if f(a) is positive
and f(b) is negative, then there is at least one

zero of f(x) between x = a and x = b. (Recall
that a zero of a function is a value of x that
makes f(x) = 0.)

7.  The intermediate value theorem is an example
of an existence theorem. Why do you suppose
this term is used? What does an existence
theorem not tell you how to do?

8.  Sweetheart Problem: You wish to visit your
sweetheart, but you don’t want to go all the
way over to their house if your sweetheart isn’t
home. What sort of “existence proof” could
you do beforehand to decide whether it is
worthwhile to make the trip? What sort of
information will your proof not give you about
making the trip? Why do you suppose
mathematicians are so interested in doing
existence proofs before they spend a lot of
time searching for solutions?

9.  Foot Race Problem: Jesse and Kay run the
1000-m race. One minute after the race begins,
Jesse is running 20 km/h and Kay is running
15 km/h. Three minutes after the race begins,
Jesse has slowed to 17 km/h and Kay has
speeded up to 19 km/h.

Assume that each runner’s speed is a
continuous function of time. Prove that there is
a time between 1 min and 3 min after the race
begins at which each one is running exactly the
same speed. Is it possible to tell what that
speed is? Is it possible to tell when that speed
occurred? Explain.
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 f(x) 



10.  Postage Stamp Problem: U.S. postage rates

Figure 2-6f

11.  Cosine Function Problem: Figure 2-6g is a
graph of f(x) = cos x. Recall that cos 0 = 1
and cos  = –1. What assumption must you
make about the cosine function to be able to
use the intermediate value theorem? Find as
accurate an approximation as possible for a
value of x = c between 0 and  for which
cos x = 0.6. Explain how you found this
approximation.

Figure 2-6g

12.  Exponential Function Problem: Figure 2-6h is a
graph of f(x) = 2x. What assumption must you
make about exponential functions in order to
use the intermediate value theorem? Why does
 f(0) = 1? Find as accurate an approximation as
possible for a value of x = c between 0 and 2
for 2c = 3. Explain how you found this
approximation.

Figure 2-6h

13.  The Extreme Value Theorem: The extreme
value theorem expresses the property that
if f is continuous on the closed interval [a, b],
then there are numbers c1 and c2 in [a, b] for
which f(c1) and f(c2) are the maximum and
minimum values of f(x) for that interval. Think
about what this means, and express this
theorem with a graph. Then draw a graph that
shows why the conclusion might not be true
for a function that has a discontinuity
somewhere in [a, b].

14.  The Image Theorem: The image theorem, a
corollary of the intermediate value theorem,
expresses the property that if f is continuous
on the interval [a, b], then the image (the set of
 y-values) of f on [a, b] is all real numbers
between the minimum of f(x) and the
maximum of f(x) on [a, b], inclusive. Use
the extreme value theorem as a lemma (a
preliminary result) to prove the image
theorem.
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in 2003 for first-class letters were 37¢ for the
first ounce and 23¢ per ounce thereafter.
Figure 2-6f, an example of a step function,
shows the cost of mailing a first-class letter
versus its weight in ounces. Does the function
meet the hypotheses of the intermediate
value theorem? Is there a weight of letter that
you can mail for exactly $2.00? Justify your
answers.



2-7   Chapter Review and Test

 units of the limit when x is within  units of c (x ≠  c). You should be able to
use the limit properties to prove that the number you’ve found is the limit. If
you think of “lim” as an operation that acts on functions, many of these
properties can be thought of as distributive properties. This box summarizes
the properties.

Finally, you learned another major theorem of calculus, the intermediate value
theorem, which expresses a property of continuous functions.

Review Problems

R0.  You have learned that calculus involves four
concepts. Your goal for this course is to be able
to do four things with each of these concepts.

Define it.  Understand it.
Limit
Derivative
Integral
Integral

In your journal, make a table like the one
shown above. Check each concept you have
worked on as you studied this chapter. Make
journal entries for such things as

• The one most important thing you learned
in studying Chapter 2

• A statement explaining what you now
understand a limit to be

• How limits apply to derivatives and definite
integrals

• Your understanding of continuity and the
intermediate value theorem

• Anything you need to ask about in class
before your test on Chapter 2

R1.  Let f(x) = 

a.  What numerical form does f(3) take? What
name is given to this numerical form?

b.  Plot the graph of f using a friendly window
that includes x = 3 as a grid point. Sketch
the graph of f taking into account the fact
that f(3) is undefined because of division by
zero. What graphical feature appears at x = 3?

c.  The number 7 is the limit of f(x) as x
approaches 3. How close to 3 would you
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SUMMARY:  Limit Property

Limit distributes over addition, subtraction, multiplication, and division
(denominator ≠ 0) with any finite number of terms or factors.

Do it. Apply it.

In this chapter you have gained further insight into the meaning of limit. You
broadened the idea of limit to include one-sided limits and infinite limits, and
you applied these ideas to define the concept of a continuous function. By now
you should understand that a limit is a number that f(x) stays close to when x is
kept close to c but not equal to c. You should be able to find a limit of a function
given by graph or by equation and also to show that f(x) really does stay
within



       

have to keep x in order for f(x) to be within

Figure 2-7a Figure 2-7b

c.  For the function in Figure 2-7b, write the
limit of f(x) as x approaches 2. From the
graph, estimate the largest possible value of

 that can be used to keep f(x) within
0.4 unit of the limit when x is within

 units of 2.
d.  In part c, f(x) =  Calculate the

maximum value of  that you estimated in
part c.

e.  For the function in part d, show that  is
positive for any  > 0 where f(x) is within

 units of the limit when x is within  units
of 2 (but x ≠ 2).

R3.  a.  State these limit properties.
• Limit of a sum of two functions
• Limit of a constant times a function
• Limit of a quotient of two functions

b.  For g(x) = 

• Plot the graph using a friendly window
that includes x = 3 as a grid point. Sketch
the graph.

• Explain why you cannot use the limit of a
quotient property to find g(x).

• Simplify the fraction. Why can you cancel
(x – 3) without worrying about dividing
by zero?

• Find g(x), naming the limit theorems
used at each step.

c.  Figure 2-7c shows the graphs

Figure 2-7c

• Find  f(x) and g(x).

• Let p(x) = f(x) · g(x). Show that

by showing numerically that p(x) stays
close to 16 when x is kept close to 3 but
not equal to 3 .

• Let r(x) = f(x)/g(x). Plot the graph of r.
Sketch the graph, showing that

d.  Chuck’s Rock Problem: Chuck throws a rock
high into the air. Its distance, d(t), in meters,
above the ground is given by d(t) = 35t – 5t2,
where t is the time, in seconds, since he
threw it. Find the average velocity of the
rock from t = 5 to t = 5.1. Write an equation
for the average velocity from 5 seconds to
t seconds. By taking the limit of the
expression in this equation, find the
instantaneous velocity of the rock at t = 5.
Was the rock going up or down at t = 5? How
can you tell? What mathematical quantity is
this instantaneous velocity?
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 f(x) = 2x and g(x) =

0.01 unit of 7? Within 0.0001 unit of 7? How
could you keep f(x) arbitrarily close to 7 just
by keeping x close to 3 but not equal to 3?

R2.  a.  State the epsilon-delta definition of limit.
b.  For x = 1, 2, 3, 4, and 5, state whether or not

the function f in Figure 2-7a has a limit, and
if so, what the limit appears to be.



R4.  a.  Write the definitions of continuity at a point

• Continuity or kind of discontinuity

Figure 2-7d

c.  Sketch graphs of the functions described.

• Has a removable discontinuity at x = 1

• Has a step discontinuity at x = 2

• Has a vertical asymptote at x = 3

• Has a cusp at x = 4
• Is continuous at x = 5

• Has a limit as x 6 and a value of f(6),
but is discontinuous at x = 6

• Has a left limit of –2 and a right limit of
5 as x  1

d.  For the piecewise function

• Sketch the graph of f  if k = 10.

• Show that f  is discontinuous at x = 2 if
k = 10.

• Find the value of k that makes f
continuous at x = 2.

R5.  a.  Use the appropriate limit definitions to write
the meanings of

 f(x) = and  f(x) = 5

b.  For piecewise function f in Figure 2-7e, what
do these limits appear to be?

• •
• •
•

Figure 2-7e

c.  Let f(x) = 6 – 2–x. Find a value of x = c for
which f(x) is exactly 0.001 unit below the
limit of f(x) as x approaches infinity. Choose
several values of x > c and show that f(x) is
within 0.001 unit of the limit for all of these
values.

d.  Let g(x) = x–2. Find                        Find a
positive value of x = c for which g(x) = 106.
Choose several values of x closer to 0 than c
and show that g(x) > 106 for all of these
values.

e.  The distance you travel at a variable velocity,
v(t), is the definite integral of v(t) with
respect to time, t. Suppose that your car’s
velocity is given by v(t ) = 40 +  where t
is in seconds and v(t ) is in ft/s. Use the
trapezoidal rule with varying numbers of
increments, n, to estimate the distance
traveled from t = 0 to t = 9. What limit do
these sums seem to approach as n
approaches infinity? Find a number D for
which the trapezoidal sum is within
0.01 unit of this limit when n > D.

R6.  a.  State the intermediate value theorem. What
axiom forms the basis for the proof of the
intermediate value theorem? State the
extreme value theorem. What word
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and continuity on a closed interval.

b.  For the piecewise function in Figure 2-
7d,make a table showing these quantities

forc = 1, 2, 3, 4, and 5, or stating that the
quantity does not exist.

•   f(c) •   f(x)

•   f(x) •   f(x)



c.  Plot the function

Use a friendly window that includes x = –4.
Show that f(–6) = 1 and f(–2) = 5. Based on
the intermediate value theorem, if you pick a
number y  between 1 and 5, will you always
get a value of x = c between –6 and –2 for
which f(c) = y? If so, explain why. If not,
give a counterexample.

C1.  Squeeze Theorem Introduction Problem:
Suppose that g(x) and h(x) both approach 7 as
x approaches 4, but that g(x)  h(x) for all
other values of x. Suppose another function, f,
has a graph that is bounded above by the
graph of h and bounded below by the graph of
g. That is, g(x)  f(x)  h(x) for all values of x.
Sketch possible graphs of the three functions
on the same set of axes. Make a conjecture
about the limit of f(x) as x 4.

shows the graph of

Find the value of f(1). Is f continuous at x = 1?
Find the limit of [f(x) – f(1)]/(x – 1) as x 1–

and as x 1+. Based on your work, explain
how a function can be continuous at a point
but not have a derivative there.

Figure 2-7f

C3.  Equation from Graph Problem: Figure 2-7g is
the graph of a discontinuous function. Write a
single equation whose graph could be that
shown in the figure.

Figure 2-7g

C4.  Absolute Value Definition of Limit: Later in your
mathematical career, you may encounter the
definition of limit written in the form shown in
the box.

Explain how this algebraic definition of limit is
equivalent to the “within” definition you have
learned.
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C2.  Derivatives and continuity Problem: Figure 2-7f

Concept Problems

Algebraic (Absolute Value) Definition: Limit

L = lim  f(x) if and only if, for any  > 0,
there is a  > 0 such that
if 0 < |x – c| < , then |f(x) – L| < .

describes how the extreme value theorem
relates to the intermediate value theorem?

b.  For f(x) = –x3 + 5x2 – 10x + 20, find f(3)
and f(4). Based on these two numbers, how
can you tell immediately that a zero of f(x)
occurs between x = 3 and x = 4? What
property of polynomial functions allows you
to make this conclusion? Find as accurate a
value of this zero as possible.



•  lim f(x) •  lim f(x)

•  lim f(x) •  lim f(x) •  lim f(x)

b.  Is f continuous on the closed interval [2, 6]?
Explain.

Figure 2-7h

T3.  State the property for the limit of a quotient.

For the functions graphed in Problems T4–T7, state
the following for x = c.

a.  Left and right limits if they exist
b.  The limit if it exists
c.  Whether the function is continuous

T4.

T5.

T6.

T7.

T8.  Sketch the graph of a function for which
lim f(x) = 2.

T9.  Sketch graphs that show you understand the
difference in the behaviors of the following
functions at x = 0.

a.  f(x) =

b.  g(x) =

c.  h(x) =

d.  s(x) = sin

T10.  Figure 2-7i shows the graph of function f in a
neighborhood of x = 3.

a.  What form does f (3) take? What name is
given to an expression of this form?

b.  Use the limit properties to prove
algebraically that lim  f(x) = 2.
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Chapter
Test
PART 1: No calculators allowed (T1–T9)

PART 2: Graphing calculators allowed (T10–T19)

T1.  State the definitions of continuity at a point
and on a closed interval.

T2.  a.  For function f in Figure 2-7h, find

•  lim  f(x)



Figure 2-7i

For Problems T11–T13, let f(x) =

T11.  Show that f is discontinuous at x = 2 if k = 1.
Sketch the graph.

T12.  Find the value of k that makes f continuous at
x = 2.

T13.  On your grapher, plot the graph using the value
of k from Problem T11. Use Boolean variables
to restrict the domains of the two branches.
Sketch the graph.

T14.  Temperature Versus Depth Problem: During the
day the soil at Earth’s surface warms up. Heat
from the surface penetrates to greater depths.
But before the temperature lower down reaches
the surface temperature, night comes and
Earth’s surface cools. Figure 2-7j shows what
the temperature, T, in degrees Celsius, might
look like as a function of depth, x, in feet.

Figure 2-7j

a.  From the graph, what does the limit of T
seem to be as x approaches infinity? How
deep do you think you would have to be so
that the temperature varies no more than
1 degree from this limit? What feature does
the graph have when T equals this limit?

b.  The equation of the function T in Figure 2-7i
is T(x) = 20 + 8(0.97x) cos 0.5x. Use this
equation to calculate a positive number
x = c such that T does not vary more than
0.1 unit from the limit whenever x  c.

c.  Just for fun, see if you can figure out the
approximate time of day for which the graph
in Figure 2-7j applies.

T15.  Glacier Problem: To determine how far a glacier
has traveled in a given time interval, naturalists
drive a metal stake into the surface of the
glacier. From a point not on the glacier, they
measure the distance, d(t), in centimeters,
from its original position that the stake has
moved in time t, in days. Every ten days they
record this distance, getting the values shown
in the table.

t (days) d (t) (cm)

0 0
10 6
20 14
30 24
40 36
50 50

a.  Show that the equation d(t) = 0.01t2 + 0.5t
fits all the data points in the table. Use the
most time-efficient way you can think of to
do this problem.

b.  Use the equation to find the average rate the
glacier is moving during the interval t = 20
to t = 20.1.

c.  Write an equation for the average rate from
20 days to t days. Perform the appropriate
algebra, then find the limit of the average
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to be speeding up or slowing down as
time goes on? How do you reach this
conclusion?

T16.  Calvin and Phoebe’s Acceleration Problem:
Calvin and Phoebe are running side by side
along the jogging trail. At time t = 0, each one
starts to speed up. Their speeds are given by
the following, where p(t) and c(t) are in ft/s
and t is in seconds.

c(t) = 16 – 6(2-t ) For Calvin.

 p(t) = 10 + For Phoebe.

Show that each is going the same speed when
t = 0. What are the limits of their speeds as t
approaches infinity? Surprising?!

T17.  Let f(x) =

What value of k makes f continuous at x = 2?
What feature will the graph of f have at this
point?

T18.  Let h(x) = x3. Show that the number 7 is
between h(1) and h(2). Since h is continuous
on the interval [1, 2], what theorem allows you
to conclude that there is a real number 

between 1 and 2?

T19.  What did you learn as a result of taking this
test that you did not know before?
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rate as t approaches 20. What is the
instantaneous rate the glacier is moving at
t = 20? What mathematical name is given to
this rate?

d.  Based on the table, does the glacier seem



Properties of Limits

Finding the average velocity of a moving vehicle requires dividing
the distance it travels by the time it takes to go that distance. You
can calculate the instantaneous velocity by taking the limit of the
average velocity as the time interval approaches zero. You can also
use limits to find exact values of definite integrals. In this chapter
you’ll study limits, the foundation for the other three concepts
of calculus.
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Mathematical Overview

 Informally, the limit of a function f as x approaches c is the
 y-value that f(x) stays close to when x is kept close enough to c
 but not equal to c. In Chapter 2, you will formalize the concept of
 limit by studying it in four ways.

Graphically

Numerically x  f(x)

3.01 3.262015
3.001 3.251200...
3.0001 3.250120...
3.00001 3.250012...

···
···

Algebraically 0 < |x – c| <   | f(x) – L| <  , f(x) is within  units of L
whenever x is within  units of c, the definition of limit.

Verbally I have learned that a limit is a y-value that f(x) can be kept
arbitrarily close to just by keeping x close enough to c but not equal
to c. Limits involving infinity are related to vertical and horizontal
asymptotes. Limits are used to find exact values of derivatives.

The icon at the top of each
even-numbered page of this chapter
shows that f(x) is close to L when x is
close enough to c but not equal to c.



2-1   Numerical Approach to the Definition

Exploratory Problem Set 2-1

1.  Figure 2-1a shows the function

Figure 2-1a

a.  Show that f(2) takes the indeterminate form
0/0. Explain why there is no value for f(2).

b.  The number y = 3 is the limit of f(x) as x
approaches 2. Make a table of values of f(x)
for each 0.001 unit of x from 1.997 to 2.003.
Is it true that f(x) stays close to 3 when x is
kept close to 2 but not equal to 2?

c.  How close to 2 would you have to keep x for
 f(x) to stay within 0.0001 unit of 3? Within
0.00001 unit of 3? How could you keep f(x)
arbitrarily close to 3 just by keeping x close
enough to 2 but not equal to 2?

d.  The missing point at x = 2 is called a
     removable discontinuity. Why do you
     suppose this name is used?

2.  Let g(x) = (x – 3) sin 

Plot the graph of g using a window that
includes y = 2 with x = 3 as a grid point. Then
zoom in on the point (3, 2) by a factor of 10 in
both the x- and y-directions. Sketch the
resulting graph. Does g(x) seem to be
approaching a limit as x approaches 3? If
so, what does the limit equal? If not, explain
why not.

3.  Let h(x) = sin 

Plot the graph of h using a window with a
 y-range of about 0 to 3 with x = 3 as a grid
point. Then zoom in on the point (3, 2) by a
factor of 10 in the x-direction. Leave the y-scale
the same. Sketch the resulting graph. Does h(x)
appear to approach a limit as x approaches 3?
If so, what does the limit equal? If not, explain
why not.

Section 2-1:   Numerical Approach to the Definition of Limit © 2005 Key Curriculum Press 33

     OBJECTIVE Find the limit of f(x) as x approaches c if f(c) is undefined.

In Section 1-2 you learned that L is the limit of f(x) as x approaches c if and
only if you can keep f(x) arbitrarily close to L by keeping x close enough to c but
not equal to c. In this chapter you’ll acquire a deeper understanding of the
meaning and properties of limits.

           of Limit



2-2   Graphical and Algebraic Approaches
           

Here is the formal definition of limit. You should commit this definition to
memory so that you can say it orally and write it correctly without having to
look at the text. As you progress through the chapter, the various parts of the
definition will become clearer to you.

Notes:

•   f(x) is pronounced “the limit of f(x) as x approaches c.”

•  “For any number  > 0” can also be read as “for any positive number .”
The same is true for  > 0.

•  The optional words “no matter how small” help you focus on keeping f(x)
close to L.

•  The restriction “but x  c” is needed because the value of f(c) may be
undefined or different from the limit.

EXAMPLE 1 State whether the function graphed in Figure 2-2a has a limit at the given
x-value, and explain why or why not. If there is a limit, give its value.

a.  x = 1 b.  x = 2 c.  x = 3
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      OBJECTIVE Given a function f , state whether f(x) has a limit L as x approaches c, and if
 so, explain how close you can keep x to c for f(x) to stay within a given

 number  units of L.

 
 DEFINITION:   Limit
 L =  f(x) if and only if
 for any number  > 0, no matter how small
 there is a number  > 0 such that
 if x is within  units of c, but x  c,
 then f(x) is within  units of L.
 

In Figure 2-1a, you saw a function for which f(x) stays close to 3 when x is kept
close to 2, even though f(2) itself is undefined. The number 3 fits the verbal
definition of limit you learned in Section 1-2: You can keep f(x) arbitrarily close
to 3 by keeping x close enough to 2 but not equal to 2. In this section you’ll use
two Greek letters:  (lowercase epsilon) to specify how arbitrarily close f(x) must
be kept to the limit L, and  (lowercase delta) to specify how close x must be
kept to c in order to do this. The result leads to a formal definition of limit.

to the Definition of
Limit



Solution

 f(x) = 5

c.  If x is close to 3 on the left, then f(x) is close to 10. If x is close to 3 on the
right, then f(x) is close to 8. Therefore, there is no one number you can
keep f(x) close to just by keeping x close to 3 but not equal to 3. The fact
that f(3) exists and is equal to 10 does not mean that 10 is the limit.

 f(x) does not exist.

Figure 2-2a

Note: The discontinuity at x = 1 in Figure 2-2a is called a removable
discontinuity. If f(1) were defined to be 2, there would no longer be a
discontinuity. The discontinuity at x = 3 is called a step discontinuity. You
cannot remove a step discontinuity simply by redefining the value of the function.

Figure 2-2b

Figure 2-2b shows the graph of function f for which
 f(2) is undefined.

a.  What number does  f(x) equal? Write the
definition of this limit using proper limit
terminology.

b.  If  = 0.6, estimate to one decimal place the
largest possible value of  you can use to keep
 f(x) within  units of the limit by keeping x
within  units of 2 (but not equal to 2).

c.  What name is given to the missing point at
x = 2?

Solution

Figure 2-2c

a.         f(x) = 4

4 =  f(x) if and only if Use separate lines for the various
parts of the definition.for any number  > 0, no matter how small,

there is a number  > 0 such that
if x is within  units of 2, but x  2,
then f(x) is within units of 4.

b.  Because  = 0.6, you can draw lines 0.6 unit above and below y = 4, as in
Figure 2-2c. Where these lines cross the graph, go down to the x-axis and
estimate the corresponding x-values to get x  1.6 and x  2.8.

So, x can go as far as 0.4 unit to the left of x = 2 and 0.8 unit to the right.
The smaller of these units, 0.4, is the value of .

c.  The graphical feature is called a removable discontinuity.

EXAMPLE 2
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a.  If x is kept close to 1 but not equal to 1, you can make f(x) stay within
      units of 2, no matter how small  is. This is true even though there is
     no value for f(1).

 f(x) = 2

b.  If x is kept close to 2, you can make f(x) stay within  units of 5 no matter
     how small  is. The fact that f(2) = 5 has no bearing on whether f(x) has a
     limit as x approaches 2.



Figure 2-2d shows the graph of
 f(x) = (x – 3)1/3 + 2. The limit of f(x) as
x approaches 3 is L = 2, the same as the value
of f(3).

a.  Find graphically the largest value of δ for
which f(x) is within  = 0.8 unit of 2
whenever x is kept within δ units of 3.

b.  Find the value of δ in part a algebraically.

c.  Substitute (3 + δ) for x and (2 + ) for f(x).
Solve algebraically for δ in terms of . Use the result to conclude that there
is a positive value of δ for any positive value of , no matter how small  is.

Solution a.  Figure 2-2e shows the graph of f with horizontal lines plotted 0.8 unit
above y = 2 and 0.8 unit below. Using the intersect feature of your grapher,
you will find

x = 2.488 for y = 1.2 and x = 3.512 for y = 2.8

6

Figure 2-2e

Each of these values is 0.512 unit away from x = 3, so the maximum value
of δ is 0.512.

b.  By symmetry, the value of δ is the same on either side of x = 3. Substitute
2.8 for f(x) and (3 + δ) for x.

[(3 + δ) – 3]1/3 + 2 = 2.8
δ1/3 = 0.8

δ = 0.83 = 0.512

which agrees with the value found graphically.

c. [(3 + δ) – 3]1/3 + 2 = 2 + 
δ1/3 = 

δ = 3

 there is a positive value of δ for any positive number , no matter
how small  is.

Let f(x) = 0.2(2x).
a.  Plot the graph on your grapher.

b.  Find         f(x). .

c.  Find graphically the maximum value of δ you can use for  = 0.5 at x = 3.

d.  Show algebraically that there is a positive value of δ for any   0, no
matter how small.

Solution a.  Figure 2-2f shows the graph.

b.  By tracing to x = 3, you will find that f(3) = 1.6, which is the same as   f(x).
c.  Plot the lines y = 1.1 and y = 2.1, which are  = 0.5 unit above and below

1.6, as shown in Figure 2-2f.

EXAMPLE 3
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EXAMPLE 4

Figure 2-2d



 

Figure 2-2f

Use the intersect feature of your grapher to find the x-values where these
lines cross the graph of f.

x = 2.4594... and x = 3.3923...,   respectively

The candidates for  are 1 = 3 – 2.4594... = 0.5403... and
2 = 3.3923... – 3 = 0.3923... .

The largest possible value of  is the smaller of these two, namely
 = 0.3923... .

d.  Because the slope of the graph is positive and increasing as x increases, the
more restrictive value of  is the one on the positive side of x = 3.
Substituting (1.6 + ) for f(x) and (3 + ) for x gives

0.2(23 +δ ) = 1.6 + 
(23+δ ) = 8 + 5

log(23+δ ) = log(8 + 5 )
(3 + ) log 2 = log(8 + 5 )

Because (log 8) / (log 2) = 3, because 8 + 5  is greater than 8 for any positive
number , and because log is an increasing function, the expression
log(8 + 5 ) / (log 2) is greater than the 3 that is subtracted from it. So  will
be positive for any positive number , no matter how small  is.

Problem Set 2-2

Q1.  Sketch the graph of y = 2x.

Q2.  Sketch the graph of y = cos x.

Q3.  Sketch the graph of y = –0.5x + 3.

Q4.  Sketch the graph of y = –x2.

Q5.  Sketch the graph of a function with a
removable discontinuity at the point (2, 3).

Q6.   Name a numerical method for estimating the
value of a definite integral.

Q7.  What graphical method can you use to
estimate the value of a definite integral?

Q8.  Write the graphical meaning of derivative.

Q9.  Write the physical meaning of derivative.

Q10.  If log3 x = y, then

A.  3x = y B.  3y = x C.  x3 = y
D.  y3 = x E.  xy = 3

1.  Write the definition of limit without looking at
the text. Then check the definition in this
section. If any part of your definition is
wrong, write the entire definition over again.
Keep doing this until you can write the
definition from memory without looking at
the text.

2.  What is the reason for the restriction “ . . . but
x ≠ c . . .” in the definition of limit?

For Problems 3–12, state whether the function
has a limit as x approaches c; if so, tell what
the limit equals.

3. 4.
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Quick Review



5.

9. 10.

11. 12.

For Problems 13–18, photocopy or sketch the
graph. For the point marked on the graph, use
proper limit notation to write the limit of f(x).
For the given value of , estimate to one
decimal place the largest possible value of 
that you can use to keep f(x) within  units of
the marked point when x is within  units of
the value shown.

13.  x = 3,  = 0.5 14.  x = 2,  = 0.5

15.  x = 6,  = 0.7 16.  x = 4,  = 0.8

17.  x = 5,  = 0.3 18.  x = 3,  = 0.4

For Problems 19–24,

a.  Plot the graph on your grapher. How does
the graph relate to Problems 13–18?

b.  Find the limit of the function as
x approaches the given value.

c.  Find the maximum value of  that can be
used for the given value of  at the point.

d.  Calculate algebraically a positive value of 
for any  > 0, no matter how small.

19.  f(x) = 5 – 2 sin(x – 3)
x = 3,  = 0.5

20.  f(x) = (x – 2)3 + 3
x = 2,  = 0.5

21.  f(x) = 1 + 
x = 6,  = 0.7

22.  f(x) = 1 + 24–x
x = 4,  = 0.8

23.  

x = 5,  = 0.3

24.  f(x) = 6 – 2(x – 3)2/3

x = 3,  = 0.4
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6.

7. 8.



25.  Removable Discontinuity Problem 1: Function

Figure 2-2g

a.  Show that f(2) has the indeterminate form
0/0. What feature does the graph of f have at
x = 2? Do an appropriate calculation to show
that 5 is the limit of f(x) as x approaches 2.

b.  Find the interval of x-values close to 2, but
not including 2, for which f(x) is within
0.1 unit of 5. Keep at least six decimal places
for the x-values at the ends of the interval.
Based on your answer, what is the largest
value of  for which f(x) is within  = 0.1
unit of 5 when x is kept within  unit of 2?

c.  Draw a sketch to show how the numbers L,
c, , and  in the definition of limit are
related to the graph of f in this problem.

26.  Removable Discontinuity Problem 2: Function

is undefined at x = 2.
a.  Plot the graph of f using a friendly window

that includes x = 2 as a grid point. What do
you notice about the shape of the graph? What
feature do you notice at x = 2? What does the
limit of f(x) appear to be as x approaches 2?

b.  Try to evaluate f(2) by direct substitution.
What form does your result take? What is

the name for an expression of the form
taken by f(2)?

c.  Algebraically find the limit of f(x) as x
approaches 2 by factoring the numerator,
then canceling the (x – 2) factors. How does
the clause “ . . . but x ≠  c . . .” in the definition
of limit allow you to do this canceling?

d.  “If x is within —?— unit of 2, but not equal
to 2, then f(x) is within 0.001 unit of the
limit.” What is the largest number that can
go in the blank? Show how you find this.

e.  Write the values for L, c, , and  in the
definition of limit that appears in part d.

27.  Limits Applied to Derivatives Problem: Suppose
you start driving off from a traffic light. Your
distance, d(t), in feet, from where you started
is given by

d(t) = 3t2

where t is time, in seconds, since you started.

a.  Figure 2-2h shows d(t) versus t. Write the
average speed, m(t), as an algebraic fraction
for the time interval from 4 seconds to
t seconds.

Figure 2-2h

b.  Plot the graph of function m on your
grapher. Use a friendly window that includes
t = 4. What feature does this graph have at
the point t = 4? Sketch the graph.

c.  Your speed at the instant t = 4 is the limit of
your average speed as t approaches 4. What
does this limit appear to equal? What are the
units of this limit?

d.  How close to 4 would you have to keep t for
m(t) to be within 0.12 unit of the limit?
(This is an easy problem if you simplify the
algebraic fraction first.)

e.  Explain why the results of this problem give
the exact value for a derivative.
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is undefined at x = 2. However, if x ≠ 2, you can
cancel the (x – 2) factors, and the equation becomes

 f(x) = x2 – 6x + 13,   x  ≠ 2

 So f is a quadratic function with a removable
 discontinuity at x = 2 (Figure 2-2g). The
 y-value at this missing point is the limit of f(x)
 as x approaches 2.



2-3   The Limit Theorems

 f(4) is undefined because it
has an indeterminate form.

Because the numerator is also zero, there may be a limit of f(x) as x approaches
4. Limits such as this arise when you try to find exact values of derivatives.
Simplifying the fraction before substituting 4 for x gives

= 3x + 12, provided x ≠  4

From Section 2-2, recall that 0/0 is called an indeterminate form. Its limit can
be different numbers depending on just what expressions go to zero in the
numerator and denominator. Fortunately, several properties (called the limit
theorems) allow you to find such limits by making substitutions, as shown
above. In this section you will learn these properties so that you can find exact
values of derivatives and integrals the way Isaac Newton and Gottfried Leibniz
did more than 300 years ago.

Limit of a Product or a Sum of Two Functions
Suppose that g(x) = 2x + 1 and h(x) = 5 – x. Let function f be defined by the
product of g and h.

 f(x) = g(x) · h(x) = (2x + 1)(5 – x)

Figure 2-3a

You are to find the limit of f(x) as x approaches 3. Figure 2-3a shows the graphs
of functions f, g, and h. Direct substitution gives

 f(3) = (2 · 3 + 1)(5 – 3) = (7)(2) = 14

The important idea concerning limits is that f(x) stays close to 14 when x is
kept close to 3. You can demonstrate this fact by making a table of values of
x, g(x), h(x), and f(x).
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     OBJECTIVE For the properties listed in the property box in this section, be able to state
 them, use them in a proof, and explain why they are true.

Surprisingly, you can find the limit by substituting 4 for x in the simplified
expression

Suppose that f(x) is given by the algebraic fraction

You may have seen this fraction in Problem 27 of Problem Set 2-2. There is no
value for f(4) because of division by zero. Substituting 4 for x gives



x

2.97 6.94 2.03 14.0882 When g(x) and h(x) are close
to 7 and 2, respectively,
 f(x) is close to14.

2.98 6.96 2.02 14.0592
2.99 6.98 2.01 14.0298

3.01 7.02 1.99 13.9698
3.02 7.04 1.98 13.9392
3.03 7.06 1.97 13.9082
3.04 7.08 1.96 13.8768

You can keep the product as close to 14 as you like by keeping x close enough
to 3, even if x is not allowed to equal 3. From this information you should be able
to see that the limit of a product of two functions is the product of the two
limits. A similar property applies to sums of two functions. By adding the values
of g(x) and h(x) in the preceding table, you can see that the sum g(x) + h(x) is
close to 7 + 2, or 9, when x is close to, but not equal to, 3.

Limit of a Quotient of Two Functions

The limit of a quotient of two functions is equal to the quotient of the two
limits, provided that the denominator does not approach zero. Suppose that
function f is defined by

and you want to find the limit of f(x) as x approaches 3. The values of g(3) and
h(3) are 7 and 2, respectively. By graphing or by compiling a table of values, you
can see that if x is close to 3, then f(x) is close to 7/2 = 3.5. You can keep f(x) as
close as you like to 3.5 by keeping x close enough to 3. (When x is equal to 3 ,
 f(x) happens to equal 3.5, but that fact is of no concern when you are dealing
with limits.)

Figure 2-3b

There is no limit of f(x) as x approaches 5. The denominator goes to zero, but
the numerator does not. Thus, the absolute value of the quotient becomes
infinitely large, as shown in this table. Figure 2-3b shows that the graph of f has
a vertical asymptote at x = 5.

x  g (x) h
(x)

 f (x)  =  g (x)/h (x)

4.96 10.92 0.04 273
4.97 10.94 0.03 364.6...
4.98 10.96 0.02 548
4.99 10.98 0.01 1098
5.00 11.00 0.00 None (infinite)
5.01 11.02 –0.01 –1102
5.02 11.04 –0.02 –552
5.03 11.06 –0.03 –368.6...
5.04 11.08 –0.04 –277
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 g
(x)

h (x)  f (x)  =  g (x) · h (x)

2.95
2.96

6.9
6.92

2.05
2.04

14.145
14.1168
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Some important properties of limits are summarized in this box. You can prove
the properties by the epsilon, delta techniques of Section 2-2, as you will see in
later courses in mathematics.

Verbally: The limit of a constant times a function equals the constant times

Use the limit properties to prove that 

then  [g(x) · h(x)] =  g(x) ·  h(x) = L1 · L2.

Verbally: Limit distributes over multiplication, or the limit of a product equals
the product of the limits.

Limit of a Sum of Two Functions: If  g(x) = L1 and  h(x) = L2,

then  [g(x) + h(x)] =  g(x) +  h(x) = L1 + L2.

Verbally: Limit distributes over addition, or the limit of a sum equals the sum
of the limits.

Limit of a Quotient of Two Functions: If  g(x) = L1 and  h(x) = L2,
where L2 ≠ 0,

then 

Verbally: Limit distributes over division, except for division by zero, or the
limit of a quotient equals the quotient of the limits.

Limit of a Constant Times a Function: If  g(x) = L,

then  [k · g(x)] = k ·  g(x) = kL.

the limit.

Limit of the Identity Function (Limit of x):  x = c

Verbally: The limit of x as x approaches c is simply c.

Limit of a Constant Function: If f(x) = k, where k is a constant,

then  f(x) = k.

Verbally: The limit of a constant is that constant.

EXAMPLE 1

SOME PROPERTIES OF LIMITS:   The Limit Theorems

Limit of a Product of Two Functions: If  g(x) = L1 and  h(x)

= L2,



Solution

Use the results of synthetic substitution.

Canceling is allowed because the definition
of limit says, “ . . . but not equal to 3.”

Limit of a sum (applied to three terms).

Limit of a product (x · x), limit of x, limit of a
constant times a function, and limit of a constant.
Q.E.D. stands for the Latin quod erat  demonstrandum,
“which was to be demonstrated.”

This proof reveals a simple way to find a limit of the indeterminate form 0/0. If
you can remove the expression that makes the denominator equal zero, you can
substitute the value x = c into the remaining expression. The result is the limit.

Problem Set 2-3

Q1.   Find the limit of 13x/x as x approaches zero.

Q2.   Sketch the graph of a function if 3 is the limit
as x approaches 2 but f(2) is undefined.

Q3.   Sketch the graph of a function that is
decreasing slowly when x = –4.

Q4.   Sketch the graph of a quadratic function.

Q5.   Sketch the graph of y = x3.

Q6.   Factor: x2 – 100

Q7.   Thirty is what percentage of 40?

Q8.   What is meant by definite integral?

Q9.   Divide quickly, using synthetic substitution:

Q10.   When simplified, the expression (12x30)/(3x10)
becomes

A.  9x3 B.  9x20 C.  4x3 D.  4x20

E.  None of these

1.  Limit of a Function Plus a Function Problem: Let
g(x) = x2 and h(x) = 12/x. Plot the two graphs
on your grapher, along with the graph of
 f(x) = g(x) + h(x). Sketch the result, showing
that the limit of f(x) as x approaches 2 is equal
to the sum of the limits of g(x) and h(x) as
x approaches 2. Make a table of values that
shows f(x) is close to the limit when x is close,
but not equal, to 2.

2.  Limit of a Constant Times a Function Problem:
Plot g(x) = x2 and f(x) = 0.2x2 on your grapher.
Sketch the result. Find the limit of f(x) as
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Quick Review

The expression approaches the indeterminate form 0/0 as x approaches 3.

as x  3

Use synthetic substitution to factor the numerator, then cancel the (x – 3) factors.



 

x approaches 3 and the limit of g(x) as x
approaches 3. Show that the limit of f(x) is 0.2
multiplied by the limit of g(x). Make a table 
that shows f(x) is close to the limit when x is 
close, but not equal, to 3.

grapher!) Then explain why the limit of f(x) as
x approaches 6 must be equal to 6.

5.  Limit of a Product Problem: Let
 f(x) = (2x2)(3 sin  x). Plot the graphs of
 y1 = 2x2 and y2 = 3 sin  x, and y3 = y1 · y2 on
your grapher. Use a window with x  [0, 2].
Sketch the results, showing the limits of each
of the three functions as x approaches 1.
Demonstrate that the limit of f(x) as
x approaches 1 is the product of the other two
limits by making a table of values that shows
that y3 is close to the product of the other two
limits when x is close to 1 but not equal to 1.

6.  Limit of a Quotient Problem: Let

Write the values of 23 and sin , then divide
them to find r(3). Make a table of values of r(x)
starting at x = 2.9997 and stepping by
0.0001 unit. Use the results to show that y3 stays
close to the quotient of the limits when x is close
to 3 but not equal to 3. Explain why the limit of
a quotient property cannot be applied to f(x).

For Problems 7 and 8, find the limit as x approaches
the given value. Prove that your answer is correct by
naming the limit theorems used at each step.

7.  f(x) = x2 – 9x + 5,   x  3

8.  f(x) = x2 + 3x – 6,   x  –1
For Problems 9–14, plot the graph using a friendly
window with the given value of x as a grid point.
Sketch the result. Show that the function takes the
indeterminate form 0/0 as x approaches the given

value. Then simplify the given fraction, find the
limit, and prove that your answer is correct by
naming the limit theorems used at each step.

9. 

10.

11.

13.

14.

15.  Check the Answer by Table Problem: For
Problem 11, make a table of values of f(x) for
each 0.001 unit of x starting at x = 4.990. Use
the table to find the largest interval of x-values
around x = 5 for which you can say that f(x) is
within 0.1 unit of the limit whenever x is within
the interval, but not equal to 5.

16.  Check the Answer by Graph Problem: For the
graph you plotted in Problem 13, use TRACE on
both sides of x = –1 to show that f(x) is close
to the limit when x is close to –1.

For Problems 17 and 18, show that even though the
function takes on the indeterminate form 0/0, you
cannot find the limit by the techniques of Example 1.

17.

18.

19.  Pizza Delivery Problem: Ida Livermore starts
off on her route. She records her truck’s speed,
v(t), in mi/h, at various times, t, in seconds,
since she started.
a.  Show Ida that these data fit the equation

v(t) = 5t1/2.
t (s) v (t) (mi/h)

0 0
1 5
4 10
9 15

16 20

13.
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12.

3.  Limit of a Constant Problem: Let f(x) = 7. Sketch
the graph of f. (Don’t waste time using your
grapher!) On the graph, show that the limit of
 f(x) as x approaches 3 is 7. Does it bother you
that f(x) = 7, even if x is not equal to 3?

4.  Limit of x Problem: Let f(x) = x. Sketch the
graph of f. (Don't waste time using your



d.  Approximately how far did Ida’s truck travel
from t = 1 to t = 9?

20.  Exact Derivative Problem: Let f(x) = x3.
a.  Find, approximately, the derivative of f at

x = 2 by dividing the change in f(x) from
x = 2 to x = 2.1 by the corresponding
change in x.

b.  In part a, you evaluated the fraction
[ f(x) – f(2)] / (x – 2) to get an approximate
value of the derivative. The exact value is
the limit of this fraction as x approaches 2.
Find this limit by first simplifying the
fraction. Prove that your answer is correct
by citing limit properties.

c.  Plot the graph of f. Construct a line through
the point (2, 8), whose slope is the value of
the derivative in part b. What relationship
does the line seem to have to the graph?

21.  Find, approximately, the derivative of
 f(x) = 0.7x when x = 5.

22.  Find, approximately, the definite integral of
 f(x) = 1.4x from x = 1 to x = 5.

23.  Mathematical Induction Problem––The Limit of
a Power: Recall that x2 = x · x, so you can use
the limit of a product property to prove that

x2 = c2

Prove by mathematical induction that

xn = cn

for any positive integer value of n. The recursive
definition of xn, which is xn = x · xn–1, should
be helpful in doing the induction part of the
proof.

24.  Journal Problem: Update your calculus journal.
You should consider

•  The one most important thing you have
learned since your last journal entry

•  What you now understand more fully about
the definition of limit

•  How the shortened definition of limit
corresponds to the definition you learned in
Chapter 1

•  Why the limit properties for sums, products,
and quotients are so obviously true

•  What may still bother you about the
definition of limit

2-4   Continuity and Discontinuity

Figure 2-4a

A function such as

has a discontinuity at x = 3 because the denominator
is zero there. It seems reasonable to say that the
function is “continuous” everywhere else because
the graph seems to have no other “gaps” or “jumps”
(Figure 2-4a). In this section you will use limits to
define the property of continuity precisely.
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b.  The truck’s acceleration, a(t), is the
instantaneous rate of change of v(t).
Estimate a(9) by using v(9) and v(9.001).
Make a conjecture about the exact value
of a(9). What are the units of a(t)?

c.  Note that a(9) is exactly equal to the limit
of [v(t) – v(9)] / (t – 9) as t approaches 9.
Factor the denominator as a difference
of two “squares.” Then find the limit as
t approaches 9 by applying the limit
properties. Does this limit agree with your
conjecture in part b?



Figure 2-4b Figure 2-4c Figure 2-4d

Figure 2-4e Figure 2-4f Figure 2-4g

The first two functions have a limit as x approaches c. In Figure 2-4b, f is
discontinuous at c because there is no value for f(c). In Figure 2-4c, f is
discontinuous at c because f(c)  L. Both are removable discontinuities. You
can define or redefine the value of f(c) to make f continuous there.

In Figure 2-4d, f has a step discontinuity at x = c. Although there is a value
for f(c), f(x) approaches different values from the left of c and the right of c.
So, there is no limit of f(x) as x approaches c. You cannot remove a step
discontinuity simply by redefining f(c).

In Figure 2-4e, function f has an infinite discontinuity at x = c. The graph
approaches a vertical asymptote there. As x gets closer to c, the value of f(x)
becomes large without bound. Again, the discontinuity is not removable just by
redefining f(c). In Section 2-5, you will study such infinite limits.

Figures 2-4f and 2-4g show graphs of functions that are continuous at x = c. The
value of f(c) equals the limit of f(x) as x approaches c. The branches of the
graph are “connected” by f(c).

These examples lead to a formal definition of continuity.
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      OBJECTIVE Define continuity. Learn the definition by using it several ways.

Figures 2-4b through 2-4g show graphs of six functions, some of which are
continuous at x = c and some of which are not.



Note that the graph can have a cusp (an abrupt change in direction) at x = c and
still be continuous there (Figure 2-4f). The word bicuspid in relation to a tooth
comes from the same root word.

Figures 2-4h, 2-4i, and 2-4j illustrate why a function must satisfy all three parts
of the continuity definition. In Figure 2-4h, the graph has a limit as x approaches
c, but it has no function value. In Figure 2-4i, the graph has a function value,
 f(c), but no limit as x approaches c. In Figure 2-4j, the graph has both a function
value and a limit, but they are not equal.

Figure 2-4h Figure 2-4i Figure 2-4j

One-Sided Limits and Piecewise Functions

The graph in Figure 2-4i is an example of a function that has different one-sided
limits as x approaches c. As x approaches c from the left side, f(x) stays close
to 4. As x approaches c from the right side, f(x) stays close to 7. This box shows
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Continuity at a Point: Function f is continuous at x = c if and only if

1.  f(c) exists,

2.         f(x) exists, and

3.         f(x) = f(c).

Continuity on an Interval: Function f is continuous on an interval of x-values
if and only if it is continuous at each value of x in that interval. At the end
points of a closed interval, only the one-sided limits need to equal the
function value.

DEFINITION:  Continuity

 
  
  
  
  
  
  
 

DEFINITION:  Cusp

A cusp is a point on the graph at which the function is continuous but the
derivative is discontinuous.

Verbally: A cusp is a sharp point or an abrupt change in direction.
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EXAMPLE 1

 
  
  
  
  
  
  
  
 

L =           f(x) if and only if     L =  f(x) and L = 

the symbols used for such one-sided limits, and a property relating one-sided
limits to the limit from both sides.

 f(x)

Figure 2-4k

A step discontinuity can result if f(x) is defined
by a different rule for x in the piece of the
domain to the right of c than it is for the piece
to the left. Figure 2-4k shows such a
piecewise function.

Each part of the function is called a branch. You can plot the three branches on
your grapher by entering the three equations, then dividing by the appropriate
Boolean variable (named for British mathematician George Boole, 1815–1864).
A Boolean variable, such as (x  2), equals 1 if the condition inside the
parentheses is true and 0 if the condition is false. Example 1 shows you how to
plot a piecewise function on your grapher and how to decide whether the
function has a limit at the transition points where the rule changes.

For the piecewise function f shown in Figure 2-4k,

a.  Plot the function f on your grapher.

b.  Does f(x) have a limit as x approaches 2? Explain. Is f continuous at x = 2?

c.  Does f(x) have a limit as x approaches 5? Explain. Is f continuous at x = 5?

Solution Notice where the open and closed points are in Figure 2-4k.

a.  Use a friendly window that includes x = 2 and x = 5 as grid points. Enter
these three functions in the Y = menu:

 y1 = x + 4 / (x  2) Divide any term of the equation
by the Boolean variable.

 y2 = –x2 + 8x – 8 / (2  x and x  5)

 y3 = x + 2 / (x  5)

Dividing by the Boolean variable (x  2) in y1 divides by 1 when x  2, and
divides by 0 when x is not less than or equal to 2. So the grapher plots the

PROPERTY:  One-Sided Limits

 f(x)     x  c from the left (through values of x on the negative side of c)

 f(x)     x  c from the right (through values of x on the positive side of c)



   

left branch by plotting y1 in the appropriate part of the domain, and plots
nothing for y1 elsewhere.

          f(x) does not exist. There is a step discontinuity.

The function f is discontinuous at x = 2.

c.  f(x) = 7 and     f(x) = 7 The left and right limits are equal.

 f(x) = 7 = f(5) The open circle at the right end of the middle branch is filled
with the closed dot on the left end of the right branch.

The function f is continuous at x = 5 because the limit as x approaches 5 is
equal to the function value at 5.

Let the function h(x) =

a.  Find the value of k that makes the function continuous at x = 2.

b.  Plot and sketch the graph.

Solution a. h(x) = k · 22 = 4k

h(x) = |2 – 3| + 4 = 5

For h to be continuous at x = 2, the two limits must be equal.
4k = 5    k = 1.25

Figure 2-4l

b.  Enter:

 y1 = 1.25x2 / (x < 2)
 y2 = abs(x – 3) + 4 / (x  2)

The graph is shown in Figure 2-4l. The missing point at the end of the left
branch is filled by the point at the end of the right branch, showing
graphically that h is continuous at x = 2.

Problem Set 2-4

Q1.  What is meant by the derivative of a function?

Q2.  What is meant by the definite integral of a
function?

Q3.  If f(x) = 200x + 17, what is the maximum value
of  that ensures f(x) is within 0.1 unit of f(3)
when x is within  units of 3?

Q4.  Draw a pair of alternate interior angles.

Q5.  What type of function has a graph like that in
Figure 2-4m?

Figure 2-4m
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EXAMPLE 2

Quick Review

b.          f(x) = 6 and                  f(x) = 4 The left and right limits are unequal.



Q6.  Sketch the graph of y = cos x.

c.  Is continuous at the marked value of x. If it
is not continuous there, explain why.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

For Problems 11–20, sketch the graph of a function
that has the indicated features.

11.  Is continuous at x = 3 but has a cusp there.

12.  Is continuous at x = 4 and is “smooth” there.

13.  Has no value for f(5) but has a limit as
x approaches 5.

14.  Has a value for f(–2) but has no limit as
x approaches –2.

15.  Has a vertical asymptote at x = 6.

16.  Has a value for f(2) and a limit as x approaches
2, but is not continuous at x = 2.

17.  Has a step discontinuity at x = –2, and
 f(–2) = 10.

18.  The limit of f(x) as x approaches 5 is –2, and
the value for f(5) is also –2.

19.  The limit of f(x) as x approaches 1 is 4, but
 f(1) = 6.

20.  f(3) = 5, but f(x) has no limit as x approaches 3
and no vertical asymptote there.

For Problems 21–24, state where, if anywhere, the
function is discontinuous.

21.  f(x) = 

22.  f(x) = 

23.  g(x) = tan x
24.  g(x) = cos x

For Problems 25–30, the function is discontinuous
at x = 2. State which part of the definition of
continuity is not met at x = 2. Plot the graph on
your grapher. (Note: The symbol int(n) indicates the
greatest integer less than or equal to n. Graph in dot
mode.) Sketch the graph.

25.  f(x) = x + int(cos x)
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Q7.  Factor: x2 + 5x – 6

Q8.  Evaluate: 532001/532000

Q9.  Evaluate: 5!

Q10.  Quick! Divide 50 by  and add 3.

For Problems 1–10, state whether the graph
illustrates a function that

a.  Has left and right limits at the marked value
of x.

b.  Has a limit at the marked value of x.



26.  g(x) = x + int(sin x)

 f(x) •  f(x) •  f(x)

• Continuity or kind of discontinuity

31.  c = {1, 2, 4, 5}

32.  c = {1, 2, 3, 5}

For the piecewise functions in Problems 33–36,

a.  Plot the graph using Boolean variables to
restrict the branches. Use a friendly window
including as a grid point any transition point
where the rule changes. Sketch the graph.

b.  Find the left and right limits at the transition
point, and state whether the function is
continuous at the transition point.

33.  d(x) = 

34.  h(x) = 

35.  m(x) = 

36.  q(x) = 

For the piecewise functions in Problems 37–40, use
one-sided limits in an appropriate manner to find
the value of the constant k that makes the function
continuous at the transition point where the
defining rule changes. Plot the graph using Boolean
variables. Sketch the result.

37.  g(x) = 

38.  f(x) = 

39.  u(x) = 

40.  v(x) = 

41.  Two Constants Problem: Let a and b stand for
constants and let

 f(x) = 

a.  Find an equation relating a and b if f is to
be continuous at x = 1.

b.  Find b if a = –1. Show by graphing that f is
continuous at x = 1 for these values of a
and b.
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27.  s(x) = 3 + 

28.  p(x) = int(x2 – 6x + 9)

29.  h(x) = 

30. 

For the piecewise functions graphed in Problems 31
and 32, make a table showing these quantities for
each value of c, or stating that the quantity does not
exist.

•  f(c) •



43.  River Crossing Problem: Calvin stands at the
beginning of a bridge that is perpendicular to
the banks of a 120-ft-wide river (Figure 2-4n).
He can walk across the bridge at 5 ft/s, or
take a scenic trip in a rowboat at 3 ft/s, making
an angle , in degrees, with the riverbank. The
time he takes to get to the other side of the
river is a piecewise function of . Write an
equation for this function. Plot the graph in a
suitable domain and sketch the result.

Figure 2-4n

44.  Surprise Function Problem! Let

a.  Plot the graph on your grapher.
b.  What appears to be the limit of f(x) as

x approaches 1?

c.  Show that f(x) is very close to the number in
part b when x = 1.0000001.

d.  Function f is not continuous at x = 1
because there is no value for f(1). What type
of discontinuity occurs at x = 1? (Be careful!)

45.  Continuity of Polynomial Functions: The general
polynomial function of degree n has an

equation of the form

P(x) = a0 + a1x + a2x2 + a3x3 + ··· + anxn

Based on the closure axioms for real numbers
and the properties of limits you have learned,
explain why any polynomial function is
continuous for all real values of x.

46.  The Signum Function: Figure 2-4o shows the
graph of the signum function, f(x) = sgn x. The
value of the function is 1 when x is positive, –1
when x is negative, and 0 when x is zero. This
function is useful in computing for testing a
value of x to see what sign it has (hence the
name signum). Here is the formal definition:

sgn x = 

Figure 2-4o

In this problem you will explore various
compositions of the signum function.
a.  Does r(x) = |sgn x| have a limit as

x approaches 0? Does it have a function
value at x = 0? Is it continuous at x = 0?

b.  Sketch the graph of g(x) = 3 sgn(x – 2).
c.  Sketch the graph of h(x) = x2 – sgn x.
d.  Show that the function a(x) = |x| / x is equal

to sgn x for all x except zero.
e.  Sketch the graph of f(x) = cos x + sgn x.

2-5   Limits Involving Infinity
Suppose the demand for doctors in a particular community has increased. The
number of people who choose to pursue that career will increase to meet the
demand. After a while there may be too many doctors, causing the number of
people who want to enter the medical profession to decrease. Eventually, the
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c.  Pick another value of a and find b. Show that
 f is continuous for these values of a and
b.42.  Two Values of Constant Problem: For function f,

use one-sided limits in an appropriate way to find
the two values of k that make f continuous at x = 2.



number of doctors stabilizes, say at 1000 (Figure 2-5a). This steady-state value is
the limit of the number of doctors as time approaches infinity.

You can visualize another type of limit involving infinity by imagining you are
pointing a flashlight straight at a wall (Figure 2-5b). If you begin to turn with the
flashlight in your hand, the length of the light beam, L, increases. When the
angle, x, is /2 radians (90°), the beam is parallel to the wall, so its length
becomes infinite. The graph of the function has a vertical asymptote at x = /2,
so it has an infinite discontinuity there.

Figure 2-5b

In this section you’ll learn some terminology to use if the value of f(x) becomes
infinitely large as x approaches c, or if x itself becomes infinitely large.

Figure 2-5c

x  f (x)

x  2+
2.1
2.01
2.001

13
103

1003
 f(x) = 

2 Undefined

x  2–
1.999
1.99
1.9

–997
–97
–7

 f(x) = –

Figure 2-5c shows the graph of

As x approaches 2, the denominator approaches zero. The reciprocal of a
number close to zero is very large. The table shows that as x approaches 2 from
the positive side, f(x) becomes infinitely large in the positive direction. As
x approaches 2 from the negative side, f(x) becomes infinitely large in the
negative direction. The symbol  represents infinity. You can express the
behavior of f(x) for values of x close to 2 by writing one-sided limits this way:

 f(x) = and  f(x) = –

Note that the  symbol does not stand for a number. It represents the fact that
the value of f(x) increases without bound as x gets closer to 2. Be careful to use

 only in conjunction with limits. Because the “=” sign connects two numbers, it
is not correct to write statements like “f(2) = .”
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        OBJECTIVE Find limits of functions where either x becomes infinite or the limit is infinite.
  

Figure 2-5a



 

Function f in Figure 2-5c gets closer and closer to 3 as x gets larger and larger.
This happens because the reciprocal of a large number is close to zero, leaving a
bit more than 3 for f(x). A similar thing happens as x becomes very large in the
negative direction.

2.99900199...
2.990196...
2.9166...

 f(x) = 3

···
···

x  
10

100
1000

3.125
3.0102...
3.001002...

 f(x) = 3

You can express this behavior by writing

 f(x) = 3 and  f(x) = 3

Again, the  symbol is used only in conjunction with limits.

The lines y = 3 and x = 2 in Figure 2-5c are horizontal and vertical asymptotes,
respectively. The definition of limits involving infinity can be used to give a
more precise definition of the concept of asymptote.
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DEFINITIONS:  Limits Involving Infinity
 f(x) =  if and only if f(x) can be kept arbitrarily far away from zero in the

positive direction just by keeping x close enough to c but not equal to c.
 f(x) = –  is similarly defined.

 f(x) is infinite if and only if f(x) can be kept arbitrarily far away from zero

just by keeping x close enough to c but not equal to c.

 f(x) = L if and only if f(x) can be made to stay arbitrarily close to L just by

making x large enough in the positive direction.
 f(x) = L is similarly defined.

 f(x) =  if and only if f(x) can be kept arbitrarily far away from zero in

the positive direction just by making x large enough.
 f(x) = – ,  f(x) = , and  f(x) = –  are similarly defined.

 
  
  
  
  
  
  
 

DEFINITIONS:  Horizontal and Vertical Asymptotes

If  f(x) = L, then the line y = L is a horizontal asymptote. The same applies
if x approaches – .

If | f(x)| = , then the line x = c is a vertical asymptote.

x  –
–1000
–100
–10

x  f (x)



 

Note that the graph of a function never crosses a vertical asymptote because
functions have only one value of y for any one value of x. This fact agrees with
the origin of the name, the Greek asymptotos, meaning “not due to coincide.” It
is customary to use “asymptote” for a horizontal limit line like the one in
Figure 2-5a, even though the graph does cross the line.

 f(x) =  and  f(x) = 3.

a.  What value of x > 2 makes f(x) = 500? Choose several values of x closer to
2 than this number and show numerically that f(x) > 500 for each of them.
What does it mean to say that the limit of f(x) is infinity as x approaches 2
from the positive side? What feature does the graph of f have at x = 2?

b.  What value of x > 2 makes f(x) = 3.004? Choose several values of x greater
than this number and show numerically that f(x) is within 0.004 unit of 3
for each of these numbers. What does it mean to say that the limit of f(x)
is 3 as x approaches infinity? How is the line y = 3 related to the graph?

Solution a. Substitute  500 for f(x).

This value of x makes f(x) = 500.

Particle accelerators, like
this one located at the
Center for European
Nuclear Research in
Meyrin, Switzerland, make
subatomic particles move
close to the speed of light.
According to the Theory of
Relativity, the particle
would need an infinite
amount of energy to reach
the speed of light.

Pick x = 2.002, x = 2.001, and x = 2.0005, for example.

x   f (x)

2.002 503
2.001 1003
2.0005 2003

In each case, f (x) > 500.
The equation   f(x) =  means that you can make f(x) arbitrarily far

away from zero by picking values of x close enough to 2 on the positive
side (but not equal to 2).

There is a vertical asymptote at x = 2.

b. Substitute  3.004 for f(x).

This value of x makes f(x) = 3.004.

Pick x = 260, x = 500, and x = 1000.
x

260 3.00387
500 3.002008...

1000 3.001002...
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EXAMPLE 1

 f (x)

For in Figure 2-5c,



 

In each case, f(x) is within 0.004 unit of 3.

Figure 2-5d

For the piecewise function f in Figure 2-5d, what do
the following limits appear to be?

•  f(x) •  f(x) •  f(x)

•  f(x) •  f(x) •  f(x)

•  f(x)

Solution •  f(x)= 4  f(x) stays close to 4 when x is very large. (There is a horizontal
asymptote at y = 4.)

•  f(x) = 6  f(x) stays close to 6 when x is close to 3 on the negative side.

•  f(x) = 2  f(x) stays close to 2 when x is close to 3 on the positive side.

•  f(x) = –  f(x) becomes infinitely large in the negative direction.

•  f(x) =  f(x) becomes infinitely large in the positive direction.

•  f(x) = 4  f is continuous at x = 0.

•  f(x) = 2  f(x) stays close to 2 when x is very large in the negative direction.
(There is a horizontal asymptote at y = 2.)
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EXAMPLE 2

 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

Notes on Undefined, Infinite, and Indeterminate

•  An expression, A, is undefined at any value x = c that causes division by
zero. (An expression can also be undefined for other reasons, such as
sin–1 3 or log(–4).)

•  If the undefined expression, A, takes the form (nonzero)/(zero), A is said
to be an infinite form, or simply to be infinite. Its absolute value gets larger
than any real number as the denominator gets closer to zero. The graph of
 f(x) = A has an infinite discontinuity (a vertical asymptote) at x = c.

•  If the undefined expression, A, takes the form 0/0, A is said to be an
indeterminate form. You can’t determine the limit of A as x approaches c
just by looking at 0/0.

•  If an indeterminate form has a finite limit, L, as x approaches c, then the
function f(x) = A has a removable discontinuity at the point (c, L).

Thus,  f(x) = 3 means that you can keep f(x) arbitrarily close to 3 by
making x large enough.

The line y = 3 is a horizontal asymptote.



                        

Problem Set 2-5

Figure 2-5e

 f(x) = —?—

Q2.   f(x) = —?—

Q3.   f(x) = —?—

Q4.   f(x) = —?—

Q5.   f(x) = —?—

Q6.  Is f continuous at x = 1?

Q7.  Is f continuous at x = 2?

Q8.  Is f continuous at x = 3?

Q9.  Is f continuous at x = 4?

Q10.  Is f continuous at x = 5?

1.  For piecewise function f in Figure 2-5f, what do
these limits appear to be?

•  f(x) •  f(x)

•  f(x) •  f(x)

•  f(x) •  f(x)

•  f(x) •  f(x)

Figure 2-5f

2.  For piecewise function g in Figure 2-5g, what
do these limits appear to be?

• g(x) • g(x)

• g(x) • g(x)

• g(x) • g(x)

• g(x)

Figure 2-5g

For Problems 3–6, sketch the graph of a function
that has the given features.

3.  f(x) =  and  f(x) = 

4.  f(x) =  and  f(x) = –

5.  f(x) = –5 and   f(x) = 7

6.  f(x) =  and  f(x) = 

7.  Let 

a.  Sketch the graph of f.
b.  Find

c.  Find a value of x on the positive side of 3 for
which f(x) = 100. Choose several values of x
closer to 3 than this, and show numerically
that f(x) > 100 for all of these values. What
does it mean to say that the limit of f(x) is
infinity as x approaches 3 from the positive
side? How is the line x = 3 related to the
graph of f ?

d.  What value of x > 3 makes f(x) = 2.001?
Choose several values of x greater than this
number and show numerically that f(x) is
within 0.001 unit of 2 for each of these
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Quick Review

Refer to Figure 2-5e for Problems Q1–Q10.

Q1.  



numbers. What does it mean to say that the
limit of f(x) is 2 as x approaches infinity?
How is the line y = 2 related to the graph?

infinite, it is not correct to say that
What feature does the

graph of g have at x = /2?

c.  Find a value of x close to /2 on the positive
side for which g(x) = –1000. Choose several
values of x closer to /2 than this, and
show numerically that g(x) < –1000 for all
of these values. What does it mean to
say that the limit of g(x) is negative infinity as
x approaches /2 from the positive side? How
is the line x = /2 related to the graph of g?

9.  Let 

a.  Plot the graph of r. Use a friendly window
with an x-range of about –20 to 20 for
which x = 0 is a grid point. Sketch the result.

b.  Find the limit, L, of r(x) as x approaches
infinity.

c.  Show that r(28) is within 0.01 unit of 2, but
that there are values of x > 28 for which
r(x) is more than 0.01 unit away from 2. Use
a suitable window to show this graphically,
and sketch the result. Find a value x = D
large enough so that r(x) is within 0.01 unit
of 2 for all x > D.

d.  In part b, if you draw a horizontal line at
 y = L, will it be an asymptote? Explain.

e.  Make a conjecture about the limit of r(x) as
x approaches zero. Give evidence to support
your conjecture.

10.  Let  

a.  Plot the graph of h. Use a friendly window
with an x-range of 0 to about 100. You will
have to explore to find a suitable y-range.
Sketch the result.

b.  As x becomes large, 1/x approaches zero, so
h(x) takes on the form . You realize that
1 to any power is 1, but the base is always

greater than 1, and a number greater than 1
raised to a large positive power becomes
infinite. Which phenomenon “wins” as
x approaches infinity: 1, infinity, or some
“compromise” number in between?

11.  Figure 2-5h shows the graph of

 y = log x

Does the graph level off and approach a finite
limit as x approaches infinity, or is the limit
infinite? Justify your answer. The definition of
logarithm is helpful here ( y = log x if and only
if 10y = x).

Figure 2-5h

12.  Wanda Wye wonders why the form 1/0 is
infinite and why the form 1/  is zero. Explain
to her what happens to the size of fractions
such as 1/0.1, 1/0.0001, and so on, as the
denominator gets close to zero. Explain what
happens as the denominator becomes very
large.

13.  Limits Applied to Integrals Problem: Rhoda
starts riding down the driveway on her tricycle.
Being quite precocious, she figures her velocity,
v, in ft/s is

where t is time, in seconds, since she started.
Figure 2-5i shows v as a function of t.

Figure 2-5i
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8.  Let g(x) = sec x.

a.  Sketch the graph of g.

b.  Find and
Explain why, even though  s is



 

a.  Explain why the definite integral from t = 0

d.  Figure out how many trapezoids are needed
so that the approximation of the integral is
within 0.01 unit of the limit. Explain how
you go about getting the answer.

14.  Work Problem: The work done as you drag a
box across the floor is equal to the product of
the force you exert on the box and the distance
the box moves. Suppose that the force varies
with distance, and is given by

where F(x) is the force, in pounds, and x is the
distance, in feet, the box is from its starting
point. Figure 2-5j shows the graph of F.

Figure 2-5j

a.  Explain why a definite integral is used to
calculate the amount of work done.

b.  Use the trapezoidal rule with n = 10 and
n = 100 increments to estimate the value of
the integral from x = 0 to x = 4. What are the
units of work in this problem?

c.  The exact amount of work is the limit of the
trapezoidal sums as n approaches infinity.
In this case the answer is an integer. What
do you suppose the integer is?

d.  What is the minimum number, D, such that
the trapezoidal sums are closer than 0.01
unit to the limit in part c whenever n > D?

15.  Searchlight Problem: A searchlight shines on a
wall as shown in Figure 2-5k. The
perpendicular distance from the light to the
wall is 100 ft. Write an equation for the length,
L, of the beam of light as a function of the
angle, x, in radians, between the perpendicular
and the beam. How close to /2 must the angle
be for the length of the beam to be at least
1000 ft, assuming that the wall is long
enough?

Figure 2-5k

16.  Zero Times Infinity Problem: You have learned
that 0/0 is called an indeterminate form. You
can’t determine what it equals just by looking
at it. Similarly, 0 ·  is an indeterminate form.
In this problem you will see three possibilities
for the limit of a function whose form goes to
0 · . Let f, g, and h be functions defined as
follows.

 f(x) = 5x(x – 2) · 

g(x) = 5x(x – 2) · 

h(x) = 5x(x – 2)2 ·

a.  Show that each of the three functions takes
the form 0 ·  as x approaches 2.

b.  Find the limit of each function as x
approaches 2.

c.  Describe three things that the indeterminate
form 0 ·  could approach.
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to t = 9 represents the distance Rhoda rode
in the first 9 seconds.

b.  Use the trapezoidal rule to estimate the
     integral in part a. Try 9, 45, 90, and 450
     trapezoids. Record all the decimal places
     your program gives you.

c.  What number (an integer in this case) do
     you think is the exact value of the integral?
     Explain why this number is a limit. Why are
     the approximate answers by trapezoids all
     smaller than this number?

F(x) = 10 – 3



2-6   The Intermediate Value Theorem

Figure 2-6a The property of continuous functions that guarantees there is an exact value is
called the intermediate value theorem. Informally, it says that if you pick a value
of y between any two values of f(x), there is an x-value in the domain that gives
exactly that y-value for f(x). Because 1.813 = 5.929741 and 1.823 = 6.028568,
and because 6 is between 5.929741 and 6.028568, there must be a number x
between 1.81 and 1.82 for which  f(x) = 6 exactly. The function y = x3 must be
continuous for this property to apply.

Figure 2-6b illustrates the theorem. Pick y between f(a) and f(b). If f is
continuous, you can go over to the graph, then go down to the x-axis and find c,
a corresponding value of x. The value of f(c) will thus equal y exactly. The proof
of this theorem relies on the completeness axiom. This axiom, which comes in
several forms, says that there is a real number corresponding to every point on
the number line, and vice versa. Thus, the set of real numbers is “complete.” It
has no “holes,” as does the set of rational numbers.Figure 2-6b

A formal proof of the intermediate value theorem usually appears in later
courses on analysis of real numbers. The gist of the proof is that for any y-value
you pick in the interval, there will be a point on the graph because the graph is
continuous. Going vertically to the x-axis gives a point on the number line. This
point corresponds to a real number x = c, because the set of real numbers is
complete. Reversing the steps shows that f(c) really does equal y.

In addition, you will investigate a corollary of the intermediate value theorem,
called the image theorem, which relies on the extreme value theorem for
its proof.
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         OBJECTIVE Given an equation for a continuous function f and a value of y between f(a)
 and f(b), find a value of x = c between a and b for which f(c) = y.
  

 
  
  
  
  
  
 

PROPERTY:  The Intermediate Value Theorem

If the function f is continuous for all x in the closed interval [a, b], and y
is a number between f(a) and f(b), then there is a number x = c in (a, b) for
which f(c) = y.

and Its Consequences

 Suppose you try to find a solution of the equation x3 = 6 by tracing the graph of

 y = x3 (Figure 2-6a). The cursor never quite hits a value of x that makes y equal
 exactly 6. That’s because graphers plot discrete points that only approximately

 there really is a value of x (an irrational number) that, when cubed, gives exactly 6.
 represent the continuous graph. However, because y = x3 is continuous,



       

Figure 2-6c

a.  Because polynomial functions are continuous
for all values of x (see Problem 45 in
Section 2-4), f is continuous on [1, 3]. Because
 f(1) = 6 and f(3) = 4, the intermediate value
theorem applies, and a value of x = c occurs
in (1, 3) for which f(c) = 5.

b.  By solver or by plotting the line y = 5 and using
the intersect feature, you can find that
c  1.3111078..., which is between 1 and 3 (as
Figure 2-6c shows).

Problem Set 2-6

Q1.  Evaluate f(2) if f(x) = 3x4 + 5.

Q2.  Find  f(x) if f(x) =3x4 + 5.

Q3.  Evaluate h(3) if h(x) = 5(x – 3)/(x – 3).

Q4.  Find h(x) if h(x) = 5(x – 3)/(x – 3).

Q5.  Evaluate s(0) if s(x) = |x|/x.

Q6.  Find s(x) if s(x) = |x|/x.

Q7.  Evaluate: sin ( /2)

Q8.  Fill in the blank with the correct operation:
log (xy) = log x ––?–– log y.

Q9.  The expression 0/0 is called a(n) ––?–– form.

Q10.  Which of these definitely is not true if  f(x)
takes the form 0/0 as x approaches c?

A.  f(c) is undefined.
B.  f is discontinuous at x = c.
C.  f(x)  1 as x  c.
D.  f(x) may approach 0 as x  c.
E.  f(x) may approach 3 as x  c.

For Problems 1 and 2, explain why the intermediate
value theorem applies on the given closed interval.
Then find an approximation for the value of c in the
corresponding open interval for which f(c) is exactly
equal to the given y-value. Illustrate by graph.

1.  f(x) = (x – 3)4 + 2, [1, 4], y = 8

2.  f(x) = 0.001x5 – 8, [0, 6], y = –1

3.  Converse of the Intermediate Value Theorem?
The intermediate value theorem is not an “if
and only if” theorem. The conclusion can be
true even if the hypotheses are not met.
a.  The graph on the left in Figure 2-6d (on the

next page) shows

Explain why the conclusion of the
intermediate value theorem could be true or
false for the interval [1, 5], depending on the
value of y you pick in the interval [2, 8].

b.  The graph on the right in Figure 2-6d shows
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EXAMPLE 1

Quick Review

Solution

a.  If f(x) = x3 – 4x2 + 2x + 7, use the intermediate value theorem to conclude
     that a value of x = c occurs between 1 and 3 for which f(c) is exactly equal
     to 5.

b.  Find an approximation for this value of c numerically.

 f(x) = 2 + x + 

g(x) = 2 + x – 



Explain why the intermediate value theorem
is always true for the interval [1, 5], no
matter what value of y you pick between
g(1) and g(5), even though the function is
discontinuous at x = 2.

Figure 2-6d

4.  Figure 2-6e shows the graph of

if x is rational
if x is irrational

a.  Find f(2), f(3), f(0.5), and f( ).
b.  Is f continuous at x = 3? Explain.
c.  Where else is f continuous? Surprising?
d.  Because f(0) = 1 and f(2) = 4, is the

intermediate value theorem true for all
values of y between 1 and 4? Explain.

Figure 2-6e

5.  Use the intermediate value theorem to prove
that there is a real number equal to That is,
prove that there is a number c such that c2 = 3.

6.  Use the intermediate value theorem to prove
that if f is continuous, and if f(a) is positive
and f(b) is negative, then there is at least one

zero of f(x) between x = a and x = b. (Recall
that a zero of a function is a value of x that
makes f(x) = 0.)

7.  The intermediate value theorem is an example
of an existence theorem. Why do you suppose
this term is used? What does an existence
theorem not tell you how to do?

8.  Sweetheart Problem: You wish to visit your
sweetheart, but you don’t want to go all the
way over to their house if your sweetheart isn’t
home. What sort of “existence proof” could
you do beforehand to decide whether it is
worthwhile to make the trip? What sort of
information will your proof not give you about
making the trip? Why do you suppose
mathematicians are so interested in doing
existence proofs before they spend a lot of
time searching for solutions?

9.  Foot Race Problem: Jesse and Kay run the
1000-m race. One minute after the race begins,
Jesse is running 20 km/h and Kay is running
15 km/h. Three minutes after the race begins,
Jesse has slowed to 17 km/h and Kay has
speeded up to 19 km/h.

Assume that each runner’s speed is a
continuous function of time. Prove that there is
a time between 1 min and 3 min after the race
begins at which each one is running exactly the
same speed. Is it possible to tell what that
speed is? Is it possible to tell when that speed
occurred? Explain.
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 f(x) 



10.  Postage Stamp Problem: U.S. postage rates

Figure 2-6f

11.  Cosine Function Problem: Figure 2-6g is a
graph of f(x) = cos x. Recall that cos 0 = 1
and cos  = –1. What assumption must you
make about the cosine function to be able to
use the intermediate value theorem? Find as
accurate an approximation as possible for a
value of x = c between 0 and  for which
cos x = 0.6. Explain how you found this
approximation.

Figure 2-6g

12.  Exponential Function Problem: Figure 2-6h is a
graph of f(x) = 2x. What assumption must you
make about exponential functions in order to
use the intermediate value theorem? Why does
 f(0) = 1? Find as accurate an approximation as
possible for a value of x = c between 0 and 2
for 2c = 3. Explain how you found this
approximation.

Figure 2-6h

13.  The Extreme Value Theorem: The extreme
value theorem expresses the property that
if f is continuous on the closed interval [a, b],
then there are numbers c1 and c2 in [a, b] for
which f(c1) and f(c2) are the maximum and
minimum values of f(x) for that interval. Think
about what this means, and express this
theorem with a graph. Then draw a graph that
shows why the conclusion might not be true
for a function that has a discontinuity
somewhere in [a, b].

14.  The Image Theorem: The image theorem, a
corollary of the intermediate value theorem,
expresses the property that if f is continuous
on the interval [a, b], then the image (the set of
 y-values) of f on [a, b] is all real numbers
between the minimum of f(x) and the
maximum of f(x) on [a, b], inclusive. Use
the extreme value theorem as a lemma (a
preliminary result) to prove the image
theorem.
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in 2003 for first-class letters were 37¢ for the
first ounce and 23¢ per ounce thereafter.
Figure 2-6f, an example of a step function,
shows the cost of mailing a first-class letter
versus its weight in ounces. Does the function
meet the hypotheses of the intermediate
value theorem? Is there a weight of letter that
you can mail for exactly $2.00? Justify your
answers.



2-7   Chapter Review and Test

 units of the limit when x is within  units of c (x ≠  c). You should be able to
use the limit properties to prove that the number you’ve found is the limit. If
you think of “lim” as an operation that acts on functions, many of these
properties can be thought of as distributive properties. This box summarizes
the properties.

Finally, you learned another major theorem of calculus, the intermediate value
theorem, which expresses a property of continuous functions.

Review Problems

R0.  You have learned that calculus involves four
concepts. Your goal for this course is to be able
to do four things with each of these concepts.

Define it.  Understand it.
Limit
Derivative
Integral
Integral

In your journal, make a table like the one
shown above. Check each concept you have
worked on as you studied this chapter. Make
journal entries for such things as

• The one most important thing you learned
in studying Chapter 2

• A statement explaining what you now
understand a limit to be

• How limits apply to derivatives and definite
integrals

• Your understanding of continuity and the
intermediate value theorem

• Anything you need to ask about in class
before your test on Chapter 2

R1.  Let f(x) = 

a.  What numerical form does f(3) take? What
name is given to this numerical form?

b.  Plot the graph of f using a friendly window
that includes x = 3 as a grid point. Sketch
the graph of f taking into account the fact
that f(3) is undefined because of division by
zero. What graphical feature appears at x = 3?

c.  The number 7 is the limit of f(x) as x
approaches 3. How close to 3 would you
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SUMMARY:  Limit Property

Limit distributes over addition, subtraction, multiplication, and division
(denominator ≠ 0) with any finite number of terms or factors.

Do it. Apply it.

In this chapter you have gained further insight into the meaning of limit. You
broadened the idea of limit to include one-sided limits and infinite limits, and
you applied these ideas to define the concept of a continuous function. By now
you should understand that a limit is a number that f(x) stays close to when x is
kept close to c but not equal to c. You should be able to find a limit of a function
given by graph or by equation and also to show that f(x) really does stay
within



       

have to keep x in order for f(x) to be within

Figure 2-7a Figure 2-7b

c.  For the function in Figure 2-7b, write the
limit of f(x) as x approaches 2. From the
graph, estimate the largest possible value of

 that can be used to keep f(x) within
0.4 unit of the limit when x is within

 units of 2.
d.  In part c, f(x) =  Calculate the

maximum value of  that you estimated in
part c.

e.  For the function in part d, show that  is
positive for any  > 0 where f(x) is within

 units of the limit when x is within  units
of 2 (but x ≠ 2).

R3.  a.  State these limit properties.
• Limit of a sum of two functions
• Limit of a constant times a function
• Limit of a quotient of two functions

b.  For g(x) = 

• Plot the graph using a friendly window
that includes x = 3 as a grid point. Sketch
the graph.

• Explain why you cannot use the limit of a
quotient property to find g(x).

• Simplify the fraction. Why can you cancel
(x – 3) without worrying about dividing
by zero?

• Find g(x), naming the limit theorems
used at each step.

c.  Figure 2-7c shows the graphs

Figure 2-7c

• Find  f(x) and g(x).

• Let p(x) = f(x) · g(x). Show that

by showing numerically that p(x) stays
close to 16 when x is kept close to 3 but
not equal to 3 .

• Let r(x) = f(x)/g(x). Plot the graph of r.
Sketch the graph, showing that

d.  Chuck’s Rock Problem: Chuck throws a rock
high into the air. Its distance, d(t), in meters,
above the ground is given by d(t) = 35t – 5t2,
where t is the time, in seconds, since he
threw it. Find the average velocity of the
rock from t = 5 to t = 5.1. Write an equation
for the average velocity from 5 seconds to
t seconds. By taking the limit of the
expression in this equation, find the
instantaneous velocity of the rock at t = 5.
Was the rock going up or down at t = 5? How
can you tell? What mathematical quantity is
this instantaneous velocity?
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 f(x) = 2x and g(x) =

0.01 unit of 7? Within 0.0001 unit of 7? How
could you keep f(x) arbitrarily close to 7 just
by keeping x close to 3 but not equal to 3?

R2.  a.  State the epsilon-delta definition of limit.
b.  For x = 1, 2, 3, 4, and 5, state whether or not

the function f in Figure 2-7a has a limit, and
if so, what the limit appears to be.



R4.  a.  Write the definitions of continuity at a point

• Continuity or kind of discontinuity

Figure 2-7d

c.  Sketch graphs of the functions described.

• Has a removable discontinuity at x = 1

• Has a step discontinuity at x = 2

• Has a vertical asymptote at x = 3

• Has a cusp at x = 4
• Is continuous at x = 5

• Has a limit as x 6 and a value of f(6),
but is discontinuous at x = 6

• Has a left limit of –2 and a right limit of
5 as x  1

d.  For the piecewise function

• Sketch the graph of f  if k = 10.

• Show that f  is discontinuous at x = 2 if
k = 10.

• Find the value of k that makes f
continuous at x = 2.

R5.  a.  Use the appropriate limit definitions to write
the meanings of

 f(x) = and  f(x) = 5

b.  For piecewise function f in Figure 2-7e, what
do these limits appear to be?

• •
• •
•

Figure 2-7e

c.  Let f(x) = 6 – 2–x. Find a value of x = c for
which f(x) is exactly 0.001 unit below the
limit of f(x) as x approaches infinity. Choose
several values of x > c and show that f(x) is
within 0.001 unit of the limit for all of these
values.

d.  Let g(x) = x–2. Find                        Find a
positive value of x = c for which g(x) = 106.
Choose several values of x closer to 0 than c
and show that g(x) > 106 for all of these
values.

e.  The distance you travel at a variable velocity,
v(t), is the definite integral of v(t) with
respect to time, t. Suppose that your car’s
velocity is given by v(t ) = 40 +  where t
is in seconds and v(t ) is in ft/s. Use the
trapezoidal rule with varying numbers of
increments, n, to estimate the distance
traveled from t = 0 to t = 9. What limit do
these sums seem to approach as n
approaches infinity? Find a number D for
which the trapezoidal sum is within
0.01 unit of this limit when n > D.

R6.  a.  State the intermediate value theorem. What
axiom forms the basis for the proof of the
intermediate value theorem? State the
extreme value theorem. What word
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and continuity on a closed interval.

b.  For the piecewise function in Figure 2-
7d,make a table showing these quantities

forc = 1, 2, 3, 4, and 5, or stating that the
quantity does not exist.

•   f(c) •   f(x)

•   f(x) •   f(x)



c.  Plot the function

Use a friendly window that includes x = –4.
Show that f(–6) = 1 and f(–2) = 5. Based on
the intermediate value theorem, if you pick a
number y  between 1 and 5, will you always
get a value of x = c between –6 and –2 for
which f(c) = y? If so, explain why. If not,
give a counterexample.

C1.  Squeeze Theorem Introduction Problem:
Suppose that g(x) and h(x) both approach 7 as
x approaches 4, but that g(x)  h(x) for all
other values of x. Suppose another function, f,
has a graph that is bounded above by the
graph of h and bounded below by the graph of
g. That is, g(x)  f(x)  h(x) for all values of x.
Sketch possible graphs of the three functions
on the same set of axes. Make a conjecture
about the limit of f(x) as x 4.

shows the graph of

Find the value of f(1). Is f continuous at x = 1?
Find the limit of [f(x) – f(1)]/(x – 1) as x 1–

and as x 1+. Based on your work, explain
how a function can be continuous at a point
but not have a derivative there.

Figure 2-7f

C3.  Equation from Graph Problem: Figure 2-7g is
the graph of a discontinuous function. Write a
single equation whose graph could be that
shown in the figure.

Figure 2-7g

C4.  Absolute Value Definition of Limit: Later in your
mathematical career, you may encounter the
definition of limit written in the form shown in
the box.

Explain how this algebraic definition of limit is
equivalent to the “within” definition you have
learned.
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C2.  Derivatives and continuity Problem: Figure 2-7f

Concept Problems

Algebraic (Absolute Value) Definition: Limit

L = lim  f(x) if and only if, for any  > 0,
there is a  > 0 such that
if 0 < |x – c| < , then |f(x) – L| < .

describes how the extreme value theorem
relates to the intermediate value theorem?

b.  For f(x) = –x3 + 5x2 – 10x + 20, find f(3)
and f(4). Based on these two numbers, how
can you tell immediately that a zero of f(x)
occurs between x = 3 and x = 4? What
property of polynomial functions allows you
to make this conclusion? Find as accurate a
value of this zero as possible.



•  lim f(x) •  lim f(x)

•  lim f(x) •  lim f(x) •  lim f(x)

b.  Is f continuous on the closed interval [2, 6]?
Explain.

Figure 2-7h

T3.  State the property for the limit of a quotient.

For the functions graphed in Problems T4–T7, state
the following for x = c.

a.  Left and right limits if they exist
b.  The limit if it exists
c.  Whether the function is continuous

T4.

T5.

T6.

T7.

T8.  Sketch the graph of a function for which
lim f(x) = 2.

T9.  Sketch graphs that show you understand the
difference in the behaviors of the following
functions at x = 0.

a.  f(x) =

b.  g(x) =

c.  h(x) =

d.  s(x) = sin

T10.  Figure 2-7i shows the graph of function f in a
neighborhood of x = 3.

a.  What form does f (3) take? What name is
given to an expression of this form?

b.  Use the limit properties to prove
algebraically that lim  f(x) = 2.
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Chapter
Test
PART 1: No calculators allowed (T1–T9)

PART 2: Graphing calculators allowed (T10–T19)

T1.  State the definitions of continuity at a point
and on a closed interval.

T2.  a.  For function f in Figure 2-7h, find

•  lim  f(x)



Figure 2-7i

For Problems T11–T13, let f(x) =

T11.  Show that f is discontinuous at x = 2 if k = 1.
Sketch the graph.

T12.  Find the value of k that makes f continuous at
x = 2.

T13.  On your grapher, plot the graph using the value
of k from Problem T11. Use Boolean variables
to restrict the domains of the two branches.
Sketch the graph.

T14.  Temperature Versus Depth Problem: During the
day the soil at Earth’s surface warms up. Heat
from the surface penetrates to greater depths.
But before the temperature lower down reaches
the surface temperature, night comes and
Earth’s surface cools. Figure 2-7j shows what
the temperature, T, in degrees Celsius, might
look like as a function of depth, x, in feet.

Figure 2-7j

a.  From the graph, what does the limit of T
seem to be as x approaches infinity? How
deep do you think you would have to be so
that the temperature varies no more than
1 degree from this limit? What feature does
the graph have when T equals this limit?

b.  The equation of the function T in Figure 2-7i
is T(x) = 20 + 8(0.97x) cos 0.5x. Use this
equation to calculate a positive number
x = c such that T does not vary more than
0.1 unit from the limit whenever x  c.

c.  Just for fun, see if you can figure out the
approximate time of day for which the graph
in Figure 2-7j applies.

T15.  Glacier Problem: To determine how far a glacier
has traveled in a given time interval, naturalists
drive a metal stake into the surface of the
glacier. From a point not on the glacier, they
measure the distance, d(t), in centimeters,
from its original position that the stake has
moved in time t, in days. Every ten days they
record this distance, getting the values shown
in the table.

t (days) d (t) (cm)

0 0
10 6
20 14
30 24
40 36
50 50

a.  Show that the equation d(t) = 0.01t2 + 0.5t
fits all the data points in the table. Use the
most time-efficient way you can think of to
do this problem.

b.  Use the equation to find the average rate the
glacier is moving during the interval t = 20
to t = 20.1.

c.  Write an equation for the average rate from
20 days to t days. Perform the appropriate
algebra, then find the limit of the average
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to be speeding up or slowing down as
time goes on? How do you reach this
conclusion?

T16.  Calvin and Phoebe’s Acceleration Problem:
Calvin and Phoebe are running side by side
along the jogging trail. At time t = 0, each one
starts to speed up. Their speeds are given by
the following, where p(t) and c(t) are in ft/s
and t is in seconds.

c(t) = 16 – 6(2-t ) For Calvin.

 p(t) = 10 + For Phoebe.

Show that each is going the same speed when
t = 0. What are the limits of their speeds as t
approaches infinity? Surprising?!

T17.  Let f(x) =

What value of k makes f continuous at x = 2?
What feature will the graph of f have at this
point?

T18.  Let h(x) = x3. Show that the number 7 is
between h(1) and h(2). Since h is continuous
on the interval [1, 2], what theorem allows you
to conclude that there is a real number 

between 1 and 2?

T19.  What did you learn as a result of taking this
test that you did not know before?
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rate as t approaches 20. What is the
instantaneous rate the glacier is moving at
t = 20? What mathematical name is given to
this rate?

d.  Based on the table, does the glacier seem
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Unlike the pendulum of a grandfather clock, this Foucault
pendulum is free to swing in any direction. The path of
the pendulum is as constant as possible with respect to space,
and thus seems to move with respect to Earth as Earth rotates
underneath it. Parametric functions are used as mathematical
models that show the paths of objects whose x- and y-coordinates
both vary with time.

Products, Quotients,
and Parametric Functions



Mathematical Overview

You have already learned a way to differentiate power functions.
In Chapter 4, you will learn algebraic methods for differentiating
products and quotients. You will also apply these methods to
parametric functions in which both x and y depend on a third
variable such as time. You will gain this knowledge in four ways.
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the exponent is negative and not an integer.
thing goes for quotients. I also proved that the power rule works when
of two functions is not the product of the two derivatives. The same
I had my first major surprise in calculus! The derivative of a productVerbally

Algebraically the parametric chain rule

Numerically t x  y

0
1
2
3

7
5.620...
1.030...
2.039...

.

.

4
5.501...
4.176...
3.053...

...

The icon at the top of each
even-numbered page of this chapter
shows the path followed by a pendulum
that is allowed to swing in both the
x- and y-directions.

Graphically

.



4-1   Combinations of Two Functions

Exploratory Problem Set 4-1

Let f(x) = 3 cos x and g(x) = 2 sin x, as shown in
Figures 4-1a and 4-1b.

Figure 4-1a

Figure 4-1b

1.  Find equations for (x) and (x).

2.  Derivative of a Product of Two Functions: Plot
 p(x) = f(x) · g(x) = (3 cos x)(2 sin x). Use a
friendly window that is about the scale shown
in Figures 4-1a and 4-1b. Sketch the result.
Find (2) numerically. How can you tell
whether p(x) is increasing or decreasing

3.  Derivative of a Quotient of Two Functions: Plot
q(x) = f(x)/g(x) = (3 cos x) / (2 sin x). Sketch the
result. What familiar function is q? Find  (2)
numerically. Is q(x) increasing or decreasing at
x = 2? Does  (2) equal (2)/ (2)?

4.  Parametric Function: Let x = 3 cos t  and
 y = 2 sin t. If you draw an xy-graph for various
values of t, the result is called a parametric
function. The elliptical path traced on the floor
by a pendulum that is free to swing in any
direction is an example of such a function. Put
your grapher in parametric mode. Enter
x = 3 cos t and y = 2 sin t. Use a window with
x- and y-ranges like those shown in Figure
4-1a. Use a t-range of 0 to 2 , with a t-step of
0.1. Plot and sketch the graph. Does the graph
really seem to be an ellipse?

5.  Derivative of a Parametric Function: Trace the
graph in Problem 4 to the point where t = 2.
Find  x and  y as t goes from 1.9 to 2.1 and
use the results to find a symmetric difference
quotient that approximates dy/dx at t = 2.
Give evidence to show that dy/dx at this point
could equal (dy/dt ) / (dx/dt ) given that the
derivatives are taken at t = 2.

6.  Conjectures?: Just for fun, see if you can
calculate the correct values of (2) and (2)
from Problems 2 and 3, using the values (2),
g
′

(2), f(2), and g(2).
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 OBJECTIVE  On your own or with your study group, explore the derivatives of functions
formed by multiplying, dividing, and composing two functions.  

You have learned to differentiate algebraically a function that is a linear
combination of two other functions, such as f(x) = 3 cos x + 2 sin x. In this
section you will explore derivatives of a product and a quotient of two other
functions, and of a parametric function. For example,

 p(x) = (3 cos x)(2 sin x),    q(x) =  ,   and x = 3 cos t
 y = 2 sin t

at x = 2? Does (2) equal (2) · (2)?



4-2   Derivative of a Product of Two Functions

 f(x) = (x5)(x8)    Product of the derivatives
 f(x) = x13 (5x4)(8x7)

(x) = 13x12    Not the same. = 40x11

In this section you will learn how to differentiate a product of two functions
without having to multiply first.

What follows involves some fairly complicated algebra. Therefore, it helps to
streamline the symbols somewhat. Instead of writing  f(x) = g(x) h(x), write

 y = uv

where u and v stand for differentiable functions of x. The idea is to find dy/dx
in terms of du/dx and dv/dx.

Figure 4-2a

The graphs of two functions, u and v, and their product, y = uv, are shown in
Figure 4-2a. By the definition of derivative,
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The derivative of a sum of two functions is equal to the sum of the two
derivatives. As you learned in Exploratory Problem Set 4-1, there is no such
distributive property for the derivative of a product of two functions. Here is an
example.

 OBJECTIVE Given a function that is a product of two other functions, find, in one step, an
equation for the derivative function.

 
  

Derivative of the product



Because f(x) = g(x) · h(x), f(x + x) is equal to g(x + x) · h(x + x). So you can

uv means ( u) · v.

Using the properties for limit of a sum and limit of a product, and also the fact
that the limits of  u/ x and  v/ x are du/dx and dv/dx, respectively, gives

Because u is a continuous function, u  0
as  x  0.

Derivative of a product property.

Short form, where u′ and v′ are derivatives
with respect to x.

This property is best remembered as a rule, as shown in the box.

With this rule you can accomplish this section’s objective of differentiating a
product in one step.

 EXAMPLE 1 If  y = x4 cos 6x, find dy/dx.

Solution Use the product rule where u = x4 and v = cos 6x.

 = 4x3 cos 6x + x4(–sin 6x) · 6

= 4x3 cos 6x – 6x4 sin 6x

As you write the derivative, say to yourself, “Derivative of first times second,
plus first times derivative of second.” Don’t forget the chain rule!
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 PROPERTY:   Derivative of a Product of Two Functions—The Product
Rule

 If  y = uv, where u and v are differentiable functions of x, then  = v  + u .

 Verbally: Derivative of first times second, plus first times derivative of second.

replace ( y + y ) in the dy/dx equation with (u + u)(v + v ), as indicated on
the right side in Figure 4-2a, and you can replace y with uv. Therefore,



  EXAMPLE 2

Solution

  = 7(3x – 8)6(3)(4x + 9)5 + (3x – 8)7(5)(4x + 9)4(4)

The two terms have common binomial factors. Simplifying includes factoring
out these common factors.

 = (3x – 8)6(4x + 9)4[21(4x + 9) + 20(3x – 8)]

= (3x – 8)6(4x + 9)4(144x + 29)

The factored form in Example 2 is considered simpler because it is easier to find
values of x that make the derivative equal zero.

  EXAMPLE 3 If y = esin x, find .

Solution First use the chain rule on the inside function.

 = esin xcos x

 = esin xcos x · cos x + esin x(– sin x) Use the product and chain rules.

= esin x(cos2 x – sin x) Simplify.

Problem Set 4-2

Q1.  Differentiate:  y  = x3/4

Q2.  Find :  y = ln x

Q3.  Find  dy/dx:   y  = (5x – 7)–6

Q4.  Find: (sin 2x)

Q5.  Differentiate:  v = cos3 t

Q6.  Differentiate:  L = m2 + 5m + 11

Q7.  If  dy/dx = cos x3 · 3x2, find y.

Q8.  In Figure 4-2b, if  x = –2,     —?—.

Figure 4-2b

Q9.  If u = v2/6, where u is in feet and v is in seconds,
how fast is u changing when v = 12 s?

Q10.  If  = e3x, then  =

A.  e3x B. 3e3x C. 9e3x

D. 3e2x E. 6ex
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If y = (3x – 8)7(4x + 9)5, find  and simplify.

Use both the product rule and the chain rule.

Quick Review



 

For Problems 1–20, differentiate and simplify. You

5.  Find :  y = x7(2x + 5)10

6.  Find :  y = x8(3x + 7)9

7.  Find :  z = ln x sin 3x

8.  Find :  v = e5x cos 2x

9.  y = (6x + 11)4 (5x – 9)7

10.  y = (7x – 3)9(6x – 1)5

11.  P = (x2 – 1)10(x2 + 1)15

12.  P(x) = (x3 + 6)4(x3 + 4)6

13.  a(t) = 4 sin 3t cos 5t

14.  v = 7 cos 2t sin 6t

15.  y = cos (3 sin x)

16.  y = sin (5 cos x)

17.  Find :  y = cos e6x

18.  Find :  y = ln (sin x) (Be clever!)

19.  z = x3(5x – 2)4 sin 6x (Be clever!)

20.  u = 3x5(x2 – 4) cos 10x 

21.  Product of Three Functions Problem: Prove that
if y = uvw, where u, v, and w are differentiable
functions of x, then  = vw + u w + uv .

22.  Product of n Functions Conjecture Problem:
Make a conjecture about what an equation
for  would be if y = u1u2u3. . . un, where
u1, . . . , un  are differentiable functions of x.

For Problems 23–26, differentiate and simplify.

23.  z = x5 cos6 x sin 7x

24.  y = 4x6 sin3 x cos 5x
25.  y = x4 (ln x)5 sin x cos 2x

26.  u = x5e2x cos 2x sin 3x
27.  Bouncing Spring Problem: A weight is

suspended on a spring above a table top. As
the weight bounces up and down, friction
decreases the amplitude of the motion.
Figure 4-2c shows the displacement, y(t), in
centimeters, as a function of time, t, in seconds.

Figure 4–2c

a.  If y(t ) = 4 + 3e–0.1t cos t, find an equation
for the velocity, v(t ).

b.  There appears to be a high point at t = 2.
Show that this is not a high point by showing
that v(2)  0. Set v(t) = 0 and solve
numerically to find the t-value of the high
point close to t = 2.

28.  Tacoma Narrows Bridge Problem: If a structure
is shaken at its natural resonant frequency, it
vibrates with an increasing amplitude.
a.  Suppose that an object vibrates in such a

way that its displacement, y(t), in feet, from
its rest position is given by y(t) = t  sin t
where t  is time in seconds. Find an equation
for v(t). Plot v(t) on your grapher. If it does
not agree with Figure 4-2d, go back and
correct your work.

b.  The velocity seems to reach a high point of
25 ft/s close to t = 25. Zoom in on point
(25, 25) and state whether the graph
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(Be clever!)

may check your answer by comparing its graph with
the graph of the numerical derivative. 

1.  f(x) = x3 cos x

2.  f(x) = x4 sin x

3.  Find (x):  g(x) = x1.5e2x

4.  Find (x):  h(x) = x–6.3 ln 4x

Figure 4-2d



even function if f(–x) = f(x). For instance,
sine is odd because sin (–x) = –sin x, and
cosine is even because cos (–x) = cos x. Use the
chain rule appropriately to prove that the
derivative of an odd function is an even
function and that the derivative of an even
function is an odd function.

30.  Double Argument Properties Problem: Let
 f(x) = 2 sin x cos x and let g(x) = sin 2x.
Find (x) and (x). Use the appropriate
trigonometric properties to show that

(x) are equivalent. Then show that f(x) and (x) and
g(x) are also equivalent. Do the same for the
functions f(x) = cos2 x – sin2 x and
g(x) = cos 2x.

31.  Derivative of a Power Induction Problem: Prove
by mathematical induction that for any positive
integer n, if f(x) = xn, then (x) = nxn –1.

32.  Derivative Two Ways Problem: You can
differentiate the function y = (x + 3)8(x – 4)8

by either of two methods: First, consider the

function as a product of two composite
functions; second, multiply and differentiate
the result, y = (x2 – x – 12)8. Show that both
methods give the same result for the derivative.

33.  Confirmation of the Product Rule: Let
 f(x) = x3 · sin x (Figure 4-2e).

Figure 4-2e

a.  Sketch this graph, then draw what you think
the derivative graph, , would look like.
Show, especially, places where (x) would
equal zero.

b.  Write an equation for (x). Plot f and on
your grapher. How does the graph you
predicted compare with the actual graph?

c.  Plot the numerical derivative on your
grapher. How does this graph confirm that
your equation for (x) is correct?

34.  Repeated Roots Problem: In this problem
you will sketch the graph of the function
 f(x) = (5x – 7)4(2x + 3)5.
a.  On your grapher, plot the graph of f. Use an

x-window from 2 to 2 and a  y-window that
sufficiently fits the graph. Sketch the result.

b.  Find (x). Simplify. For example, factor out
any common factors.

c.  Find all three values of x for which (x) = 0.
The factored form of (x) from part b is
convenient for this purpose.

d.  Find f(x) for each of the values of x in part c.
Show these three points on your graph.

e.  The graph of f should have a horizontal
tangent line at each of the points in part d.
State whether the following statement is
true or false: The graph has a high or low
point where (x) = 0.
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your conclusion with a sketch.

of v just falls short of 25, just exceeds 25,
or reaches 25 at this high point. Illustrate

29.  Odd and Even Functions Derivative Problem: A
function is called an odd function if it has the
property f(–x) = –f(x). Similarly, f  is called an

c.  Look up the Tacoma Narrows Bridge on the
     Internet or other source. How do your
     findings relate to this problem? Give the
     Web site or other source you found.



35.  Pole Dance Problem: In a variation of a Filipino

Figure 4-2f

Pole dancing in the Mokantarak village of Flores,
Indonesia

a.  Write dA/dt in terms of L, W, dL/dt, and
dW/dt.

b.  Suppose that W = 2 + 2 cos t and that
L = 3 + 2 sin 2t. At what rate is the area
changing when t = 4? When t = 5? At
these times is the area increasing or
decreasing?

4-3   Derivative of a Quotient of Two Functions

In this section you will learn how to find the derivative of a quotient of two
functions. For example,

Suppose that f(x) = g(x)/h(x). Using y, u, and v for the three function values
lets you write the equation in a simpler form.

By the definition of derivative,
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OBJECTIVE Given a function whose equation is a quotient of two other functions, find an
equation for the derivative function in one step and simplify the answer. 

pole dance, two pairs of bamboo poles are
moved back and forth at floor level. The dancer
steps into and out of the region between the
poles (Figure 4-2f), trying to avoid being
pinched between them as they come together.
The area, A = LW , varies with time, t, where
distances are in feet and time is in seconds.



Multiplying the numerator and the denominator by (v + v )(v) eliminates the

Simplify, then associate
x with the numerator.

Distribute x, then
associate it with u and v.

Limits of products, quotient,
and sum; definition of
derivative;  v  0 as x  0.
Where u′ and v′ are derivatives
with respect to x.

Note that the numerator has the same pattern as the product rule, namely
v + u , except that a subtraction sign (–) appears instead of an addition

sign (+).

 EXAMPLE 1 Differentiate: 

Solution Use the quotient rule, where u = sin 5x and v = 8x – 3

As you differentiate, say to yourself, “Derivative of top times bottom, minus top
times derivative of bottom, all divided by bottom squared.” You must also, of
course, apply the chain rule when necessary.

 EXAMPLE 2 Differentiate: 
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 PROPERTY:  Derivative of a Quotient of Two Functions—The Quotient Rule  

 If y = , where u and v are differentiable functions, and v  0, then  

             

 
Verbally: Derivative of top times bottom, minus top times derivative of
bottom, all divided by bottom squared.  

complex fraction.

Further algebra allows you to take the limit.



Solution

Cancel common factors.

 EXAMPLE 3 Differentiate:  

Solution Although you can use the quotient rule here, it is simpler to transform the
expression to a power and use the power rule.

Problem Set 4-3

Q1.  Find: (x1066)

Q7.  Write the definition of derivative at a point.

Q8.  Write the physical meaning of derivative.

Figure 4-3a

Q10.  Sketch the graph of the derivative of the function
shown in Figure 4-3a.

For Problems 1–26, differentiate and simplify. You
may check your answer by comparing its graph with
the graph of the numerical derivative.

1.  f(x) = 

2.  f(x) = 

3.  g(x) = 

4.  h(x) = 

5.  y = 

6.  y = 

7.  Find  if y = .

8.  Find  if y = .

9.  Find if z = .
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Q2.  Antidifferentiate:  (x) = 60x4

Q3.  Find  : y = x3 sin x

Q4.  Find  : y = cos (x7 )

Q5.  Differentiate: f(x) = (35)(28)

Q6.  Find  (t): a(t) = 6e9t

Q9.  Factor: (x – 3)5 + (x – 3)4(2x)

Factor the numerator.

Quick Review



 

12.  Find  if r = .

13. Find:  (60x–4/3 )

14.  Find:  (24x–7/3 )

15.  r(x) = (Be clever!)

16.  t(x) = (Be clever!)

17.  v(x) = 

18.  a(x) = 

19.  r(x) = 

20.  s(x) = 

21. Find  (x) if W(x) = .

22.  Find  (x) if T(x) =  .

23.  T(x) = 

24.  C(x) = 

25.  Find  if C = .

26.  Find  if S = .

27.  Black Hole Problem: Ann’s spaceship gets
trapped in the gravitational field of a black
hole! Her velocity, v(t), in miles per hour, is
given by

where t is time in hours.

The black hole Sagittarius A, shown here, is located
at the center of the Milky Way galaxy.

a.  How fast is she going when t = 1? When
t = 2? When t = 3?

b.  Write an equation for her acceleration, a(t).
Use this equation to find her acceleration
when t = 1, t = 2, and t = 3. What are the
units of acceleration in this problem?

c.  Using the same screen, plot graphs of her
velocity and acceleration as functions of
time. Sketch the results.

d.  Ann will be in danger if the acceleration
exceeds 500 (mi/h)/h. For what range of
times is Ann’s acceleration below the danger
point?

28.   Catch-Up Rate Problem: Willie Ketchup is out
for his morning walk. He sees Betty Wont
walking ahead of him and decides to catch up
to her. He quickly figures that she is walking at
a rate of 5 ft/s. He lets x, in ft/s, stand for his
walking rate.
a.  Explain why Willie catches up at the rate

of (x – 5) ft/s.

b.  Betty is 300 ft ahead of Willie when he first
begins to catch up. Recall that distance =
rate  time to write an equation for t(x), the
number of seconds it will take him to catch
up to her. Use the equation to find out how
long it will take Willie to catch up if he walks
at rates of  6, 8, 10, 5, 4, and 5.1 ft/s. What is
a reasonable domain for x?
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11.  Find  if Q = .

10.  Find  if A = .



c.  What is the instantaneous rate of change of

Use the answer to evaluate (4). Use
x = 4.1, 4.01, and 4.001 to show that the
difference quotient [f(x) – f(4)]/(x – 4) gets
closer and closer to (4).

30.  Derivative Graph and Table Problem:

a.  For the function f in Figure 4 -3b, sketch
what you think the graph of the derivative,

, looks like.

Figure 4-3b

b.  The equation for f(x) is

Find the algebraic derivative, (x). On the
same screen, plot the graphs of y1 =  (x),
 y2 = (x), and y3 = the numerical derivative.
Use a friendly window that includes x = 3 as
a grid point. Does your algebraic derivative
agree with the numerical derivative? Does
your sketch in part a agree with the graph of
the actual derivative?

c.  Make a table of values of  f(x) and (x) for
each 0.01 unit of x from 2.95 to 3.05. Based
on your table and graphs, describe the way
 f(x) changes as x approaches 3.

d.  Use the maximum and minimum features on
your grapher to find the relative maximum
and minimum points in Figure 4-3b. Show
that (x) = 0 at these points.

e.  What are the domain and the range of f ?
Of ?

31.  Proof of the Power Rule for Negative Exponents:
The proof you used in Section 3-4 for the
power rule for derivatives assumes that the
exponent is a positive integer. You have seen by
example that the rule also works for some
powers with negative exponents. Suppose that
 y = x–5. To prove that  = –5x–6, use the
quotient rule of this section and write y as

Prove that, in general, if y = xn, where n is a
negative constant, then  = nxn–1. To do this,
it helps to write y as

where p is a positive number equal to the
opposite of n.

32.  Figures 4-3c and 4-3d show the graphs of
 y = sec x and y = tan x. Using a copy of each
graph, sketch what you think the graph of the
derivative looks like. Check your answers by
grapher, using the numerical derivative feature.

Figure 4-3c

Figure 4-3d
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Willie’s catch-up time if he is going 6 ft/s?
What are the units of this rate?

d.  Explain why t(x) has no value for the
derivative at x = 5.

29.  Confirmation of Quotient Rule Problem: Find
(x) for the function



•  The meaning of a parametric function
•  What you better understand about the

meaning of derivative
•  Any technique or idea about derivatives that

is still unclear to you

4-4   Derivatives of the Other
Trigonometric Functions
Recall from trigonometry that you can write the tangent, cotangent, secant, and
cosecant functions in terms of sine and cosine.

Each of these is a quotient. Now that you can differentiate quotients, you can
differentiate the other four trigonometric functions.

Derivative of Tangent and Cotangent Functions

Derivative of tangent.

In Problem 29 of Problem Set 4-4, you will show that if y = cot x, then
 = –csc2 x.

Derivative of Secant and Cosecant Functions

Derivative of secant.
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33.  Journal Problem: Update your journal with
       what you’ve learned. Include such things as
      •  The one most important thing you have
          learned since your last journal entry
      •  The primary difference between
          differentiating a sum of two functions and a 
          product or a quotient of two functions

OBJECTIVE Given a function whose equation contains any of the six trigonometric
functions, find the equation for the derivative function in one step. 



In Problem 30 of Problem Set 4-4, you will show that if y = csc x, then

  EXAMPLE 1 Differentiate: y = 3 tan5 7x

Solution  = 3(5 tan4 7x)(sec2 7x)(7)

= 105 tan4 7x sec2 7x

Note that this example involves two applications of the chain rule. The
outermost function is the fifth power function. This fact is easier to see if you
write the original function as

 y = 3(tan 7x)5

The next function in is tan. Its derivative is sec2. The innermost function is 7x;
its derivative is 7. You should begin to see the “chain” of derivatives that gives
the chain rule its name.

 = 3(5 tan4 7x) · (sec2 7x) · (7)

Here are the three “ links” in the chain.

Problem Set 4-4 gives you practice in differentiating all six trigonometric
functions.

Problem Set 4-4

Q1.  (sin x)/(tan x) = —?—

Q2.  1/(sec x) = —?—

Q3.  cos2 3 + sin2 3 = —?—

Q4.  Differentiate:  f(x) = ex sin x

Q5.  Differentiate:  g(x) = x/(cos x)
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 PROPERTIES:  Derivatives of the Six Trigonometric Functions

  x = cos x x = – sin x
  x = sec2 x x = – csc2 x

  x = sec x tan x x = – csc x cot x

 Note: x must be in radians because this was assumed for the sine derivative.

 Memory Aids:

 •  The derivatives of the “co-” functions have a negative sign (–).

 
•  To find the derivatives of the “co-” functions in the right column, replace
    each function in the left column with its cofunction (for example, sec
    with csc)

Quick Review

 = –csc x cot x.



Q6.  Differentiate:  h(x) = (3x)–5/7

Figure 4-4a

Q10.  The equation is an expression of

A.  Derivative of a quotient property
B.  Limit of a quotient property
C.  Definition of derivative
D.  Definition of limit
E.  None of these

For Problems 1–28, differentiate and perform
obvious simplification. You may check each answer
by comparing its graph with the graph of the
numerical derivative.

1.  f(x) = tan 5x

2.  f(x) = sec 3x

3.  y = sec x7

4.  z = tan x9

5.  Find (x):  g(x) = cot e11x

6.  Find (x):  h(x) = csc e10x

7.  r(x) = ln (csc x)

8.  p(x) = ln (cot x)

9.  Find ( y):  y = tan5 4x

10.  Find ( y):  y = tan7 9x

11. (sec x tan x)

12. (csc x cot x)

13.  y = sec x csc x

14.  y = tan x cot x

15.  

16.  

17.  

18.  

19.  w = tan (sin 3x)

20.  t = sec (cos 4x)

21.  S(x) = sec2 x – tan2 x

22.  m(x) = cot2 x – csc2 x

23.  A(x) = sin x2

24.  f(x) = cos x3

25.  F(x) = sin2 x

26.  g(x) = cos3 x

27.  Find : y = tan x

28.  Find : y = sec x

29.  Derivative of Cotangent Problem: Derive the
formula for  if y = cot x. You may write cot x
either as (cos x)/(sin x) or as 1/(tan x).

30.  Derivative of Cosecant Problem: Derive the
formula for  if y = csc x by first transforming
csc x into a function you already know how to
differentiate.
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Q7.  Find  dy/dx:  y  = (cos x)–3

Q8.  Find: (x2 – 7x + 10)/(x – 2)

Q9.  Sketch  the graph of the derivative for the
function shown in Figure 4-4a.



31.  Confirmation of Tangent Derivative Formula:

Figure 4-4b

a.  Sketch the graph. Without using your
grapher, sketch what you think the graph of
the derivative, , would look like.

b.  Find an equation for (x). Plot the graphs of
  f and on the same screen. Did the you
predicted look like the actual one? If not,
write down where your thinking went astray
and what you learned from this problem.

c.  Calculate the symmetric difference quotient
for (1), using x = 0.01. How close is the
answer to the actual value of (1)?

32.  Confirmation of Secant Derivative Formula:
Figure 4-4c shows an accurate graph of
 f(x) = sec x in the closed interval [– /2, /2].

Figure 4-4c

a.  Write the formula for (x). Use it to find the
value of (1).

b.  Plot y1 = f(x). On the same screen, plot the
line y2 through the point (1, f(1)) with slope
equal to (1). Sketch the result. How do the

two graphs confirm that the derivative
formula for secant gives the correct answer
at x = 1?

c.  Deactivate y2 and on the same screen as y1
plot the graph of y3 = (x) from part a. Sketch
the result. What is happening to the graph
of  f at values of x where (x) is negative?

33.  Light on the Monument Problem: Suppose you
stand 10 ft away from the base of the
Washington Monument and shine a flashlight
at it (Figure 4-4d). Let x be the angle, in radians,
the light beam makes with the horizontal line.
Let  y be the vertical distance, in feet, from the
flashlight to the spot of light on the wall.

Figure 4-4d

a.  Show that y = 10 tan x.
b.  As you rotate the flashlight upward, at what

rate is y increasing with respect to x when
x = 1? What are the units of this rate? What
is this rate in feet per degree?

c.  At what rate does y change when your light
points at the top of the vertical monument
wall, where y = 535?

34.  Point of Light Problem: As the beacon light at
an airport rotates, the narrow light beam from
it forms a moving point of light on objects in
its path. The north-south wall of a building is

Section 4-4:   Derivatives of the Other Trigonometric Functions © 2005 Key Curriculum Press 145

Figure 4-4b shows the graph of f(x) = tan x as
it might appear on your grapher.



500 ft east of the beacon (Figure 4-4e). Let x be

Figure 4-4e

a.  Show that y = 500 tan x.
b.  Let t be the number of seconds since the

beacon was pointed due east. Find dy/dt.
(Because x depends on t, x is an inside
function. By the chain rule, the answer will
contain dx/dt.)

c.  Suppose that the beacon is rotating
counterclockwise at 0.3 rad/s. What does
dx/dt equal? How fast is the point of light
moving along the wall when it passes the
window located at y = 300?

35.  Antiderivative Problem: Write an equation
for the antiderivative of each function.
Remember “+C ”!
a.  = cos x
b.  = sin 2x
c.  = sec2 3x
d.  = csc2 4x
e.  = 5 sec x tan x

what you’ve learned. Include such things as

•  The one most important thing you have
learned since your last journal entry

•  The extension you have made in the
power rule

•  How to differentiate all six trigonometric
functions, using what you have recently
learned

•  Any questions you need to ask in class

4-5   Derivatives of Inverse Trigonometric
Functions
You have learned how to differentiate the six trigonometric functions. In this
section you will explore the inverses of these functions.

Background Item 1: Inverse of a Function

The graph on the left in Figure 4-5a shows how the population of a certain city
might grow as a function of time. If you are interested in finding the time when
the population reaches a certain value, it may be more convenient to reverse the
variables and write time as a function of population. The relation you get by

36.  Journal Problem: Update your journal with
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OBJECTIVE Differentiate each of the six inverse trigonometric functions.

the angle, in radians, the light beam makes
with the east–west line. Let y be the distance,
in feet, north of this line where the light beam
is shining when the angle is x.



interchanging the two variables is called the inverse of the original function.

Figure 4-5a

For a linear function such as y = 2x + 6, interchanging the variables gives
x = 2y + 6, which is equivalent to y = 0.5x – 3. So the inverse relation for a
linear function is another function. However, the inverse relation of a
trigonometric function is not a function. As shown in Figure 4-5b, the relation
x = tan y has multiple values of y for the same value of x.

Figure 4-5b

In this text, y = arctan x is used to denote the inverse relation for y = tan x. The
notation “arctan x” means “an arc (or angle in radians) whose tangent is x.” You
can use parametric mode to plot y = arctan x on your grapher. To get the graph
on the right in Figure 4-5b, use a suitable t-range and enter

x = tan t and  y = t

If an inverse relation turns out to be a function, as for linear functions, then the
function is said to be invertible, and the inverse relation is called the inverse
function. In this case, you can use f(x) terminology for the function and its
inverse. For example,

If f(x) = 2x + 6,  then f –1(x) = 0.5x – 3.

The notation f –1(x) is read “f  -inverse of x.” The –1 exponent used with a
function name means function inverse, unlike the –1 exponent used with a
numeral, which means “reciprocal,” or multiplicative inverse. For functions,
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The graph of the inverse is the graph on the right in Figure 4-5a.



the –1 exponent expresses the fact that f –1 “undoes” what was done by the

Notice in Figure 4-5a that if the same scales are used for both axes, then the
graphs of  f and  f –1 are mirror images with respect to the 45-degree line y = x.

Background Item 2: Inverse
Trigonometric Functions

You can make an inverse trigonometric relation such as y = arctan x a function
by restricting the range. Each cycle of y = arctan x shown in Figure 4-5b is called
a branch. The branch that contains the origin is called the principal branch. If y
is restricted to the open interval (– /2, /2), then the inverse relation is a
function and you can use f(x) terminology.

 y = tan–1 x if and only if tan y = x and y  (– /2, /2)

If you evaluate the inverse tangent function on your grapher, the answer given is
the value on this principal branch. Figure 4-5c shows the principal branch of
 y = tan x and the function y = tan–1 x, and the fact that the graphs are mirror
images with respect to the line y = x.

Figure 4-5c

The other five inverse trigonometric functions are defined the same way. For
each one, a principal branch is a function. The principal branch is near the
origin, continuous if possible, and positive if there is a choice between two
branches. The graphs are shown in Figure 4-5d.
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 DEFINITIONS, SYMBOL, AND PROPERTIES:  Inverse of a Function

 Definition: If y = f(x), then the inverse of function  f has the equation x = f( y).

 Definition: If the inverse relation is a function, then  f is said to be invertible.

 
Notation: If  f  is invertible, then you can write the inverse function as
 y = f –1(x).

 Property: If  f is invertible, then f(f –1(x)) = x, and f –1(f(x)) = x.

 Property: The graphs of f and f –1 are mirror images across the line y = x.

function. That is, f –1(f(x)) = x and f(f –1(x)) = x. For instance,

If f(x) = ,then f –1(x) = x2,  so that f–1(f(x)) = (  )2 = x.



Figure 4-5d

The definitions and ranges of the inverse trigonometric functions are
summarized in this box.

Algebraic Derivative of the Inverse Tangent Function

Example 1 shows how to differentiate the inverse tangent function. The
definition of inverse function lets you turn this new problem into the old
problem of differentiating the tangent.

  EXAMPLE 1 Differentiate: y = tan–1 x
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 DEFINITIONS:  Inverse Trigonometric Functions (Principal Branches)

  y = sin–1 x if and only if sin y = x and y  

  y = cos–1 x if and only if cos y = x and y  [0,  ]

  y = tan–1 x if and only if tan y = x and y  

  y = cot–1 x if and only if cot y = x and y  (0,  )

  y = sec–1 x if and only if sec y = x and y  [0,  ], but x ≠  

  y = csc–1 x if and only if csc y = x and y   , but x ≠ 0



 

Solution

Use algebra to solve for y′

= cos2 y

Figure 4-5e

To find  in terms of x, consider that y is an angle whose tangent and cosine
are being found. Draw a right triangle with angle y in standard position
(Figure 4-5e). By trigonometry,

Because tan y = x, which equals x/1, put x on the opposite leg and 1 on
the adjacent leg. The hypotenuse is thus . Cosine equals
(adjacent)/(hypotenuse), so you can write

In Example 1, both the left and right sides of the equation tan y = x are
functions of x. As you learned in Section 3-9, the technique of differentiating
both sides of such an equation with respect to x is called implicit
differentiation. You will study this technique more extensively in Section 4-8.

Derivative of the Inverse Secant Function
The derivative of the inverse secant is tricky. Example 2 shows what happens.

 EXAMPLE 2 Differentiate: y = sec–1 x

Solution Transform the new problem into an old problem.

 y = sec–1 x  sec y = x

sec y tan y · = 1 Remember the chain rule! That’s where y′ comes from.

Use algebra to solve for y′.

Figure 4-5f

Consider y to be an angle in standard position
as shown in Figure 4-5f. Secant equals
(hypotenuse)/(adjacent) and sec y = x = x/1, so
write x on the hypotenuse and 1 on the adjacent
leg. By the Pythagorean theorem, the third side
is . The range of sec–1 is
 y  [0,  ] (excluding  y = /2), so y can terminate
in Quadrant I or II. Where sec y is negative,
 y terminates in Quadrant II. In this case, the
hypotenuse, x, is negative, so you must draw it
in the negative direction, opposite the terminal side of y, as you do with
negative radii in polar coordinates. (You’ll learn about polar coordinates in
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  = 

 = 

 = 

 y = tan–1 x  tan y = x
sec2 y · = 1 The derivative of tan is sec2. Because y depends

on x, it  is an inside function. The y is the derivative
of this inside function (from the chain rule).

Use the definition of tan–1 to write the equation in terms of tangent.



Chapter 8.) As shown in Figure 4-5f, you pick the negative square root for the

The derivatives of the six inverse trigonometric functions are shown here. In
Problem Set 4-5 you will derive the four properties not yet discussed.

 EXAMPLE 3 Differentiate: y = cos–1 e3x

Solution  y = cos–1 e3x

 = –  · 3e3x = – Use the chain rule on the
inside function.

Problem Set 4-5

Q1.    x = —?—

Q2.    x = —?—

Q3.   x = —?—

Q4.  x = —?—

Q5.  x = —?—

Q6.   x = —?—

Refer to Figure 4-5g for Problems Q7–Q10.

Q7.   (1) = —?—

Q8.   (3) = —?—

Q9.   (4) = —?—

Q10.   (6) = —?—

Figure 4-5g
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 PROPERTIES:  Derivatives of the Six Inverse Trigonometric Functions

   (sin–1x) =  (cos–1x) = – 

   (tan–1x) =  (cot–1x) = – 

   (sec–1x) =  (csc–1x) = – 

 Note: Your grapher must be in radian mode.

 
Memory Aid: The derivative of each “co-” inverse function is the opposite of
the derivative of the corresponding inverse function because each co-inverse 
function is decreasing at x = 0 or 1 (Figure 4-5d).

Quick Review

vertical coordinate. So the denominator of the derivative, sec y tan y, is

    if x > 0 –     if x < 0or

In both cases, this quantity is positive. To avoid two different representations,
use the notation |x| and write the derivative in this way.

 = 



For Problems 1–4, duplicate the graphs in Figure

than from – /2 to /2.

6.  Explain why the principal branch of the inverse
secant function cannot be continuous.

7.  Evaluate: sin (sin–1 0.3)

8.  Evaluate: cos–1 (cos 0.8)

For Problems 9–12, derive the formula.

9.  (sin–1 x) = 

10.  (cos–1 x) = – 

11.  (csc–1 x) = – 

12.  (cot–1 x) = – 

For Problems 13-24, find the derivative algebraically.

13.  y = sin–1 4x

14.  y = cos–1 10x

15.  y = cot–1 e0.5x

16.  y = tan–1 (ln x)

17.  y = sec–1 

18.  y = csc–1 

19.  y = cos–1 5x2

20.  f(x) = tan–1 x3

21.  g(x) = (sin–1 x)2

22.  u = (sec–1 x)2

23.  v = x sin–1 x + (1 – x2)1/2 (Surprise!)

24.  I(x) = cot–1 (cot x) (Surprise!)

25.  Radar Problem: An officer in a patrol car
sitting 100 ft from the highway observes a
truck approaching (Figure 4-5h).

Figure 4-5h

a.  At a particular instant, t, in seconds, the
truck is at a distance x, in feet, down the
highway. The officer’s line of sight to the
truck makes an angle , in radians, to a
perpendicular to the highway. Explain why

 = tan–1 (x/100).

b.  Find d  / dx. Use the chain rule to write an
equation for d  / dt.

c.  When the truck is at x = 500 ft, the officer
notes that angle  is changing at a rate
d  / dt = – 0.04 rad/s. How fast is the truck
going? How many miles per hour is this?

26.  Exit Sign Problem: The base of a 20-ft-tall exit
sign is 30 ft above the driver’s eye level
(Figure 4-5i). When cars are far away, the sign
is hard to read because of the distance. When
they are very close, the sign is hard to read
because drivers have to look up at a steep
angle. The sign is easiest to read when the
distance x is such that the angle  at the
driver’s eye is as large as possible.

Figure 4-5i
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4-5d on your grapher. For Problems 3 and 4, recall
that csc y = 1/ sin y  and cot y = 1/ tan y.

1.  y = cos–1 x

2.  y = sin–1 x

3.  y = csc–1 x

4.  y = cot–1 x

5.  Explain why the principal branch of the inverse
cotangent function goes from 0 to  rather



27.  Numerical Answer Check Problem: For
 f(x) = cos–1 x, make a table of values that show

(x) both numerically and by the formula.
Start at x = –0.8 and go to x = 0.8, with

x = 0.2. Show that the formula and the
numerical derivative give the same answers for
each value of x.

28.  Graphical Analysis Problem: Figure 4-5j shows
the graph of y = sec–1 x.

Figure 4-5j

a.  Calculate the derivative at x = 2. Based on
the graph, why is the answer reasonable?

b.  What does y equal when x is 2? What does
(d / dy)(sec y) equal for this value of y?

c.  In what way is the derivative of the inverse
secant function related to the derivative of
the secant function?

29.  General Derivative of the Inverse of a Function:
In this problem you will derive a general
formula for the derivative of the inverse of a
function.

a.  Let y = sin–1 x. Show that .

b.  By directly substituting sin–1 x for y in
part a, you get  . Show that
this equation and the derivative of sin–1 x
given in this section give the same value
when x = 0.6.

c.  Show that this property is true for the
derivative of the inverse of a function:

d.  Suppose that f(x) = x3 + x. Let h be the
inverse function of f. Find x if f(x) = 10. Use
the result and the property given above to
calculate  (10).

30.  Quick! Which of the inverse trigonometric
derivatives are preceded by a negative (–) sign?

4-6   Differentiability and Continuity

It’s time to pause in your study of derivatives and take care of some unfinished
business. If a function f  has a value for (c ), then f  is said to be differentiable
at x = c. If f  is differentiable at every value of x in an interval, then f  is said to
be differentiable on that interval.
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If y = f –1(x), then 
–1(x)) = .

(f

Function
Property: Derivative of the Inverse of a

a.  Write  as the difference of two inverse
cotangents.

b.  Write an equation for d  / dx.
c.  The sign is easiest to read at the value

of x where  stops increasing and starts
decreasing. This happens when d  /dx = 0.
Find this value of x.

correct, plot  as a function of x and thus
show that the graph really does have a high
point at that value.

d.  To confirm that your answer in part c is



Note: If a function is defined only on a closed interval [a, b], then it can be
differentiable only on the open interval (a, b) because taking the limit at a point
requires being able to approach the point from both sides.

In Section 2-4, you learned that a function f is continuous at x = c if
 f(x) = f(c). A function can be continuous at x = c without being

differentiable at that point. But a function that is differentiable at x = c is
always continuous at that point. Figure 4-6a illustrates the two cases.

Figure 4-6a

To prove that a function f is continuous at x = c, you must show that
 f(x) = f(c). The definition of derivative at a point contains all of these

ingredients.

(c ) = 

The trick is to perform some mathematically correct operations that lead from
the hypothesis to the conclusion. In this case it is easier to start somewhere
“in the middle” and pick up the hypothesis along the way. Here goes!

 PROPERTY Prove that if f is differentiable at x = c, then f is continuous at x = c.
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  DEFINITIONS:  Differentiability

  Differentiability at a point: Function f is differentiable at x = c if and only if
 (c) exists. (That is, (c) is a real number.)

  Differentiability on an interval: Function f is differentiable on an interval if
 and only if it is differentiable for every x-value in the interval.

  Differentiability: Function f is differentiable if and only if it is differentiable
 at every value of x in its domain.

OBJECTIVE Prove that a differentiable function is continuous, and use this property to
prove that certain functions are continuous. 



Proof

 [f(x) – f(c )]

Multiply by .

Limit of a product.

Definitions of derivative and limit of a
linear function.

Because f is differentiable at x = c, f ′(c)
is a real number; (number) · 0 = 0.

 [f(x) – f(c )] = 0 Transitive property.

 [f(x) – f(c )] = [  f(x)] – [  f(c)]

[  f(x)] – [  f(c)] = [  f(x)] – f(c)

 [  f(x)] – f(c) = 0,  also. Transitive property again.

  f(x) = f(c)

  f is continuous at x = c,Q.E.D. Definition of continuity.

The secret to this proof is to multiply by 1 in the form of (x – c)/(x – c). This
transformation causes the difference quotient [f(x) – f(c)]/(x – c) to appear
inside the limit sign. The rest of the proof involves algebra and limit properties
and the definitions of derivative and continuity.

This property and its contrapositive provide a simple way to prove that a
function is continuous or not differentiable, respectively.

 EXAMPLE 1 Prove that  f(x) = x2 – 7x + 13 is continuous at x = 4.

Solution Find the derivative and substitute 4 for x.

(x) = 2x – 7
(4) = 2(4) – 7 = 1,  which is a real number.
  f is differentiable at x = 4.
  f is continuous at x = 4, Q.E.D. Differentiability implies continuity.

Note that you could prove that f is continuous by applying the limit theorems.
The technique in Example 1 is faster if you can find the derivative easily.
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 PROPERTY:  Differentiability Implies Continuity

 If function f is differentiable at x = c, then f is continuous at x = c.

 Contrapositive of the Property: If function f is not continuous at x = c, then f
is not differentiable at x = c.

 (The converse and the inverse of this property are false.)

You must prove that  f(x) = f(c).

= (c ) · 0

= 0

Start with something that contains limit,
 f(x), and f(c).



  EXAMPLE 2

 g is not differentiable at x = 2. Contrapositive of differentiability
implies continuity.

The most significant thing for you to understand here is the distinction between
the concepts of differentiability and continuity. To help you acquire this
understanding, it helps to look at graphs of functions and state which, if either,
of the two properties applies.

  EXAMPLE 3 State whether the functions in Figure 4-6b are differentiable or continuous
at x = c.

Figure 4-6b

Solution Remember the definition of differentiability at a point and that differentiability
implies continuity.

a.  The function is continuous but not differentiable at x = c. At the cusp, the
rate of change approaches a different number as x  c from the left side
than it does as x  c from the right.

b.  The function is neither continuous nor differentiable at x = c. There is no
limit for g(x) as x  c.

c.  The function is neither continuous nor differentiable at x = c. Although the
graph appears “smooth” as x goes through c, the difference quotient
[h(x) – h(c)]/(x – c) approaches +  (positive infinity) as x approaches c
from the left side, and approaches –  as x approaches c from the right.

d.  The function is continuous and differentiable at x = c. The discontinuity
elsewhere has no effect on the behavior of the function at x = c.

  EXAMPLE 4 Use one-sided limits to find the values of the constants a and b that make
piecewise function f differentiable at x = 2. Check your answer by graphing.

 f(x) =
ax3, if x  2
b(x – 3)2 + 10,    if x > 2
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Solution

Is the function g(x) = differentiable at x = 2? Justify your answer.

The function g has a (removable) discontinuity at x = 2.



Solution

2b(x – 3), if x > 2
Note x < 2 because there is no derivative at
an endpoint.

Equate the left and right limits of the derivative.

 (x) = 12a and (x) = 2b(2 – 3) = –2b

 12a = –2b  b = – 6a

Equate the left and right limits of the function values.

 f(x) = 8a and  f(x) = b(2 – 3)2 + 10 = b + 10

  8a = b + 10
8a = –6a + 10 By substitution.

a = 

b = –6 ·  = – 

 f(x) =
x3, if x  2

– (x – 3)2 + 10,   if x > 2

Figure 4-6c

Figure 4-6c shows the graph. Use Boolean variables to restrict the domains of
the two pieces. To make them connect, use x  2 and x  2. As you can see, the
two pieces have the same slope at x = 2, and they are continuous. This means
that f is differentiable at x = 2.

Problem Set 4-6

Q1.  Write the definition of continuity.

Q2.  Write the definition of derivative.

Q3.  Find  y: = 12x–3

Q4.  Find:  x

Q5.  Find  dy/dx:  y = tan x

Q6.  Find: sec–1 x

Q7.  If  f(x) = x4, find (2).

Q8.  Find  dy/dx:  y = (x3 + 1)5

Q9.  Estimate the definite integral from –2 to 2 of the
function in Figure 4-6d.

Figure 4-6d

Q10.  For the function in Figure 4-6d,
A. (–1) > 2
B.  1 < (–1) < 2
C.  0 < (–1) < 1
D.  –1 < (–1) < 0

E.  –2 < (–1) < –1
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For  f  to be differentiable at x = 2, the derivatives of the two pieces must
approach the same limit, and the function must be continuous there.

Quick Review

3ax2,
(x) =

if x < 2



For Problems 1–12, state whether the function is

4.

5. 6.

7. 8.

9. 10.

11. 12.

For Problems 13–20,
a.  Sketch the graph of a function that has the

indicated features.
b.  Write the equation for a function that has

these features.

13.  Is differentiable and continuous at the
point (3, 5)

14.  Is differentiable and continuous at the
point (–2, 4)

15.  Has a finite limit as x approaches 6, but is
not continuous at that point because f(6) is
undefined

16.  Has a finite limit as x approaches 1, has a
value for f(1), but still is not continuous at
that point

17.  Has a value for f(–5) but has no limit as
x approaches –5

18.  Has a cusp at the point (–1, 3)

19.  Is continuous at the point (4, 7) but is not
differentiable at that point

20.  Is differentiable at the point (3, 8) but is not
continuous at that point

For Problems 21–24, sketch the graph. State whether
the function is differentiable, continuous, neither,
or both at the indicated value of x = c.

21.  f(x) = |x – 3|, c = 3

22.  f(x) = 4 + |x|, c = 2

23.  f(x) = sin x, c = 1

24.  f(c) = tan x, c = /2

For Problems 25–30, use one-sided limits to find the
values of the constants a and b that make the
piecewise function differentiable at the point where
the rule for the function changes. Check your
answer by plotting the graph. Sketch the results.

25.  f(x) =
x3, if x < 1
a(x – 2)2 + b,     if x  1

26.  f(x) = – (x – 3)2 + 7,    if x  2
ax3 + b, if x < 2

27.  f(x) =
ax2 + 10, if x < 2
x2– 6x + b,       if x  2
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continuous, differentiable, both, or neither at x = c.

3.

1. 2.



28.  f(x) = 

eax, if x  1
b + ln x,    if x > 1

30.  f(x) = 
a sin x,    if x < 
ebx, if x  

31.  Railroad Curve Problem: Curves on a railroad
track are in the shape of cubic parabolas. Such
“parabola tracks” have the property that the
curvature starts as zero at a particular point and
increases gradually, easing the locomotive into
the curve slowly so that it is less likely to derail.
Figure 4-6e shows curved and straight sections
of track defined by the piecewise function

 y = 
ax3 + bx2+ cx + d,   if 0  x  0.5
x + k, if x > 0.5

where x and y are coordinates in miles. The
dashed portions show where the cubic and
linear functions would go if they extended
into other parts of the domain.

Figure 4-6e

a.  The curved left branch of the graph
contains the origin and has  = 0 at that
point. At the transition point where x = 0.5,

 = 1 so that the curve goes the same
direction as the straight section. At this
point,  = 0 so that the curvature is zero.
Find the coefficients a, b, c, and d in the
cubic branch of the function.

b.  Find the value of k in the linear branch of
the function that makes the piecewise
function continuous.

32.  Bicycle Frame Design Problem: Figure 4-6f
shows a side view of a bicycle frame’s front
fork, holding the front wheel. To make the
bike track properly, the fork curves forward at
the bottom where the wheel bolts on. Assume
that the fork is bent in the shape of a cubic
parabola, y = ax3 + bx. What should the
constants a and b be so that the curve joins
smoothly to the straight part of the fork at
the point (10 cm, 20 cm) with slope equal
to 5?

Figure 4-6f

33.  Let f(x) = x2 – , if x  2
4, if x = 2

Find an equation for (x). Use the definition
of derivative to show that function f is not
differentiable at x = 2, even though the left
and right limits of (x) are equal as
x approaches 2.

34.  Baseball Line Drive Problem: Milt Famey
pitches his famous fastball. At time t = 0.5 s
after Milt releases the ball, Joe Jamoke hits a
line drive to center field. The distance, d(t), in
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if x  1
if x > 1

a/x,
12 – bx2,

29.  f(x) = 



feet, of the ball from home plate is given by

,    if t  0.5

,        if t   0.5

Figure 4-6g shows the graph of function d.

Figure 4-6g

a.  Find an equation for  (t). (Be careful about
the inequality signs at t = 0.5).

b.  Prove quickly that d is continuous at t = 1.

c.  Find the limit of d(t) as t  0.5– and as
t  0.5+. State the real-world meanings of
these two numbers.

d.  Explain why d is continuous, but not
differentiable, at t = 0.5.

e.  What is the significance of the number 60.5
in the first rule for d(t)?

35.  Continuity Proof Problem: Use the fact that
differentiability implies continuity to prove that
the following types of functions are continuous.
a.  Linear function, y = mx + b
b.  Quadratic function, y = ax2 + bx + c
c.  Reciprocal function, y = 1/x, provided x  0
d.  Identity function, y = x
e.  Constant function, y = k

36.  Differentiability Implies Continuity Proof: Prove
that if f is differentiable at x = c, then it is
continuous at that point. Try to write the
proof without looking at the text. Consult the
text only if you get stuck.

4-7   Derivatives of a Parametric Function

Figure 4-7a

Figure 4-7a shows how a pendulum
hung from the ceiling of a room might
move if it were to swing in both the
x- and y-directions. It is possible to
calculate its velocity in both the x- and
 y-directions, and along its curved
path. These rates help you determine
facts about the path of a moving
object. In this section you will use
parametric functions to make these
determinations.

The pendulum in Figure 4-7a swings back and forth sinusoidally in both
the x- and y-directions. Using the methods you learned in Section 3-8, you can

160 © 2005 Key Curriculum Press Chapter 4:   Products,  Quotients,  and Parametric Functions

OBJECTIVE Given equations for x and y in terms of t, find dx/dt, dy/dt, and dy/dx.

the two-rule function.

d(t) = 



find equations for these sinusoids. Suppose that the equations for a particular

Figure 4-7b

You can use the parametric mode on your grapher
to plot the xy-graph of the pendulum’s path. The
result is an ellipse, as shown in Figure 4-7b. The
ellipse goes from –50 to 50 cm in the x-direction
and from –30 to 30 cm in the y-direction. The
numbers 50 and 30 in the parametric equations are
x- and y-dilations, respectively, equal to the
amplitudes of the two sinusoids. (The x- and
 y-translations are zero, which indicates that the
pendulum hangs over the origin when it is at rest.)

You can find the rates of change of x and y with respect to t by differentiating.

 = –60 sin 1.2t and  = 36 cos 1.2t

Evaluating these derivatives at a certain value of t, say t = 1, shows that the
pendulum is moving at about –55.9 cm/s in the x-direction and at about
13.0 cm/s in the y-direction. If you divide dy/dt by dx/dt, the result is the slope
of the ellipse, dy/dx, at the given point.

 =  = –0.233...

Figure 4-7c

Note that although dx/dt and dy/dt have units
such as cm/s, dy/dx is dimensionless because the
units cancel.

A line with this slope at the point where t = 1 is
tangent to the graph (Figure 4-7c). The property
illustrated by this example is called the parametric
chain rule.
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 PROPERTY:  The Parametric Chain Rule

 If x and y are differentiable functions of t, then the slope of the xy-graph is

  

pendulum are

x = 50 cos 1.2t
 y = 30 sin 1.2t

which x and y both depend is called a parameter. The two equations, one
for x and one for y, are called parametric equations.

where x and y are in centimeters and t is time, in seconds. The variable t on



 EXAMPLE 1

dy/dx when t = 0.15. Show how your answer corresponds to the graph.

c.  Show that dy/dx is indeterminate when t = 0.5. Find, approximately, the
limit of dy/dx as t approaches 0.5. How does your answer relate to the
graph?

d.  Make a conjecture about what geometric figure the graph represents. Then
confirm your conjecture by eliminating the parameter t and analyzing the
resulting Cartesian equation.

e.  How do the range and domain of the parametric function relate to the
range and domain of the Cartesian equation in part d?

Solution

Figure 4-7d

a.  Figure 4-7d shows the graph as it might
appear on your grapher. The period for x is
2 /2  = 1; for y it is 2 /  = 2. Thus, a
minimal range is 0  t  4.

If you watch the graph being generated, you
will see that the points start at (3, 0), go
upward to the left, stop, retrace the path
through the point (3, 0), then go downward
to the left, eventually coming back to the
point (3, 0).

b.  = – 6  sin 2 t   and  = 5  cos t

t = 0.15   = ..= – 0.917...

As shown in Figure 4-7d, a tangent line to the graph at the point where
t = 0.15 has slope of about –1, which corresponds to the exact value of
–0.917... .

c.  t = 0.5   = , which is indeterminate. A graph of dy/dx

versus t (Figure 4-7e) shows a removable discontinuity at t = 0.5.

To find the limit of dy/dx more precisely, either zoom in on the
discontinuity or use the TABLE  feature. The limit appears to be
– 0.4166666... , which equals –5/12.
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Given:  x = 3 cos 2 t
 y = 5 sin t

a.  Plot the xy-graph. Use path style and a t-range that generates at least two
complete cycles of x and y. A t-step of 0.05 is reasonable. Sketch the result
and describe the behavior of the xy-graph as t increases.

b.  Find an equation for dy/dx in terms of t. Use the equation to evaluate



 

Figure 4-7e

0.498 –0.4166748...
0.499 –0.4166687...
0.500 undefined
0.501 –0.4166687...
0.502 –0.4166748...

d.  The graph appears to be a parabola. Eliminating the parameter t involves
solving one equation for t in terms of x (or y ) and substituting the result
into the other equation. Sometimes certain shortcuts will let you do this
more easily, as shown here.

x = 3 cos 2 t    and    y = 5 sin t The given parametric equations.

x = 3(1 – 2 sin2 t) The double argument property gets
cos 2 t  in terms of sin t , which appears
in the original parametric equation for y.

But  sin t = y/5. From the original parametric equations.

 x = 3[1 – 2(y/5)2] Substituting y/5 for sin t  eliminates
the parameter t .

x = –  y2 + 3 By algebra.

As conjectured, this is the equation of a parabola opening in the negative
x-direction.

e.  The Cartesian equation has domain x  3, which is unbounded in the
negative x-direction. The parametric graph stops at x = –3.

Second Derivative of a Parametric Function

Unfortunately, the parametric chain rule does not extend to second derivatives.
Example 2 shows you how to find a second derivative for a parametric function.

 EXAMPLE 2 Find for the parametric function:

x = t3

 y = e2t

Solution Use the parametric chain rule to differentiate.

Derivative of a quotient. Chain
rule on inside function t .
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t dy/dx



The dt/dx in the numerator can be factored out. Because dt/dx is the

You can generalize the second derivative from the results of Example 2, as
shown in this box.

Problem Set 4-7

Q1.  Differentiate:  y  = 0.2x1215

Q2.  Find 

Q3.  Find (x):  f(x) = x ln x

Q4.  Find : y = sin e5x

Q5.  Find ( y):  y = 

Q6.  Differentiate:  y = 

Q7.  Find ′   :   = cos–1 x

Q8.  If   (5) = –3, what can you conclude about
v(t) at t = 5?

Q9.  For Figure 4-7f, sketch the graph of .

Figure 4-7f

Q10.  If  (7) = 4, which of these can you conclude
about u(x) at x = 8?
A.  u is continuous at x = 8.
B.  u is differentiable at x = 8.
C.  u has a limit as x approaches 8.
D.  All of A, B, and C
E.  None of A, B, and C
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Quick Review

 PROPERTY:   Second Derivative of a Parametric Function

 If x = u and y = v, where u and v are twice-differentiable functions of  t, then

  

 where the derivatives of u and v  are with respect to t.

reciprocal of dx/dt, you can divide by dx/dt, which equals 3t2, making the
denominator (3t2)3.



For Problems 1 and 2, find 

the equations

x = 2 + t
 y = 3 – t2

a.  Make a table of values of x and y for each
integer value of t from –3 through 3.

b.  Plot the graph of this function on graph
paper, using the points found in part a.

c.  Find dy/dx when t = 1. Show that the line
through the point (x, y) from part a, with
slope dy/dx, is tangent to the graph at that
point.

d.  Eliminate the parameter t  and show that the
resulting Cartesian equation is that of a
parabola.

e.  Find dy/dx by direct differentiation of the
equation in part d. Show that the value of
dy/dx calculated this way is equal to the
value you found in part c using the
parametric chain rule.

4.  Semicubical Parabola Problem: A parametric
function has the equations

x = t2

 y = t3

a.  Make a table of values of x and y  for each
integer value of t from –3 through 3.

b.  Plot the graph of this function on graph
paper, using the points found in part a.

c.  Find dy/dx when t = 1. Show that the line
through the point (x, y) from part a, with
slope dy/dx, is tangent to the graph at that
point.

d.  Eliminate the parameter t. Find y in terms
of x. From the result, state why this graph is
called a semicubical parabola.

e.  Find dy/dx by direct differentiation of the
equation in part d. Show that the value of
dy/dx calculated in this way is equal to the
value you found in part c by using the
parametric chain rule.

5.  Ellipse Problem: The ellipse in Figure 4-7g has
the parametric equations

x = 3 cos t
 y = 5 sin t

Figure 4-7g

a.  Confirm by grapher that these equations
give the graph in Figure 4-7g.

b.  Find an equation for dy/dx.
c.  Evaluate the point (x, y) when t = /4, and

find dy/dx when t = /4. On a copy of
Figure 4-7g, draw a line at this point (x, y)
that has slope dy/dx. Is the line tangent to
the graph?

d.  Determine whether this statement is true or
false: When t = /4, the point (x, y) is on a
line through the origin that makes a
45-degree angle with the x- and y-axes.

e.  Use your equation for dy/dx from part b to
find all the points where the tangent line is
vertical or horizontal. Show these points on
your graph.

f.  Eliminate the parameter t and thus confirm
that your graph actually is an ellipse. This
elimination can be done by cleverly applying
the Pythagorean property for sine and cosine.
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and .

1.  x = t4

 y = sin 3t

2.  x = 6 ln t
 y = t3

3.  Parabola Problem: A parametric function has



6.  Astroid Problem: The star-shaped curve in

Figure 4-7h

a.  Confirm by grapher that these equations
give the graph in Figure 4-7h.

b.  Find an equation for dy/dx.
c.  Evaluate the point (x, y) when t = 1, and find

dy/dx when t = 1. On a copy of Figure 4-7h,
draw a line at this point (x, y) that has slope
dy/dx. Is the line tangent to the graph?

d.  At each cusp, dy/dx has the indeterminate
form 0/0. Explain the difference in behavior
at the cusp at the point (8, 0) and at the
cusp at the point (0, 8).

e.  Eliminate the parameter t. To do this
transformation, solve the two equations for
the squares of cos t and sin t in terms of x
and y, then use the Pythagorean property
for sine and cosine.

7.  Circle Problem: A parametric function has the
equations

x = 6 + 5 cos t
 y = 3 + 5 sin t

a.  Plot the graph of this function. Sketch the
result.

b.  Find an equation for dy/dx in terms of t.
c.  Find a value of t that makes dy/dx equal

zero. Find a value of t that makes dy/dx
infinite. Show a point on the graph for which
dy/dx is infinite. What is true about dx/dt

and about dy/dt at a point where dy/dx is
infinite?

d.  Eliminate the parameter t. To do this,
express the squares of cosine and sine in
terms of x and y, then apply the
Pythagorean property for sine and cosine.

e.  From the equation in part d, you should be
able to tell that the graph is a circle. How
can you determine the center and the radius
of the circle just by looking at the original
equations?

8.  Line Segment Problem: Plot the graph of the
parametric function

x = cos2 t
 y = sin2 t

Show that dy/dx is constant. How does this
fact correspond to what you observe about
the graph? Confirm your observation by
eliminating the parameter to get an
xy-equation. Describe the difference in domain
and range between the parametric function and
the xy-equation.

9.  Deltoid Problem: The graph shown in
Figure 4-7i is called a deltoid. The parametric
function of this deltoid is

x = 2 cos t + cos 2t
 y = 2 sin t – sin 2t

Figure 4-7i

a.  Confirm by grapher that these equations
give the deltoid in Figure 4-7i.

b.  Find an equation for dy/dx in terms of t.
c.  Show that at two of the cusps, the tangent

line is neither horizontal nor vertical, yet the
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Figure 4-7h is called an astroid. Its parametric
equations are

x = 8 cos3 t
 y = 8 sin3 t



derivative dy/dx fails to exist. Find the limit
of dy/dx as t approaches the value at the
cusp in Quadrant II.

Agnesi (1718–1799), has the equations

x = 2a tan t
 y = 2a cos2 t

where a is a constant.
a.  Figure 4-7j shows a curve for which a = 3.

Confirm by grapher that these equations, for
a = 3, give the graph in Figure 4-7j.

Figure 4-7j

b.  Find dy/dx in terms of t.
c.  Eliminate the parameter to get an equation

for y in terms of x.
d.  Differentiate the equation in part c to get an

equation for dy/dx in terms of x.
e.  Show that both equations for dy/dx give the

same answer at t = /4, and that a line
through the point where t = /4 with this
value of dy/dx as its slope is tangent to the
curve.

11.  Involute Problem: A string is wrapped around a
circle with radius 1 in. As the string is
unwound, its end traces a path called the
involute of a circle (Figure 4-7k). The
parametric equations of this involute are

x = cos t + t sin t
 y = sin t – t cos t

where t is the number of radians from the
positive x-axis to the radius drawn to the point
of tangency of the string.

Figure 4-7k

a.  Use your grapher to confirm that these
parametric equations give the graph shown
in Figure 4-7k.

b.  Find dy/dx in terms of t. Simplify as much
as possible.

c.  Show that the value you get for dy/dx at
t =  is consistent with the graph.

12.  Clock Problem: A clock sits on a shelf close to a
wall (Figure 4-7l). As the second hand turns, its
distance from the wall, x, and from the shelf,
 y, both in centimeters, depend on the number
of seconds, t, since the second hand was
pointing straight up.

Figure 4-7l

a.  Write parametric equations for x and y in
terms of t.

b.  At what rates are x and y changing when
t = 5 s?

c.  What is the slope of the circular path traced
by the second hand when t = 5 s?

d.  Confirm that the path really is a circle by
finding an xy-equation.
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10.  Witch of Agnesi Problem: The Witch of Agnesi,
named for Italian mathematician Maria Gaetana



13.  Pendulum Experiment: Suspend a small mass
from the ceiling on the end of a nylon cord.
Place metersticks on the floor, crossing them
at the point below which the mass hangs at
rest, as shown in Figure 4-7m. Determine the
period of the pendulum by measuring the time
for 10 swings. Then start the pendulum in an
elliptical path by pulling it 30 cm in the
x-direction and pushing it sideways just hard
enough for it to cross the y-axis at 20 cm. Write
parametric equations for the path this
pendulum traces on the floor. Predict where
the pendulum will be at time t = 5 s and
place a coin on the floor at that point. (Lay
the coin on top of a ruler tilted at an angle
corresponding to the slope of the path at that
time.) Then set the pendulum in motion again.
How close do your predicted point and slope
come to those you observe by experiment?

Figure 4-7m

The Foucault pendulum at
the Griffith Observatory in
Los Angeles, California

14.  Spring Problem: Figure 4-7n shows a “spring”
drawn by computer graphics. Find equations
for a parametric function that generates this
graph. How did you verify that your equations
are correct? Use your equations to find values
of x and y at which the graph has interesting
features, such as horizontal or vertical
tangents and places where the graph seems
to cross itself.

Figure 4-7n

15.  Lissajous Curves: You can make a pendulum
swing with different periods in the x- and
 y-directions. The parametric equations of
the path followed by the pendulum can have
the form

x = cos nt
 y = sin t

where n is a constant. The resulting paths are
called Lissajous curves, or sometimes
Bowditch curves. In this problem you will
investigate some of these curves.

a.  Figure 4-7o shows the Lissajous curve with
the parametric equations

x = cos 3t
 y = sin t

Use your grapher to confirm that these
equations generate this graph.
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Figure 4-7o

b.  Plot the Lissajous curve with the equations

x = cos 4t
 y = sin t

Sketch the resulting curve. In what way do
the curves differ for n = 3 (an odd number)
and for n = 4 (an even number)?

c.  Sketch what you think these curves would
look like. Then plot the graphs on your
grapher. Do they confirm or refute your
sketches?
i.  x = cos 5t

 y = sin t

ii.  x = cos 6t
 y = sin t

d.  What two familiar curves are special cases of
Lissajous curves when n = 1 and n = 2?

Bowditch on the Internet or other source.
When and where did they live? Give the
sources you used.

4-8   Graphs and Derivatives
of Implicit Relations

If y equals some function of x, such as y = x2 + sin x, then there is said to be an
explicit relation between x and y. The word explicit comes from the same root
as the word explain. If x and y appear in an equation such as

x2 + y2 = 25

then there is an implicit relation between x and y because it is only “implied”
that y is a function of x. In this section you will see how to differentiate an
implicit relation without first solving for y in terms of x. As a result, you will be
able to prove that the power rule for derivatives works when the exponent is a
rational number, not simply an integer. In Section 3-9, you used implicit
differentiation to find the derivative of the natural logarithmic function. In
Section 4-5, you used it to find derivatives of the inverse trigonometric functions.
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e.  Look up Jules Lissajous and Nathaniel

OBJECTIVE Given the equation for an implicit relation, find the derivative of y with
respect to x, and show by graph that the answer is reasonable. 



 EXAMPLE 1

Figure 4-8a

Consider the implicit relation x2 + y2 = 25
plotted in Figure 4-8a.

a.  Explain why the graph is a circle.

b.  Differentiate implicitly to find dy/dx.

c.  Calculate the two values of y when
x = 3.

d.  Draw a line with slope dy/dx through
the point found in part c with the
lower value of y. How is this line
related to the graph?

Solution a.  The graph is a circle by the Pythagorean theorem. Because
x2 + y2 = 25 = 52, all points on the graph are five units from the origin,
implying that the graph is a circle.

b.  For simplicity, use for dy/dx.

2x + 2y = 0 The y ′ comes from the chain rule.

2y  = –2x

= 

c.  x = 3: 9 + y2 = 25
 y2 = 16  y = ± 4

d.  At the point (3, –4), slope =   =  = 0.75. The line goes through the

point (3, –4) and is tangent to the graph (Figure 4-8b).

Figure 4-8b

 EXAMPLE 2 Find dy/dx for the implicit relation  y4 + x3y5 – 2x7 = 13.
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Solution

Note that shows up as a result of the chain rule and is only to the first power,
so you can use relatively easy algebra to isolate .

4y3 + x3 · 5y4  = –3x2y5 + 14x6 Make sure all terms are on the
same side of the equation.

(4y3 + 5x3y4)  = –3x2y5 + 14x6

  = 

The solution to Example 2 expresses  in terms of both x and y, which is
acceptable because x and y are together in the original relation. Given a point
(x, y) on the graph, the expression above could be used to find . In practice, it
is usually harder to find a point on the graph than it is to do the calculus! So you
will work with problems like that in Example 2 mainly for practice in
differentiating.

 EXAMPLE 3 If  y = x7/3, prove that the power rule, which you proved for integer exponents,
gives the correct answer for .

Solution  y3 = x7 Cube both sides of the given equation.

3y2 = 7x6 Use the power rule to differentiate
implicitly with respect to x.

  = 

  = 

This is the answer you would get by directly applying the power rule using
fractional exponents, Q.E.D.
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 TECHNIQUE:   Implicit Differentiation

 To find dy/dx for a relation whose equation is written implicitly:

  
1.  Differentiate both sides of the equation with respect to x. Obey the chain
     rule by multiplying by dy/dx each time you differentiate an expression
     containing y.

  
2.  Isolate dy/dx by getting all of the dy/dx terms onto one side of the
     equation, and all other terms onto the other side. Then factor, if
     necessary, and divide both sides by the coefficient of dy/dx.

For simplicity, use for dy/dx. Be on the lookout for places where you’ll need
to use the product rule. Of course, you must also obey the chain rule wherever y
appears as an inside function.

4y3 + 3x2y5 + x3 · 5y4 – 14x6 = 0



In the following problem set you will prove, in general, the property shown in

Q1.  Differentiate:  y = x2001

Q2.  Differentiate:  y = 2001x

Q3.  (x2 – 5x)/(x – 5) = —?—

Q4.  Differentiate:  f(u) = cot u

Q5.  A definite integral is a —?— of  x and  y.

Q6.  y = tan–1 3x   = —?—

Q7.  If  dy/dx = 3x2, what could y equal?

Q8.  A derivative is an —?—.

Q9.  Sketch the derivative of the function graphed in
Figure 4-8c.

Figure 4-8c

Q10.  If the position x(t), in feet, of a moving object is
given by x(t) = t sin t, what is the acceleration of
the object when t = 3 s?

For Problems 1–20, differentiate implicitly to find 
in terms of x and y.

1.  x3 + 7y4 = 13

2.  3x5– y4 = 22

3.  x ln y = 104

4.  yex = 213

5.  x + xy + y = sin 2x

6.  cos xy = x – 2y

7.  x0.5– y0.5 = 13

8.  x1.2 + y1.2 = 64

9.  exy = tan y

10.  ln xy = tan–1 x

11.  (x3y4)5 = x – y

12.  (xy)6 = x + y

13.  cos2 x + sin2 y = 1

14.  sec2 y – tan2 x = 1

15.  tan xy = xy

16.  cos xy = xy

17.  sin y = x

18.  cos y = x

19.  csc y = x

20.  cot y = x

21.  Derive the formula for  if y = cos–1 x by
writing the given function as cos y = x, then
differentiating implicitly with respect to x.
Transform the answer so that  is expressed
as an algebraic function of x.

22.  Derive the formula for  if y = ln x by writing
the given equation as ey = x, then
differentiating implicitly with respect to x.
Transform the answer so that  is expressed
as an algebraic function of x.

23.  If y = x11/5, prove that the power rule for
powers with integer exponents gives the
correct answer for .

24.  Derivative of a Rational Power: Suppose that
 y = xn, where n = a/b for integers a and b.
Write the equation y = xa/b in the form yb = xa.
Then use the power rule for integer exponents
to prove that the power rule also works for
rational constant exponents.
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Example 3. You will also use implicit differentiation to verify the results you
obtained by differentiating parametric functions in the preceding section.

Problem Set 4-8

Quick Review



25.  Circle Problem: Consider the circle

Figure 4-8d

a.  Show that the point (–6, 8) is on the graph.
b.  Evaluate dy/dx at the point (–6, 8). Explain

why your answer is reasonable.
c.  Show that the parametric equations

x = 10 cos t
 y = 10 sin t

give the same value for dy/dx at the
point (x, y) = (–6, 8).

26.  Hyperbola Problem: Consider the hyperbola
x2 – y2 = 36 (Figure 4-8e).

Figure 4-8e

a.  Show that the point (10, –8) is on the graph.
b.  Evaluate dy/dx at the point (10, –8). Explain

why your answer is reasonable.
c.  Show that the parametric equations

x = 6 sec t
 y = 6 tan t

give the same value for dy/dx at x = 10.

27.  Cubic Circle Problem: Figure 4-8f shows the
cubic circle

x3 + y3 = 64

Figure 4-8f

a.  Find dy/dx at the points where x = 0, x = 2,
and x = 4. Show that your answers are
consistent with the graph.

b.  Find dy/dx at the point where y = x.
c.  Find the limit of dy/dx as x approaches

infinity.

d.  Why do you suppose this graph is called a
cubic circle?

28.  Ovals of Cassini Project: Figure 4-8g shows the
ovals of Cassini,

[(x – 6)2 + y2][(x + 6)2 + y2] = 1200

Figure 4-8g

In 1680, Italian astronomer Giovanni Domenico
Cassini (1625–1712) used these figures for the
relative motions of Earth and the Sun.
a.  Find the two values of dy/dx when x = 8.

Show that your answers are reasonable.
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x2 + y2 = 100 (Figure 4-8d).



b.  Find the four x-intercepts. What does dy/dx

find an equation for y2 explicitly in terms
of x. Use this equation to duplicate
Figure 4-8g.

d.  Replace the number 1200 in the original
equation with the number 1400, then plot
the graph. In what way or ways does this
graph differ from the one shown in
Figure 4-8g?

e.  Show that for any point on the graph,
the product of its distances from the
points (6, 0) and (–6, 0) is constant.

An interpretation from 1661 of Earth revolving
around the Sun

4-9   Related Rates

With parametric functions you analyzed rates of two variable quantities that
depended on a third variable such as time. With implicit differentiation you
found derivatives without first having to solve explicitly for one variable in
terms of the other. In this section you will use these techniques together to find
rates of two or more variable quantities whose values are related.

 EXAMPLE 1

Figure 4-9a

An airplane is flying 600 mi/h on a horizontal
path that will take it directly over an observer.
The airplane is 7 mi high (Figure 4-9a).

a.  Write an equation for the rate of change of
the line-of-sight distance, z, in miles,
between the observer and the airplane in
terms of the horizontal displacement, x, in
miles, from observer to airplane.

b.  Plot dz/dt as a function of x. Sketch the
result.

c.  How fast is z changing when x is 10 mi? When x is –5 mi (that is, 5 mi
beyond the observer)? Interpret the answers.

d.  Interpret the graph in part b when x = 0 and when |x| is very large.
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OBJECTIVE Given a situation in which several quantities vary, predict the rate at which
one of them is changing when you know other related rates. 

seem to be at these points? Confirm your
conclusion for the largest intercept.

c.  Starting with the original equation on the
previous page, use the quadratic formula to



Solution

z2 = x2 + 72 Find a relationship between x and z
(Pythagorean theorem).

2z = 2x Differentiate implicitly with respect
to t. Remember the chain rule!

By algebra and the Pythagorean
theorem.

Figure 4-9b

b.  Figure 4-9b shows the graph of dz/dt.

c.  When x = 10, dz/dt = –491.539... , meaning that the distance is decreasing
at about 492 mi/h. When x = –5, dz/dt = 348.742... , which means that the
distance is increasing at about 349 mi/h.

d.  At x = 0, the airplane is directly overhead. Although it is still moving at
600 mi/h, the distance between the airplane and the observer is not
changing at that instant. So, dz/dt = 0, as shown by the graph. For large
values of |x| the rate approaches 600 mi/hr, the speed of the airplane.
This happens because z and x are very nearly equal when the plane is
far away.

 EXAMPLE 2 Suppose you are drinking root beer from a conical paper cup. The cup has
diameter 8 cm and depth 10 cm. As you suck on the straw, root beer leaves the
cup at the rate of 7 cm3/s. At what rate is the level of the liquid in the cup
changing

a.  When the liquid is 6 cm deep?

b.  At the instant when the last drop leaves the cup?

Solution a.

Figure 4-9c

The secret to getting started is drawing an
appropriate diagram, then identifying the
known rate and the wanted rate. Figure 4-9c
shows a cross section through the cup. Since
the level of the liquid varies, you should label
the depth with a variable, even though you are
looking for the rate when the depth is 6 cm.
Let y = number of cm deep. Let x = number
of cm radius of liquid surface.

Know: = –7 cm3/s Want: 

V =  x2y Volume of a cone.
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a.  You know the rate of change of x with respect to time t, and you want the
rate of change of z. So the key to this problem is establishing a relationship
between z and x. Here’s how.

Know:  = –600

Want: 

the observer.
The airplane is getting closer to



By the properties of similar triangles, you can express x in terms of y, and

Find a general formula before
you substitute particular values.

 –0.39 cm/s

Note that the rate is negative, consistent with the fact that the volume is
decreasing as time increases.

b.  At the instant the last drop leaves the cup, y = 0. Substituting y = 0 into
the equation for dy/dt you found in part a leads to division by zero. So
the liquid level is changing infinitely fast!

The techniques for working related-rates problems like those in Examples 1
and 2 are summarized in this box.

Problem Set 4-9

Q1.  (xy2) = —?—

Q2.  Name the technique you used in Problem Q1.

Q3.  Name a property of derivatives you used
in Problem Q1.

Q4.  Name another property of derivatives you used
in Problem Q1.

Q5.  If velocity and acceleration are both negative, is
the object speeding up or slowing down?

Q6.  If  dy/dx is negative, then y is getting —?—.

Q7.  If  y = x cos x, then  = —?—.

Q8.  If  y = ln x, then  dy/dt  = —?—.

Q9.  If  y = xe–x, then  = —?—.
Q10.  If  f(x) = sin x, then ( ) =

A. 1 B. 0.5 C. 0 D. –0.5 E. –1
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 = 0.3868...

 TECHNIQUE:    Related-Rates Problems

   •  Write the given rate(s) and the rate(s) you are asked to find as derivatives.

   •  Write an equation that relates the variables that appear in the given and
      desired rates.

   •  Differentiate implicitly with respect to time, then solve for the desired rate.

   •  Answer the question asked in the problem statement.

Quick Review

thus reduce the problem to the two variables whose rates you know or want.

  x = 0.4y

 V =  (0.4y)2 ( y) =  y3



1.  Bacteria Spreading Problem: Bacteria are

equals 3 mm? Describe the way dr/dt changes
with the radius of the circle.

2.  Balloon Problem: Phil blows up a spherical
balloon. He recalls that the volume is (4/3) r3.
Find dV/dt as a function of r and dr/dt. To
make the radius increase at 2 cm/s, how fast
must Phil blow air into the balloon when r = 3?
When r = 6? Plot the graph of dV/dt as a
function of r under these conditions. Sketch
the result and interpret the graph.

3.  Ellipse Problem: Recall that the area of an
ellipse is A = ab, where a and b are the
lengths of the semiaxes (Figure 4-9d). Suppose
that an ellipse is changing size but always
keeps the same proportions, a = 2b. At what
rate is the length of the major axis changing
when b = 12 cm and the area is decreasing at
144 cm2/s?

Figure 4-9d

4.  Kinetic Energy Problem: The kinetic energy of a
moving object equals half the product of its
mass and the square of its velocity.

K =  mV2

As a spaceship is fired into orbit, all three of
these quantities vary. Suppose that the kinetic
energy of a particular spaceship is increasing
at a constant rate of 100,000 units per second
and that mass is decreasing at 20 kg/s because
its rockets are consuming fuel. At what rate is
the spaceship’s velocity changing when its
mass is 5000 kg and it is traveling at 10 km/s?

5.  Base Runner Problem: Milt Famey hits a line
drive to center field. As he rounds second base,
he heads directly for third, running at 20 ft/s
(Figure 4-9e). Write an equation expressing the
rate of change of his distance from home plate
as a function of his displacement from third
base. Plot the graph in a suitable domain. How
fast is this distance changing when he is
halfway to third? When he is at third? Is the
latter answer reasonable? Explain.

Figure 4-9e

6.  Tugboat Problem: A tugboat moves a ship up to
the dock by pushing its stern at a rate of 3 m/s
(Figure 4-9f). The ship is 200 m long. Its bow
remains in contact with the dock and its stern
remains in contact with the pier. At what rate is
the bow moving along the dock when the stern
is 120 m from the dock? Plot the graph of this
rate as a function of the distance between the
stern and the dock.

Figure 4-9f

7.  Luke and Leia’s Trash Compactor Problem: Luke
and Leia are trapped inside a trash compactor
on the Death Star (Figure 4-9g). The side walls
are moving apart at 0.1 m/s, but the end walls
are moving together at 0.3 m/s. The volume of
liquid inside the compactor is 20 m3, a
constant.
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growing in a circular colony one bacterium
thick. The bacteria are growing at a constant
rate, thus making the area of the colony
increase at a constant rate of 12 mm2/h. Find
an equation expressing the rate of change of
the radius as a function of the radius, r, in
millimeters, of the colony. Plot dr/dt as a
function of r. How fast is r changing when it



Figure 4-9g

compactor.
b.  When the side walls are 5 m long and the

end walls are 2 m long, is the depth of liquid
increasing or decreasing? At what rate?

8.  Darth Vader’s Problem: Darth Vader’s
spaceship is approaching the origin along the
positive y-axis at 50 km/s. Meanwhile, Han
Solo’s spaceship is moving away from the
origin along the positive x-axis at 80 km/s.
When Darth is at y = 1200 km and Han is at
x = 500 km, is the distance between them
increasing or decreasing? At what rate?

9.  Barn Ladder Problem: A 20-ft-long ladder in a
barn is constructed so that it can be pushed up
against the wall when it is not in use. The top
of the ladder slides in a track on the wall, and
the bottom is free to roll across the floor on
wheels (Figure 4-9h). To make the ladder easier
to move, a counterweight is attached to the top
of the ladder by a rope over a pulley. As the
ladder goes away from the wall, the
counterweight goes up and vice versa.

Figure 4-9h

a.  Write an equation expressing the velocity of
the counterweight as a function of the
distance the bottom of the ladder is from

the wall and the velocity at which the bottom
of the ladder moves away from the wall.

b.  Find the velocity of the counterweight when
the bottom is 4 ft from the wall and is being
pushed toward the wall at 3 ft/s.

c.  If the ladder drops all the way to the floor
with its bottom moving at 2 ft/s and its top
still touching the wall, how fast is the
counterweight moving when the top just
hits the floor? Surprising?

10.  Rectangle Problem: A rectangle of length L and
width W has a constant area of 1200 in.2. The
length changes at a rate of dL/dt  inches per
minute.
a.  Find dW/dt in terms of W and dL/dt.
b.  At a particular instant, the length is

increasing at 6 in./min and the width is
decreasing at 2 in./min. Find the dimensions
of the rectangle at this instant.

c.  At the instant in part b, is the length of the
diagonal of the rectangle increasing or
decreasing? At what rate?

11.  Conical Water Tank Problem:  The water tank
shown in Figure 4-9i has diameter 6 m and
depth 5 m .

Figure 4-9i

a.  If the water is 3 m deep, and is rising at
5 m/h, at what rate is the volume changing?

b.  If the water is pumped out at 2 m3/h, at
what rate is the depth changing
i.  When the water is 4 m deep?
ii.  When the last drop is pumped out?

c.  If water flows out under the action of
gravity, the rate of change in the volume is
directly proportional to the square root of
the water’s depth. Suppose that its volume
V is decreasing at 0.5 m3/h when its depth
is 4 m.
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a.  Write an equation expressing the rate of
change of depth of the liquid in terms of the
width and length of the region inside the



i.  Find dV/dt in terms of the depth of the

by 6 ft/min. At the same time, the light is being
refocused, making the radius increase by
7 ft/min. At the instant when the altitude is
3 ft and the radius is 8 ft, is the volume of the
cone increasing or decreasing? How fast?

Figure 4-9j

13.  Planetary Motion Problem: On August 27, 2003,
Mars was at its closest position to Earth. It then
receded at an increasing rate (Figure 4-9k). In
this problem you will analyze the rate at which
the distance between the two planets changes.
Assume that the orbits of the two planets are
both circular and are both in the same plane.
The radius of Earth’s orbit is 93 million mi and
the radius of Mars’ orbit is 141 million mi.
Assume also that the speed each planet moves
along its orbit is constant. (This would be true
if the orbits were exactly circular.) Mars orbits

Figure 4-9k

the Sun once each 687 Earth-days. The Earth, of
course, orbits once each 365 Earth-days. Answer
the following questions.

a.  What are the angular velocities of Earth and
Mars about the Sun in radians per day? What
is their relative angular velocity? That is,
what is d /dt?

b.  What is the period of the planets’ relative
motion? On what day and date were the two
planets next at their closest position?

c.  Write an equation expressing the distance, D,
between the planets as a function of  .

d.  At what rate is D changing today? Convert
your answer to miles per hour.

e.  Will D be changing its fastest when the
planets are 90 degrees apart? If so, prove it.
If not, find the angle  at which D is
changing fastest. Convert the answer to
degrees.

f.  Plot the graph of D versus time for at least
two periods of the planets’ relative motion.
Is the graph a sinusoid?

software such as The Geometer’s Sketchpad®

to construct a segment AB that connects the
origin of a coordinate system to a point on the
graph of y = e0.4x, as shown in Figure 4-9l.
Display the length of  . Then drag point B on
the graph. Describe what happens to the length
of    as B moves from negative values of x to
positive values of x. If you drag B in such a way
that x increases at 2 units/s, at what rate is
the length of  changing at the instant
x = –5? At x = 2? At what value of x does the
length of AB stop decreasing and start
increasing? Explain how you arrived at your
answer.

Figure 4-9l
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14.  SketchpadTM Project: Use dynamic geometry

water.
ii.  Find dV/dt  when the water is 0.64 m

deep.
iii.  Find the rate of change of depth when the

water is 0.64 m deep.

12.  Cone of Light Problem: A spotlight shines on
the wall, forming a cone of light in the air
(Figure 4-9j). The light is being moved closer to
the wall, making the cone’s altitude decrease



4-10   Chapter Review and Test

•  The one most important thing you have
learned by studying Chapter 4

•  Which boxes you’ve been working on in your
“define, understand, do, apply” table

•  Key terms, such as parametric function,
implicit differentiation, and differentiability

•  Surprising properties, such as the product
rule and the parametric chain rule

•  Ways in which you’ve used graphs, tables,
algebra, and writing to understand concepts

•  Any ideas about calculus that you’re still
unclear about

R1.  Let x = g(t) = t3 and y = h(t) = cos t.
a.  If f(t) = g(t) · h(t), show by counterexample

that (t) does not equal (t) · (t).

b.  If f(t) = g(t)/h(t), show by counterexample
that (t) does not equal (t)/  (t ).

c.  Show by example that dy/dx equals
(dy/dt)/(dx/dt).

R2.  a.  State the product rule.
b.  Prove the product rule, using the definition

of derivative.

c.  Differentiate and simplify.
i.  f(x) = x7 ln 3x

ii.  g(x) = sin x cos 2x
iii.  h(x) = (3x – 7)5(5x + 2)3

iv.  s(x) = x8e–x

d.  Differentiate f(x) = (3x + 8)(4x + 7) in two
ways.
i.  As a product of two functions

ii.  By multiplying the binomials, then
differentiating

Show that your answers are equivalent.

R3.  a.  State the quotient rule.

b.  Prove the quotient rule, using the definition
of derivative.

c.  Differentiate and simplify.

i.  f(x) = 

ii.  g(x) = 

iii.  h(x) = (100x3– 1)–5

d.  Differentiate y = 1/x10 as a quotient and as
a power with a negative exponent. Show that
both answers are equivalent.

e.  Find (x) if t(x) = (sin x)/(cos x). Use the
result to find (1).

f.  Using t(x) given in part e, plot the difference
quotient [t(x) – t(1)]/(x – 1), using a
window centered at x = 1, with x = 0.001.
(Enter t(1) as (sin 1)/(cos 1) to avoid
rounding errors.) Sketch the result. Show
that the difference quotient approaches  (1)
by tracing the graph and making a table
of values for several x-values on either
side of 1.
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In this chapter you have learned more techniques for differentiating functions
algebraically. You can now differentiate products, quotients, parametric
functions, and implicit relations.

These techniques enabled you to differentiate all six trigonometric functions and
their inverses, prove that the power rule for derivatives works for non-integer
exponents, and analyze complicated geometrical figures and related rates.

Review Problems

R0.  Update your journal with what you’ve learned
since your last entry. Include such things as



R4.  a.  Differentiate.

and the fact that the derivative is equal to
the square of a function.

d.  Suppose that  f(t) = 7 sec t. How fast is  f(t)
changing when t = 1? When t = 1.5? When
t = 1.57? How do you explain the dramatic
increase in the rate of change of  f(t) even
though t doesn’t change very much?

R5.  a.  Differentiate.
i.  y = tan–1 3x

ii.  (sec–1x)

iii.  c(x) = (cos–1 x)2

b.  Plot the graph of f(x) = sin–1 x. Use a
friendly window that includes x = –1 and
x = 1 as grid points, and the same scales on
both axes. Sketch the graph. Then use the
algebraic derivative to explain how (0) and

(1) agree with the graph, and why (2) is
undefined.

R6.  a.  State the relationship between
differentiability and continuity.

b.  Sketch a graph for each function described.
i.  Function f is neither differentiable nor

continuous at x = c.
ii.  Function f is continuous but not

differentiable at x = c.
iii.  Function f is differentiable but not

continuous at x = c.
iv.  Function f is differentiable and

continuous at x = c.

c.  Let  f(x) =
x2 + 1, if x < 1
–x2 + 4x – 1,   

i.  Sketch the graph.
ii.  Show that f is continuous at x = 1.
iii.  Is f differentiable at x = 1? Justify your

answer.

d.  Let g(x) =
sin–1 x, if 0  x  1
x2 + ax + b,   

Use one-sided limits to find the values of the
constants a and b that make g differentiable
at x = 0. Confirm your answer by graphing.

R7.  a.  For this parametric function, find  

and 

x = e2t
 y = t3

b.  Figure 4-10a shows the spiral with the
parametric equations

x = (t/ ) cos t
 y = (t/ ) sin t

Figure 4-10a

Write dy/dx in terms of t. The graph
appears to pass vertically through the point
(6, 0). Does the graph contain this point? If
not, why not? If so, is it really vertical at that
point? Justify your answer.

c.  Ferris Wheel Problem: Figure 4-10b shows a
Ferris wheel of diameter 40 ft. Its axle is 25 ft
above the ground. (The same Ferris wheel
appeared in Problem 1of Problem Set 3-8.)

Figure 4-10b
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if x  1

if x < 0

i.  y = tan 7x
ii.  y = cot x4

iii.  y = sec ex

iv.  y = csc x
b.  Derive the property  x = –csc2 x.
c.  Plot the graph of y = tan x. Make a

connection between the slope of the graph



The seat shown is a distance y(t) from the

or down? How fast? How can you determine
these facts? When t = 0, is the seat moving
to the left or to the right? How fast? How can
you determine this? What is the first positive
value of t for which dy/dx is infinite?

R8.  a.  Given y = x8/5, transform the equation so
that it has only integer exponents. Then
differentiate implicitly with respect to x,
using the power rule, which you know works
for powers with positive integer exponents.
Show that the answer you get for this way
is equivalent to the answer you get by using
the power rule directly on y = x8/5.

b.  Find dy/dx: y3 sin xy = x4.5.

c.  Cissoid of Diocles Problem: The cissoid of
Diocles in Figure 4-10c has the equation
4y2– xy2 = x3. (The word cissoid is Greek
for “ivylike.”) In Curves and Their Properties
(National Council of Teachers of
Mathematics, 1974), Robert C. Yates reports
that the Greek mathematician Diocles
(ca. 250–100 B.C.E.) used cissoids for finding
cube roots.
i.  Find dy/dx when x = 2. Show that your

answers are reasonable.

ii.  Find dy/dx at the point (0, 0). Interpret
your answer.

iii.  Find the vertical asymptote.

Figure 4-10c

R9.  Rover’s Tablecloth Problem: Rover grabs the
tablecloth and starts backing away from the
table at 20 cm/s. A glass near the other end of
the tablecloth (Figure 4-10d) moves toward the
edge and finally falls off. The table is 80 cm
high, Rover’s mouth is 10 cm above the floor,
and 200 cm of tablecloth separate Rover’s
mouth from the glass. At the instant the glass
reached the table’s edge, was it going faster or
slower than Rover’s 20 cm/s? By how much?

Figure 4-10d

Concept Problems

C1.  Historical Problem: Newton’s Method: Suppose
you are trying to find a zero (an x-intercept) of
function f , and you can’t solve the equation
 f(x) = 0 by using algebra. English
mathematician Isaac Newton (1642–1727) is
credited with finding a way to solve such
equations approximately by using derivatives.
This process is called Newton’s method.
Figure 4-10e shows the graph of function f for

which a zero is to be found. Pick a convenient
value x = x0 close to the zero. Calculate
 y0 = f(x0). The tangent line to the graph of f at
that point will have slope m = (x0). If you
extend this tangent line to the x-axis, it should
cross at a place x1 that is closer to the desired
zero than your original choice, x0. By repeating
this process, you can find the zero to as many
decimal places as you like!
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ground and x(t) out from the axle, both in
feet. The seat first reaches a high point
when t = 3 s. The wheel makes 3 rev/min.
Given that x and y vary sinusoidally with
time, t, as the Ferris wheel rotates clockwise,
write parametric equations for x and y in
terms of t. When t = 0, is the seat moving up



Figure 4-10e

a.  Let m be the slope of the tangent line at the
point (x0, y0). Write an equation for the
tangent line.

b.  The point (x1, 0) is on the tangent line.
Substitute these coordinates for x and y in
the equation from part a. Use the result to
show that x1 = x0– (y0 /m).

c.  If a tangent line is drawn at (x1, y1), it will
cross the x-axis at x2. Explain why

x2 = x1 – 

d.  Write a program that uses the equation from
part c to calculate values of x iteratively. The
equation for f(x) can be stored in the
Y = menu. You can use the numerical
derivative feature to calculate the value of

(x). The input should be the value of x0.
The program should allow you to press
ENTER, then read the next value of x. Test the
program on f(x) = x2– 9x +14. Start with
x0 = 1, then again with x0= 6.

e.  Use the program to find the three zeros of
g(x) = x3 – 9x2 + 5x + 10. Compare your
answers with those you get using your
grapher’s built-in solver feature.

f.  The equation of the graph in Figure 4-10e is
 f(x) = sec x – 1.1. Use Newton’s method to
estimate the zero shown in the figure. If you
start with x0 = 1, how many iterations, n,
does it take to make xn +1 indistinguishable
from xn  on your calculator?

C2.  Speeding Piston Project: A car engine’s
crankshaft is turning 3000 revolutions per
minute (rpm). As the crankshaft turns in the
xy-plane, the piston moves up and down inside
the cylinder (Figure 4-10f). The radius of the
crankshaft is 6 cm. The connecting rod is
20 cm long and fastens to a point 8 cm below
the top of the piston. Let y be the distance
from the top of the piston to the center of the
crankshaft. Let  be an angle in standard
position measured from the positive x-axis
and increasing as the crankshaft rotates
counterclockwise.

Figure 4-10f

a.  Write an equation expressing y in terms of
. The law of cosines is helpful here.

b.  Find an equation for the rate of change of y
with respect to t in terms of  and d /dt.

c.  Find an equation for the acceleration of the
piston. Remember that d /dt is a constant
because the engine is turning at a constant
3000 rpm.

d.  Between what two values of  is the piston
turning down with an acceleration greater
than that of gravity (980 cm/s2)?
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Chapter
Test

Show how the quotient rule follows from this
complex fraction by multiplying, then taking
the limit.

T3.  Use the quotient rule and the fact that
cot x = (cos x)/(sin x) to prove that

 x = –csc2 x.

T4.  Use the definition of the inverse trigonometric
functions and appropriate trigonometry and
calculus to show that

 y = sin–1 x   = 

T5.  For this function, find  and .

x = t2

 y = t4

PART 2: Graphing calculators allowed (T6–T24)

T6.  Is the function c(x) = cot 3x increasing or
decreasing when x = 5? At what rate?

T7.  If f(x) = sec x, find (2). Show that the

difference quotient approaches

(2) by making a table of values for each 0.001
unit of x from x = 1.997 through x = 2.003.

T8.  Sketch the graph of a function that has all of
these features.

•  The value f(–2) = 7.
•  The function f(x) increases slowly at x = –2.

•  The value f(1) is positive, but f(x) decreases
rapidly at x = 1.

•  The function f(x) is continuous at x = 2 but
is not differentiable at that point.

T9.  Use the most time-efficient method to prove
that the general linear function, f(x) = mx + b,
is continuous for every value of x = c.

For Problems T10–T15, find the derivative.

T10.  f(x) = sec 5x

T11.  y = tan7/3 x
T12.  f(x) = (2x – 5)6(5x – 1)2

T13.  f(x) = 

T14.  x = sec 2t
 y = tan 2t3

T15.  y = 4 sin–1 (5x3)

T16.  Rotated Ellipse Problem:  Figure 4-10g shows the
graph of

9x2– 20xy + 25y2– 16x + 10y – 50 = 0

Figure 4-10g

The figure is an ellipse that is rotated with
respect to the x- and y-axes. Evaluate dy/dx at
both points where x = –2. Show that each
answer is reasonable.

T17.  Let  f(x) =
x3 + 1, if x  1
a(x – 2)2 + b,    if x > 1

Use one-sided limits to find the values of the
constants a and b that make function f
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  = 

PART 1: No calculators allowed (T1–T5)

T1.  Write the power rule for derivatives. That is,
write  if y = uv, where u and v are
differentiable functions of x.

T2.  In deriving the quotient rule for derivatives,
where y = u/v, you encountered



sides implicitly with respect to x using the
power rule with positive integer exponents.
Show that the answer you get for  this way is
equivalent to the one you get using the power
rule directly on y = x7/3.

Airplane Problem: For Problems T19–T23, an
airplane is flying level at 420 mi/h, 5 miles above
the ground (Figure 4-10h). Its path will take it
directly over an observation station on the ground
(see figure). Let x be the horizontal distance, in
miles, between the plane and the station, and let  
be the angle, in radians, to the line of sight.

Figure 4-10h

T19.  Show that  = cot –1 

T20.  Find: 

T21.  If t is time in hours, what does dx/dt  equal?

T22.  Find d /dt  as a function of x. Plot the graph
on your grapher and sketch the result.

T23.  Where is the plane when  is changing fastest?

T24.  What did you learn as a result of taking this
test that you did not know before?
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differentiable at x = 1. Show that the limits of
 f(x) as x approaches 1 from the right and from

not differentiable at x = 1.

T18.  Let y = x7/3. Raise both sides to the third
power, getting y3 = x7, and differentiate both

the left can equal each other but that f is still
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Cable cars travel the steep streets of San Francisco. For every 100 ft
the car goes horizontally, it might rise as much as 20 ft vertically.
The slope of the street is a derivative, dy/dx, a single quantity. The
differentials dy and dx can be defined separately in such a way
that their ratio is the slope. These differentials play a crucial role in
the definition, computation, and application of definite integrals.

Definite and
Indefinite Integrals



Mathematical Overview
In your study of calculus so far, you have learned that a definite
integral is a product of x and y, where y varies with x. In
Chapter 5, you will learn the formal definition of definite integral,
that an indefinite integral is an antiderivative, and that the two are
related by the fundamental theorem of calculus. You will gain this
knowledge in four ways.

The icon at the top of each even- 
numbered page of this chapter shows
how you can analyze a definite
integral by slicing a region into
vertical strips.

 x          f(x)       Integral

1.0          5             0.0
1.5          8             2.5
2.0        10             7.0
·            ·                ··            ·                ·
·            ·                ·

cos x dx = sin 4 – sin 1, the fundamental theorem

Finally I found out why definite and indefinite integrals share a
name. Indefinite integrals can be used to calculate definite integrals
exactly. I also learned a way to analyze many different problems
involving the product of x and y by slicing the region under the graph
into vertical strips.

Graphically

Numerically

Algebraically

Verbally
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Exploratory Problem Set 5-1

 f(x) = 20 + 0.000004x2

Figure 5-1a
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5-1   A Definite Integral Problem
So far you have learned three of the four concepts of calculus. In this chapter
you will learn about the fourth concept—indefinite integral—and why its name
is so similar to that of definite integral. In this section you will refresh your
memory about definite integrals.

Oil Well Problem: An oil well that is 1000 ft deep is
to be extended to a depth of 4000 ft. The drilling
contractor estimates that the cost in dollars per
foot, f(x), for doing the drilling is

where x is the number of feet below the surface at
which the drill is operating. Figure 5-1a shows an
accurate graph of function f.

1.  How much does it cost per foot to drill at
     1000 ft? At 4000 ft? Why do you suppose the
     cost per foot increases with increasing depth?
2.  The actual cost of extending the well is given
     by the definite integral of f(x) with respect to x
     from x = 1000 to x = 4000. Estimate this

integral by finding T6, the trapezoidal rule sum
found by dividing the interval [1000, 4000] into
six strips of equal width. Will this estimate be
higher than the actual value or lower? How can
you tell?

3.  Estimate the cost again, this time estimating
     the integral by using rectangles whose
     altitudes are measured at the midpoint of each
     strip (that is, f(1250), f(1750), f(2250), and so
     on). The sum of the areas of these rectangles is
     called a Riemann sum, R6. Is R6 close to T6?
4.  The actual value of the integral is the limit of
   
     as n becomes infinite. Find T100 and T500. Based
     on the answers, make a conjecture about the
     exact value of the integral.
5.  Let g(x) be an antiderivative of f(x). Find an
     equation for g(x). Use the equation to evaluate
     the quantity g(4000) – g(1000). What do you
     notice about the answer? Surprising? Write
     another name for antiderivative.
6.  Find these antiderivatives.
     a.  f(x) if (x) = 7x6

     b.  y if  = sin x

     c.  u if  = e2x

     d.  v if  = (4x + 5)7

  Tn, the trapezoidal rule sum with n increments,

Work the problems in this section, on your own or with your study group, as
an assignment after your last test on Chapter 4.

OBJECTIVE



5-2   Linear Approximations and Differentials

fits the graph of a function at the point of tangency (Figure 5-2a).

Figure 5-2a

OBJECTIVE Given the equation of a function f and a fixed point on its graph, find an
equation of the linear function that best fits the given function. Use this
equation to find approximate values of f(x) and values of the differentials
dx and dy.

If function f is differentiable at the point x = c, then it is also locally linear
there. As Figure 5-2a shows, the tangent line, (x), is almost indistinguishable
from the curved graph when x is close to c. You can see this clearly by zooming
in on the point (c, f(c)). The tangent line and the curved graph seem to merge.

Example 1 shows you how to find the particular equation of the tangent line at a
given point and illustrates that it is a good approximation of the function for
values of x close to that point.

For f(x) = 15 – x3, find the particular equation for (x), the linear function
whose graph is tangent to the graph of f at the fixed point (2, 7). Show
graphically that f is locally linear at x = 2. Show numerically that (x) is a close
approximation to f(x) for values of x close to 2 by calculating the error in the
approximation (x)  f(x).

Solution  f(2) = 15 – 23 = 7, so the point (2, 7) is on the graph of f.
(x) = –3x2 (2) = –12,  so the line  has slope m = –12.

(x) –7 = –12(x – 2) Point -slope form of the linear equation.

(x) = 7 – 12(x – 2) Solve explicitly for (x).
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  EXAMPLE 1

In Section 5-1, you saw a connection between definite integrals and indefinite

The ratio dy  dx is the slope of the tangent line, the linear function that best
in the symbol for derivative and that will also appear in the symbol for integral.
quantities. In this section you will define the differentials dx and dy that appear
integrals. So far you have not learned mathematical symbols for these



Figure 5-2b shows f and  before and after zooming in on the point (2, 7). The

Figure 5-2b

This table shows that the linear function fits the graph of f perfectly at x = 2
and has small but increasing errors for values of x farther from 2.

x  f(x
)

(x) Error  =  f(x) – (x)

1.9 8.141 8.2 –0.059
1.95 7.585125 7.6 –0.014875
1.99 7.119401 7.12 –0.000599
2 7 7 0
2.01 6.879399 6.880 –0.000601
2.05 6.384875 6.4 –0.015125
2.1 5.739 5.8 –0.061

Notice the parts of the linear equation (x) = 7 – 12(x – 2) from Example 1
that show up in Figure 5-2b.

•  2 is the value of x = c at the fixed point.
•  7 is f(2), the value of f(c) at the fixed point.
•  –12 is f ′ (2), the value of the derivative at the fixed point.
•  (x – 2) is the differential dx, the horizontal displacement of x from the

•  The quantity –12(x – 2) is the differential dy, the vertical displacement from
the fixed point to the point on the tangent line (the linear function graph).

These properties are summarized in this box.
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graph of f becomes indistinguishable from the tangent line, illustrating local
linearity.

If f is differentiable at x = c, then the linear function, (x), containing (c, f(c))
and having slope (c) (the tangent line) is a close approximation to the graph
of f for values of x close to c.

PROPERTIES:  Local Linearity and Linearization of a Function

(x) = f(c) + (c) dx    or    (x) = f(c) + dy
(x) = f(c) + (c) (x – c)    or, equivalently,

fixed point.

Linearizing a function f means approximating the function for values of x
close to c using the linear function



Figure 5-2c

Example 2 shows you how to use dy to approximate y.

If f(x) = sin x, write an equation for the linear functionl (x) that best fits at
x = 1. Use the linear function to approximate f(1.02). What is the error in the
approximation? What are the values of dx, dy, x, and y? Sketch a graph that
shows these quantities and the error.

Solution  f(1) = sin 1 = 0.84147...

  (x) = (sin 1) + (cos 1)(x – 1)    (x) = f(c) + (c)(x – c)
  y = 0.84147... + 0.54030... (x – 1)

If x = 1.02,
then (x) = 0.84147... + 0.54030... (1.02 – 1) = 0.852277030...
 f(1.02) = sin 1.02 = 0.852108021...

 error = sin 1.02 – 0.852277030... = –0.000169008...

y = sin 1.02 – sin 1 = 0.01063703...  dy   

Figure 5-2d illustrates the differentials dx and dy and shows their relationship
to x and y. The error is equal to y – dy.
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  EXAMPLE 2

Note that the differentials dx and dy are related to the quantities x and y
that you have used in connection with derivatives. Figure 5-2c shows that dx is a
change in x, the same as x. The differential dy is the corresponding change in
 y along the tangent line, whereas y is the actual change in y along the curved
graph of f. The figure also shows the error between the actual value of f(x) and
the linear approximation of f(x).

 (x) = cos x  (1) = cos 1 = 0.54030...

Small error.
1.02 is close to 1.

dx = 1.02 – 1 = 0.02
dy = (cos 1)(0.02) = 0.01080604...
x = dx = 0.02



 

Figure 5-2d

To find a differential algebraically in one step, multiply the derivative by dx.
Examples 3 and 4 show you how to do this and how to interpret the answer in
terms of the chain rule.

If y = e3x cos x, find dy.

Note that finding a differential of a given function is comparable to using the
chain rule. In Example 3, you can think of x as the inside function. So, to find the
differential of a function, you multiply the derivative by the differential of the
inside function.
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  EXAMPLE 3

Solution

  EXAMPLE 4

Solution

dy = (3e3x cos x – e3x sin x) dx Multiply the derivative by dx.

= e3x (3 cos x – sin x) dx

If y = ln (tan 5x), find dy.

dy =             (5 sec2 5x dx) The quantity (5 sec2 5x dx) is the
differential of the inside function.

The definitions and some properties of dx and dy are given in this box.

DEFINITION AND PROPERTIES:  Differentials

Algebraically: The differentials dx and dy are defined as

dx = x
dy =  (x) dx

Verbally: Multiply the derivative by the differential of the inside function.



Divide both sides of the given equation by dx.

Thought process:
It looks as if someone differentiated (3x + 7)6.
But the differential of (3x + 7)6 is
6(3x + 7)5 · 3 · dx, or 18(3x + 7)5 dx.
So the function must be only 1/18 as big
as (3x + 7)6, and the answer is

Why is + C needed?

definite integral.

Q2.  Write the physical meaning of derivative.
Q3.  Differentiate: f(x) = 2–x

Q4.  Find the antiderivative: y′ = cos x

Q5.  If y = tan t where y is in meters and t is in
seconds, how fast is y changing when t = /3 s?

Q6.  Find lim if f(x) = sec x.
Q7.  Find lim  sec x.

Q8.  What is the limit of a constant?
Q9.  What is the derivative of a constant?

Q10.  If lim  g(x) = g(c), then g is —?— at x = c.
A.  Differentiable
B.  Continuous
C.  Undefined
D.  Decreasing

E.  Increasing

1.  For f(x) = 0.2x4, find an equation of the linear
function that best fits f at x = 3. What is the

error in this linear approximation of f(x) if
x = 3.1? If x = 3.001? If x = 2.999?

2.  For g(x) = sec x, find an equation of the linear
function that best fits g at x = /3. What is the
error in this linear approximation of g(x) if
dx = 0.04? If dx = –0.04? If dx = 0.001?

3.  Local Linearity Problem I: Figure 5-2e shows the
graph of f(x) = x2 and the line tangent to the
graph at x = 1.

Figure 5-2e

a.  Find the equation of this tangent line, and
plot it and the graph of f on the same
screen. Then zoom in on the point of
tangency. How does your graph illustrate
that function f is locally linear at the point
of tangency?
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Notes: dy  dx is equal to (x)

  EXAMPLE 5

Solution

Problem Set 5-2

 = (3x + 7)5

 y =  (3x + 7)6 + C

Q1.   Sketch a graph that illustrates the meaning of

The differential dy is usually not equal to y.
y = f(x + x) – f(x)

Example 5 shows you how to find the antiderivative if the differential is given.

Given dy = (3x + 7)5 dx, find an equation for the antiderivative, y.

Quick Review



b.  Make a table of values showing f(x), the

 f(x) = x2 – 0.1(x – 1)1/3

Explore the graph for x close to 1. Does the
function have local linearity at x = 1? Is f
differentiable at x = 1? If f  is differentiable at
x = c, is it locally linear at that point? Is the
converse of this statement true or false?
Explain.

Figure 5-2f

5.  Steepness of a Hill Problem: On roads in hilly
areas, you sometimes see signs like this.

Steep hill
20% grade

The grade of a hill is the slope (rise/run)
written as a percentage, or, equivalently, as the
number of feet the hill rises per hundred feet
horizontally. Figure 5-2g shows the latter
meaning of grade.

Figure 5-2g

a.  Let x be the grade of a hill. Explain why the
angle,  degrees, that a hill makes with the
horizontal is given by

b.  Find an equation for d  in terms of x
and dx. Then find d  in terms of dx for
grades of x = 0%, 10%, and 20%.

c. You can estimate  at x = 20% by simply
multiplying d  at x = 0 by 20. How much
error is there in the value of  found by
using this method rather than by using the
exact formula that involves the inverse
tangent function?

d.  A rule of thumb you can use to estimate the
number of degrees a hill makes with the
horizontal is to divide the grade by 2. Where
in your work for part c did you divide by
approximately 2? When you use this method
to determine the number of degrees for
grades of 20% and 100%, how much error is
there in the number?

6.  Sphere Expansion Differential Problem: The
volume of a sphere is given by V =  where
r is the radius. Find dV in terms of dr for a
spherical ball bearing with radius 6 mm. If the
bearing is warmed so that its radius expands to
6.03 mm, find dV and use it to find a linear
approximation of the new volume. Find the
actual volume of the warmed bearing by
substituting 6.03 for r. What does V equal?
What error is introduced by using dV instead
of V to estimate the volume?

7.  Compound Interest Differential Problem: Lisa
Cruz invests $6000 in an account that pays 5%
annual interest, compounded continuously.
a.  Lisa wants to estimate how much money she

earns each day, so she finds 5% of 6000 and
divides by 365. About how much will she
earn the first day?
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value of y on the tangent line, and the error
 f(x) – y for each 0.01 unit of x from 0.97 to
1.03. How does the table illustrate that
function f is locally linear at the point of
tangency?

4.  Local Linearity Problem II: Figure 5-2f shows
the graph of



b.  The actual amount of money, m, in dollars,

the first 30 days? The first 60 days?

c.  Use the equation in part b to find m for the
first 1 day, 30 days, and 60 days. How does
the linear approximation m  t dm
compare to the actual value,

m = (m – 6000), as t increases?

table of sunrise times from the U.S. Naval
Observatory (http://aa.usno.navy.mil/ ), the
time of sunrise in Chicago for the first few
days of March 2003 was changing at a rate of
dS / dt  –1.636 minutes per day. For March 1,
the table lists sunrise at 6:26 a.m. However,
no equation is given explaining how the table
was computed.

a.  Write the differential dS as a function of dt.
Use your result to estimate the times of
sunrise 10 days and 20 days later, on
March 11 and March 21. How do your
answers compare to the tabulated times
of 6:10 a.m. and 5:53 a.m., respectively?

b.  Explain why dS would not give a good
approximation for the time of sunrise on
September 1, 2003.

For Problems 9–26, find an equation for the
differential dy.

9.  y = 7x3

10.  y = –4x11

11.  y = (x4 + 1)7

12.  y = (5 – 8x)4

13.  y = 3x2 + 5x – 9

14.  y = x2 + x + 9

15.  y = e–1.7x

16.  y = 15 ln x1/3

17.  y = sin 3x
18.  y = cos 4x
19.  y = tan3 x
20.  y = sec3 x
21.  y = 4x cos x
22.  y = 3x sin x

23.  y = 

24.  y = 

25.  y = cos (ln x)

26.  y = sin (e0.1x)
For Problems 27–40, find an equation for the
antiderivative y.

27.  dy = 20x3 dx

28.  dy = 36x4 dx

29.  dy = sin 4x dx

30.  dy = cos 0.2x dx

31.  dy = (0.5x – 1)6 dx

32.  dy = (4x + 3)–6 dx

33.  dy = sec2 x dx

34.  dy = csc x cot x dx

35.  dy = 5 dx

36.  dy = –7 dx

37.  dy = (6x2 + 10x – 4)dx

38.  dy = (10x2 – 3x + 7)dx

39.  dy = sin5 x cos x dx    (Be clever!)

40.  dy = sec7 x tan x dx    (Be very clever!)

For Problems 41 and 42, do the following.
a.  Find dy in terms of dx.
b.  Find dy for the given values of x and dx.
c.  Find y for the given values of x and dx.
d.  Show that dy is close to y.

41.  y = (3x + 4)2(2x – 5)3, x = 1,  dx = –0.04

42.  y = sin 5x,  x = /3,  dx = 0.06
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8.  Sunrise Time Differential Problem: Based on a

in the account after the time, t, in days, is
given by

m = 6000e(.05/365)t

Find dm in terms of t and dt. Does dm give
you about the same answer as in part a for
the first day, starting at t = 0 and using
dt = 1? How much interest would the
differential dm predict Lisa would earn in



5-3   Formal Definition of Antiderivative

antiderivative is also called an indefinite integral. The word indefinite is used
because there is always a “+ C” whose value is not determined until an initial
condition is specified.

In this section you will learn the symbol that is used for an indefinite integral or
an antiderivative.

In Section 5-2, you worked problems such as “If dy = x5 dx, find y.” You can
consider indefinite integration, which you now know is the same thing as
antidifferentiation, to be the operation performed on a differential to get the
expression for the original function. The integral sign used for this operation is
a stretched-out S, as shown here.

As you will see in Section 5-4, the S shape comes from the word sum. To indicate
that you want to find the indefinite integral of x5 dx, write

 x5 dx

The whole expression, x5 dx, is the integral. The function x5 “inside” the
integral sign is called the integrand. These words are similar, for example, to the
words radical, used for the expression , and radicand, used for the number 7
inside. Note that although dx must appear in the integral, only the function x5 is
called the integrand.

Writing the answer to an indefinite integral is called evaluating it or integrating.
Having seen the techniques of Section 5-2, you should recognize that

 x5 dx = x6 + C

From this discussion, you can understand the formal definition.
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RELATIONSHIP:  Antiderivative and Indefinite Integral
Indefinite integral is another name for antiderivative.

antiderivative by using this symbol to evaluate indefinite integrals.
Become familiar with the symbol used for an indefinite integral or anOBJECTIVE

and Indefinite Integral
You have learned that an antiderivative is a function whose derivative is given.
As you will learn in Section 5-6, the antiderivative of a function provides an
algebraic way to calculate exact definite integrals. For this reason an



To develop a systematic way of integrating, knowing some properties of
indefinite integrals, like those shown below, is helpful.

 5 cos x dx and (x5 + sec2 x – x) dx

= 5  cos x dx = x5 dx + sec2 xdx– xdx

= 5 sin x + C = x6 + tan x –  x2 + C

In the first case, 5, a constant, can be multiplied by the answer to cos x dx.
In the second case, the integral of each term can be evaluated separately and
the answers added together. The “only if” part of the definition of indefinite
integral means that all you have to do to prove these facts is differentiate the
answers. Following is a proof of the integral of a constant times a function
property. You will prove the integral of a sum property in Problem 35 of
Problem Set 5-3.

If k stands for a constant, then  k f(x) dx = k  f(x) dx.

Let g(x) = k   f(x) dx.

Then  (x) = k · Derivative of a constant times a
function.

= k f(x) Definition of indefinite integral
(the “only if” part).

 g(x) =  k f(x) dx Definition of indefinite integral
(the “if” part).

    k f(x) dx = k  f(x) dx, Q.E.D Transitive property of equality.
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Notes: An indefinite integral is the same as an  antiderivative. The symbol  is
an operator, like cos or the minus sign, that acts on f(x) dx.

An equivalent equation for (x) = f(x) is  f(x) dx = f(x).

DEFINITION:  Indefinite Integral

  PROPERTY

Proof

Integral of a Constant Times a Function and
of a Sum of Several Functions

g(x) =   f(x) dx if and only if  (x) = f(x)

That is, an indefinite integral of f(x) dx is a function whose derivative is f(x).
The function f(x) inside the integral sign is called the integrand.
Verbally: The expression  f(x) dx is read “The integral of f(x) with respect to x.”



Be sure you don’t read too much into these properties! You can’t pull a variable
through the integral sign. For instance,

The integral of the equation on the right is x sin x + C. Its differential is
(sin x + x cos x) dx, not x cos x dx. The integral x cos x dx is the integral of a
product of two functions. Recall that the derivative of a product does not equal
the product of the derivatives. In Section 9-2, you will learn integration by parts,
a technique for integrating the product of two functions.

There is a relationship between the differential, dx, at the end of the integral
and the argument of the function in the integrand. For example,

 cos x dx = sin x + C

It does not matter what letter you use for the variable.

 cos r dr = sin r + C

 cos t dt = sin t + C

 cos u du = sin u + C

The phrase “with respect to” identifies the variable in the differential that
follows the integrand function. Note that in each case dx, dr, dt, or du is the
differential of the argument (or inside function) of the cosine. This observation
provides you with a way to integrate some composite functions.

Evaluate:  5 cos (5x + 3) dx

 cos (5x + 3)(5 dx) Commute the 5 on the left, and associate it with dx.

= sin (5x + 3) + C The differential of the inside function, 5x + 3, is 5 dx.

From Example 1, you can see that in order to integrate the cosine of a function
of x, everything inside the integral that is not a part of the cosine (in this case,
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Two Properties of Indefinite Integrals

 k f(x) dx = k  f(x) dx

Verbally: You can pull a constant multiplier out through the integral sign.

Integral of a Sum of Two Functions: If f and g are functions that can be
integrated, then

Verbally: Integration distributes over addition.

[ f(x) + g(x)] dx =  f(x) dx +  g(x) dx

 x cos x dx    does not equal    x  cos x dx

The “dx” in an Indefinite Integral

  EXAMPLE 1

Solution

Integral of a Constant Times a Function: If f is a function that can be
integrated and k is a constant, then



5 dx) must be the differential of the inside function (the argument of the cosine,

This is the integral of the ninth power function. If dx were the differential of the
inside function, 7x + 4, then the integral would have the form

 un du

Transform the integral to make dx the differential of (7x + 4). Your work will
then look like this.

Multiply by 1, using the form (1/7)(7).

Associate 7 dx, the differential of the inside function.
Commute 1/7.

Integral of a constant times a function. (Pull 1/7 out
through the integral sign.)

Integrate the power function, un du.

Once you understand the process you can leave out some of the steps, thus
shortening your work. Example 2 makes use of the integral of a power property,
which reverses the steps in differentiating a power.

Notes:

•  In order for the property to apply, the differential du must be the
differential of the inside function (the base of the power). If it is not, you
must transform the integral so that it is.

•  The reason for n  –1 is to avoid division by zero.
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  EXAMPLE 2

Solution

Evaluate: (7x + 4)9 dx

 (7x + 4)9 dx

PROPERTY:  Integral of the Power Function

For any constant n  –1 and any differentiable function u,

Verbally: To integrate a power, increase the exponent by 1, then divide by the
new exponent (and add C ).

in this case 5x + 3). If it is not, you must transform the integral so that it is. In
Example 2, you’ll see how to do this.



of the exponential must be the differential of the inside function (in this case,
the exponent). The differential of the inside function is –2 dx. Because –2 is a
constant, you can multiply inside the integral by –2 and divide outside the
integral by –2.

= –0.5e–2x + C
The result of Example 3 is summarized in this box.

Note: Anything inside the integral sign that is not part of the exponential must
be the differential of the inside function (the exponent). If it is not, you must
transform the integral so that it is.

Evaluate: 5x dx

Recall that if y = 5x, then dy = 5x ln 5 dx. Because ln 5 is a constant, you can
transform this new problem into a familiar problem by multiplying by ln 5 inside
the integral and dividing by ln 5 outside the integral.

From Example 4, you can see a relationship between differentiating an
exponential function and integrating an exponential function.

Section 5-3:   Formal Definition of Antiderivative and Indefinite Integral © 2005 Key Curriculum Press 201

  EXAMPLE 3

Solution

 e–2x dx =   e–2x (–2dx) Make the differential of the inside function.

PROPERTY:  Integral of the Natural Exponential Function
If u is a differentiable function, then

eu du = eu + C

  EXAMPLE 4

Solution

 5x dx

Get the familiar 5x ln 5 dx inside the integral sign.

Write the antiderivative.

Verbally: The natural exponential function is its own integral (plus C).

In order to integrate the natural exponential function, everything that is not part

Evaluate:  e–2x dx



Q7.  Integrate: cos x dx

Q8.  Differentiate: y = cos x

Q9.  (sin j)/(j) = —?—

Q10.  If the graph of a function seems to merge with
its tangent line as you zoom in, the situation
illustrates —?—.
A.  Continuity
B.  Differentiability
C.  Definition of derivative
D.  Definition of differential
E.  Local linearity

For Problems 1–32, evaluate the indefinite integral.

3.   4x–6 dx 4.   9x–7 dx

5.   cos x dx 6.   sin x dx

7.   4 cos 7x dx 8.   20 sin 9x dx

9.   5e0.3x dx 10.   2e–0.01x dx

11.   4m dm 12.   8.4r dr

13.   (4v + 9)2 dv 14.   (3p + 17)5 dp

15.   (8 – 5x)3 dx 16.   (20 – x)4 dx

17.   (sin x)6 cos x dx 18.   (cos x)8 sin x dx

19.   cos4  sin  d 20.   sin5  cos  d

21.   (x2 + 3x – 5)dx 22.   (x2 – 4x + 1)dx

23.   (x2 + 5)3 dx 24.   (x3 – 6)2 dx
(Beware!) (Beware!)

25.   esec x sec x tan x dx

27.   sec2 x dx 28.   csc2 x dx

29.   tan7 x sec2 x dx 30.   cot8 x csc2 x dx

31.   csc9 x cot x dx 32.   sec7 x tan x dx

33.  Distance from Velocity Problem: As you drive
along the highway, you step hard on the
accelerator to pass a truck (Figure 5-3a).
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PROPERTY:  Derivative and Integral of Base-b Exponential Functions

Problem Set 5-3
Quick Review

1.   x10 dx

26.   etan x sec2 x dx

2.   x20 dx

Given y = bx where b stands for a positive constant, b  1,

To differentiate, multiply bx by ln b.
To integrate, divide bx by ln b (and add C ).

Note: The reason for b  1 is to avoid division by zero.

Q1.  Find the antiderivative: 3x2 dx

Q2.  Find the indefinite integral: x5 dx

Q3.  Find the derivative: y = x3

Q4.  Find the derivative, : y = 3x

Q5.  Find the differential, dy: y = 3x

Q6.  Find the second derivative, : y = (1/6)x6

Figure 5-3a



Assume that your velocity v(t), in feet per

34.  Definite Integral Surprise! Figure 5-3b shows
the region that represents the definite integral
of f(x) = 0.3x2 + 1 from x = 1 to x = 4.

Figure 5-3b

a.  Evaluate the integral by using the
trapezoidal rule with n = 100 increments.

b.  Let g(x) =  f(x) dx. Integrate to find an
equation for g(x).

c.  Evaluate the quantity g(4) – g(1). What is
interesting about your answer?

35.  Integral of a Sum Property: Prove that if f and g
are functions that can be integrated, then
[f(x) + g(x)] dx =  f(x) dx + g(x) dx.

36.  Integral Table Problem: Calvin finds the
formula x cos x dx = x sin x + cos x + C in a
table of integrals. Phoebe says, “That’s right!”
How can Phoebe be sure the formula is right?

velocity of a moving object is given by
v(t) = t2 + 10

where v(t) is in feet per minute and t is in
minutes. Figure 5-3c shows the region that
represents the integral of v(t) from t = 1 to
t = 4. Thus the area of the region equals the
distance traveled by the object. In this problem
you will find the integral, approximately, by

dividing the region into rectangles instead of
into trapezoids. The width of each rectangle
will still be t, and each rectangle’s length will
be v(t) found at the t-value in the middle of the
strip. The sum of the areas of these rectangles
is called a Riemann sum.

Figure 5-3c

a.  Use a Riemann sum with n = 3 strips, as
shown in Figure 5-3c, to find an
approximation for the definite integral of
v(t) = t2 + 10 from t = 1 to t = 4.

b.  Use a Riemann sum with n = 6 strips, as in
Figure 5-3d, to find another approximation
for the definite integral. The altitudes of the
rectangles will be values of v(t) for t at the
midpoints of the intervals, namely, t = 1.25,
t = 1.75, t = 2.25, t = 2.75, t = 3.25, and
t = 3.75. The widths of the strips are, of
course, t = 0.5.

Figure 5-3d
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37.  Introduction to Riemann Sums: Suppose the

second, is given by

v(t) = 40 + 5

where t is the number of seconds since you
started accelerating. Find an equation for D(t),
your displacement from the starting point, that
is, from D(0) = 0. How far do you go in the 10 s
it takes to pass the truck?



e.  How far did the object travel between
t = 1 min and t = 4 min? What was its
average velocity for that time interval?

38.  Journal Problem: Update your journal with
what you’ve learned. Include such things as

•  The one most important thing you’ve
learned since your last journal entry

•  The difference, as you understand it so far,
between definite integral and indefinite
integral

•  The difference between a differential and a
derivative

•  Any insight you may have gained about why
two different concepts are both named
integral, and how you gained that insight

•  Algebraic techniques you have learned for
finding equations for indefinite integrals

•  Questions you plan to ask during the next
class period

Recall that a definite integral is used for the product of f(x) and x, such as
(rate)(time), taking into account that f(x) varies. The integral is equal to the area
of the region under the graph of f, as shown in Figure 5-4a.

Figure 5-4a
Figure 5-4b

In Chapter 1, you learned that you can estimate this area by slicing the region
into strips whose areas you can approximate using trapezoids. As you saw in
Problem Set 5-1, you can also estimate the areas by Riemann sums  using
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5-4   Riemann Sums and the Definition
of Definite Integral

d.  Make a conjecture about the exact value of
the definite integral. Check your conjecture
by evaluating the integral using the
trapezoidal rule with n = 100 increments.

part b should be a better approximation of
the integral than that in part a.

c.  Explain why the Riemann sum you used in



rectangles instead of trapezoids. Figure 5-4b illustrates a Riemann sum for the

Figure 5-4b shows the region under the graph of function f from x = a to x = b
divided into n strips of variable width  x1,  x2,  x3, . . . (n = 6, in this case).
These strips are said to partition the interval [a, b] into n subintervals, or
increments. Values of x = c1, c2, c3, . . . , cn, called sample points, are picked, one
in each subinterval. At each of the sample points, the corresponding function
values f(c1), f(c2), f(c3), . . .  are the altitudes of the rectangles. The area of any
one rectangle is

Arect = f(ck) xk

where k = 1, 2, 3, . . . , n. The integral is approximately equal to the sum of the
areas of the rectangles.

Area       f(ck) xk

Note: A Riemann sum is an approximation of the definite integral of f(x) with
respect to x on the interval [a, b] using rectangles to estimate areas.
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OBJECTIVE Use Riemann sums and limits to define and estimate values of definite
integrals.

DEFINITIONS:  Riemann Sum and Its Parts

A partition of the interval [a, b] is an ordered set of n + 1 discrete points

a = x0 < x1 < x2 < x3 < · · · < xn = b

The partition divides the interval [a, b] into n subintervals of width

x1, x2, x3, . . . , xn

Sample points for a partition are points x = c1, c2, c3, . . . , cn, with one point in
each subinterval.

n subintervals and a given set of sample points is a sum of the form

Rn =      f(ck) xk

integral in Figure 5-4a. In this section you will use Riemann sums as the basis for
defining a definite integral.

This sum is called a Riemann sum (read “ree-mahn”) after German
mathematician G. F. Bernhard Riemann (1826–1866).

A Riemann sum Rn for a function f on the interval [a, b] using a partition with



A weaver uses thin strips of straw to create a straw

left endpoint, the midpoint, and the right endpoint of each subinterval,
respectively. In this text the partition points are usually chosen to give
increments of equal width, x, as in this figure. In this case “ x approaches
zero” is equivalent to “n approaches infinity.”

Figure 5-4c

A definite integral is defined in terms of Riemann sums. The symbol used is the
same as for an indefinite integral, but with the numbers a and b as subscript
and superscript, respectively. This symbol is read “the (definite) integral of f(x)
with respect to x from a to b.”

 f(x) dx Definite integral notation.

The definition of definite integral uses a lower Riemann sum, Ln, and an upper
Riemann sum, Un. As shown in Figure 5-4d, these sums use sample points at

206 © 2005 Key Curriculum Press Chapter 5:   Definite and Indefinite Integrals

mat. You can calculate the area of the mat by
adding up the areas of each strip in one direction.

Figure 5-4c illustrates a left Riemann sum, a midpoint Riemann sum, and a
right Riemann sum. As the names suggest, the sample points are taken at the



values of x where f(x) is the lowest or the highest in each subinterval, not

Figure 5-4d

A lower sum is a lower bound for the value of the integral, and an upper sum is
an upper bound. Therefore

If the lower and upper sums approach the same limit as the largest value of x
approaches zero, then the value of the integral is squeezed (recall the squeeze
theorem) to this common limit. When this happens, function f is integrable on
[a, b], and the common limit is defined as the definite integral.

The advantage of using Riemann sums to define definite integrals is that, if a
function is integrable, the limit of any Riemann sum, Rn, equals the value of the
integral. From the definition of upper and lower sums

Ln  Rn  Un

Now take the limit of the three members of the inequality.

For an integrable function, the left and right members of the inequality approach
the definite integral. By the squeeze theorem, so does the middle member.
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Ln   f(x) dx  Un

DEFINITIONS:  Definite Integral and Integrability
If the lower sums, Ln, and the upper sums, Un, for a function f on the interval
[a, b] approach the same limit as x approaches zero (or as n approaches
infinity in the case of equal-width subintervals), then f is integrable on [a, b].
This common limit is defined to be the definite integral of f(x) with respect to
x from x = a to x = b. The numbers a and b are called lower and upper limits
of integration, respectively. Algebraically,

provided the two limits exist and are equal.

necessarily at the end or middle of a subinterval.



For the integral,  dx, complete steps a and b.

a.  Find the lower sum L6, the upper sum U6, and the midpoint sum M6. Show
that M6 is between L6 and U6.

b.  Find the trapezoidal rule approximation, T6. Show that T6 is an
overestimate for the integral and that M6 is an underestimate.

a.  Figure 5-4e shows the graph of the integrand,  f(x) = 1/x, and rectangles for
each of three sums. With equal increments, x will equal (4 – 1)/6, or 0.5,
so each rectangle will have area f(c)(0.5) for the sample points x = c.
Because f(x) is decreasing on the interval [1, 4], the low point in each
subinterval is at the right side of the rectangle and the high point is at the
left side. Therefore L6 is equal to the right Riemann sum, and U6 is equal to
the left Riemann sum. The common factor x = 0.5 can be factored out of
each term.

Figure 5-4e

L6 = 0.5[f(1.5) + f(2) + f(2.5) + f(3) + f(3.5) + f(4)]
= 0.5(1/1.5 + 1/2 + 1/2.5 + 1/3 + 1/3.5 + 1/4) = 1.2178571...

U6 = 0.5[f(1) + f(1.5) + f(2) + f(2.5) + f(3) + f(3.5)]
= 0.5(1/1 + 1/1.5 + 1/2 + 1/2.5 + 1/3 + 1/3.5) = 1.5928571...

M6 = 0.5[f(1.25) + f(1.75) + f(2.25) + f(2.75) + f(3.25) + f(3.75)]
= 0.5(1/1.25 + 1/1.75 + 1/2.25 + 1/2.75 + 1/3.25 + 1/3.75)
= 1.3769341...

Observe that 1.2178571... < 1.3769341... < 1.5928571... , so M6 is between
L6 and U6.
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  EXAMPLE 1

PROPERTY:  Limit of a Riemann Sum

Solution

If f is integrable on [a, b] and if Rn is any Riemann sum for f on [a, b], then



b.  Using your trapezoidal rule program, you get T6 = 1.405357... .

the area, Q.E.D.

Figure 5-4f

In Example 1, part a, you saw that for a strictly decreasing function the lower
Riemann sum is equal to the right Riemann sum, and the upper Riemann sum is
equal to the left Riemann sum. For a strictly increasing function the opposite is
true: The lower Riemann sum is equal to the left Riemann sum, and the upper
Riemann sum is equal to the right Riemann sum. For a function that is not
strictly increasing or decreasing, finding the lower and upper Riemann sums can
be much more difficult.

Q1.  Differentiate: y = x sin x

Q2.  Integrate: sec2 x dx

Q3.  Differentiate: f(x) = tan x

Q4.  Integrate: x3 dx

Q5.  Differentiate: z = cos 7x

Q6.  Integrate: sin u du

Q7.  Find  (x2 – 2x – 15)/(x – 5).

Q8.  Sketch a function graph with a cusp at the
point (4, 7).

Q9.  Write the converse of this statement: If a = 2
and b = 3, then a + b = 5.

Q10.  The statement in Problem Q9 is true. Is the
converse true?

For Problems 1–6, calculate approximately the
given definite integral by using a Riemann sum
with n increments. Pick the sample points at the
midpoints of the subintervals.

1.  x2 dx, n = 6

2.  x3 dx, n = 8
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Problem Set 5-
4
Quick Review

As shown on the left in Figure 5-4f, each trapezoid will be circumscribed
about the corresponding strip and therefore will overestimate the area.
This happens because the graph is concave up, a property you will explore
in more detail in Chapter 8. As shown on the right in Figure 5-4f, the
midpoint sum rectangle leaves out more area of the strip on one side of the
midpoint than it includes on the other side and therefore underestimates



6.  cos x dx, n = 5

For Problems 7 and 8, calculate the Riemann sums
U4, L4, and M4, and the sum found by applying the
trapezoidal rule, T4. Show that M4 and T4 are
between the upper and lower sums.

7. tan x dx

8.  (10/x) dx

For Problems 9 and 10, tell whether a midpoint
Riemann sum and a trapezoidal rule sum will
overestimate the integral or underestimate it.
Illustrate each answer with a graph.

9.  ln x dx

11.  Sample Point Problem: Figure 5-4g shows the
graph of the sinusoid

h(x) = 3 + 2 sin x

Figure 5-4g

a.  At what values of x should the sample
points be taken to get an upper sum for the
integral of h on [0, 6] with n = 6?

b.  Where should the sample points be taken to
get a lower Riemann sum for the integral?

c.  Calculate these upper and lower sums.

12.  Program for Riemann Sums Problem: Write a
program to compute Riemann sums for a given

function. If you write the program on your
grapher, you can store the integrand as y1, just
as you did for the trapezoidal rule program.
You should be able to input a and b, the lower
and upper bounds of integration; n, the
number of increments to use; and p, the
percentage of the way through each subinterval
to take the sample point. For instance, for a
midpoint sum, p would equal 50. Test the
program by using it for Problem 7. If your
program gives you the correct answers for U4,
L4, and M4, you may assume that it is working
properly.

13.  Limit of Riemann Sums Problem: In Problem 1,
you evaluated

x2 dx

by using midpoint sums with n = 6. In this
problem you will explore what happens to
approximate values of this integral as n gets
larger.
a.  Use your programs to show that

L10 = 18.795, U10 = 23.295, M10 = 20.9775,
and T10 = 21.045.

b.  Calculate L100 and L500. What limit does Ln
seem to be approaching as n increases?

c.  Calculate U100 and U500. Does Un seem to be
approaching the same limit as Ln? What
words describe a function f(x) on the
interval [1, 4] if Ln and Un have the same
limit as n approaches infinity (and thus as

x approaches zero)?
d.  Explain why the trapezoidal sums are

always slightly greater than your
conjectured value for the exact integral and
why the midpoint sums are always less than
your conjectured value.

14.  Exact Integral of the Square Function by Brute
Force Project: In this problem you will find,
exactly, the integral x2 dx by calculating
algebraically the limit of the upper sums.
a.  Find, approximately, the value of the integral

by calculating the upper and lower Riemann
sums with 100 increments,  U100 and L100.
Make a conjecture about the exact value.
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10.  ex dx

3.  3x dx, n = 8

4.  2x dx, n = 6

5.  sin x dx, n = 5



b.  If you partition the interval [0, 3] into n

of the fifth increment, x = 5(3/n) and
 f(x) = [5(3/n)]2 (Figure 5-4h). Write
a formula for Un, an upper sum with
n increments.

d.  You can rearrange the formula you wrote in
part c by factoring out common factors,
leaving only the squares of the counting
numbers inside parentheses. From algebra
this sum is

12 + 22 + 32 + · · · + n2 = (n + 1)(2n + 1)

Use this information to write a closed
formula (no ellipsis: . . .) for Un. Confirm that
this formula gives the right answer for U100.

e.  Use the formula to predict U1000. Does Un
seem to be approaching the limit you
conjectured in part a?

f.  Find algebraically the limit of Un from part e
as n approaches infinity. This limit is the
definite integral of x2 from x = 0 to x = 3
and equals the exact area and integral.

15.  Exact Integral of the Cube Function Project: Find
the exact value of x3 dx. Use as a guide the
technique you used in Problem 14. Recall that
the sum of the cubes of the counting numbers
is given by

 k3 = 13 + 23 + 33 + 43 + · · · + n3 = 

500 ft

Figure 5-5a

Suppose that you go 500 ft in 10 s
as you slow down on a freeway
exit. Your average velocity for the
10-s time interval is 50 ft/s. It
seems reasonable to conclude that
sometime in that interval your
instantaneous velocity is also
equal to 50 ft/s (Figure 5-5a). In
this section you will learn the
mean value theorem, which states
conditions under which this
conclusion is true. You will also learn Rolle’s theorem and use it as a lemma to
prove the mean value theorem. In Section 5-8, you will see how the mean value
theorem leads to an algebraic method for finding exact definite integrals.
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Figure 5-4h

5-5   The Mean Value Theorem and
Rolle’s Theorem

subintervals, each one will be x = 3/n units
wide. The partition points will be at x equals

Which of these partition points would you
pick to find the upper sum?

c.  The y-values will be the values of f(x) at
these sample points, namely, the squares
of these numbers. For instance, at the end



The average velocity is the slope of the secant
line connecting two points on the graph. As
the figure shows, there is a time x = c
between the points a and b at which the
tangent line parallels the secant line. At this
point the instantaneous velocity, (c), equals
the average velocity.

The mean value theorem gives two sufficient
conditions for there to be an instantaneous
rate of change equal to the average rate from
x = a to x = b. First, the function is
differentiable for all values of x between a
and b. Second, the function is continuous at
the endpoints x = a and x = b, even if it is not differentiable there. You can
express these two hypotheses by saying that f is differentiable on the open
interval (a, b) and continuous on the closed interval [a, b]. Recall that continuity
on a closed interval requires only that the function have one-sided limits f(a)
and f(b) as x approaches a and b from within the interval. Recall also that
differentiability implies continuity, so differentiability on the interval (a, b)
automatically gives continuity everywhere except, perhaps, at the endpoints.
The function graphed in Figure 5-5b is differentiable on the interval (a, b) but
not at x = a, because the tangent line is vertical there.

Note: The value (c) is the mean value from which the theorem gets its name,
because (c) is the mean of the derivatives on the interval [a, b].

The two conditions in the “if” part are the hypotheses of the mean value
theorem. The “then” part is the conclusion. The left and center graphs of
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Learn the mean value theorem and Rolle’s theorem, and learn how to find the

equals the average rate of change.
point in an interval at which the instantaneous rate of change of the function

OBJECTIVE

Figure 5-5b

PROPERTY:  The Mean Value Theorem
If   1.  f is differentiable for all values of x in the open interval (a, b), and

2.  f is continuous for all values of x in the closed interval [a, b],
then there is at least one number x = c in (a, b) such that

Let f(x) be your displacement as you exit the freeway. As shown in Figure 5-5b,
your average velocity from time x = a to x = b is displacement divided by time.

Average velocity = 



 

Figure 5-5c

Rolle’s Theorem
The proof of the mean value theorem uses as a lemma another theorem from
the analysis of real numbers, Rolle’s theorem. Named after 17th-century French
mathematician Michel Rolle (read “roll”), the theorem states that between two
consecutive zeros of a function there is a place where the derivative is zero
(Figure 5-5d). Sufficient conditions for this conclusion to be true are the same as
the hypotheses of the mean value theorem, with the additional hypothesis
 f(a) = f(b) = 0.

Figure 5-5d

Graphical Proof of Rolle’s Theorem
Suppose that f(x) is positive somewhere between x = a and x = b. As Figure 5-5e
on the following page shows, f(x) must reach a maximum for some value of x
(x = c) between a and b. The fact that there is such a number relies on the
completeness axiom (Section 2-6) and on the fact that f is continuous (because it
is differentiable).
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PROPERTY:  Rolle’s Theorem

If   1.  f is differentiable for all values of x in the open interval (a, b) and
2.  f is continuous for all values of x in the closed interval [a, b] and
3.  f(a) = f(b) = 0,

then there is at least one number x = c in (a, b) such that (c) = 0.

Figure 5-5c show why the conclusion might not be true if a function does not
meet the hypotheses. For the function on the left, there is a point between
a and b at which the function is not differentiable. You cannot draw a unique
tangent line at the cusp, and there is no other place at which the tangent line
parallels the secant line. In the center graph, the function is differentiable for all
values of x between a and b, but the function is not continuous at x = a. At no
place is there a tangent line parallel to the secant line. The third function is
continuous but not differentiable at x = a. There is a tangent line parallel to the
secant line.



If x is less than c, then x is negative. If x is greater than c, then x is positive.

is positive (or zero) when x is less
than c and negative (or zero) when
x is greater than c. The limit as x
approaches c of this difference
quotient is, of course, (c). Thus

(c)  0    and   (c)  0

Therefore, (c) = 0

A similar case can be made if f(x)
is negative for some x between a
and b or if f(x) is always zero.

So, if the three hypotheses are
true, then there is always a number x = c between a and b such that

(c) = 0,  Q.E.D.

Algebraic Proof of the Mean Value Theorem

You can prove the mean value theorem using Rolle’s theorem as a lemma. The
left graph in Figure 5-5f shows function f, the secant line through points A and
B on the graph of f, and the tangent line you hope to prove is parallel to the
secant line.

Figure 5-5f

Let g be the linear function whose graph is the secant line through points A
and B.
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Figure 5-5e

Because f(c) is the maximum value of f(x), y will always be negative
(orpossibly zero). Thus the difference quotient



Let h be the function defined by

differentiable everywhere, and because a difference such as h(x) between
continuous, differentiable functions is also continuous and differentiable.

Therefore h satisfies the three hypotheses of Rolle’s theorem. Function h is
differentiable on (a, b), is continuous at x = a and x = b, and has h(a) = h(b) = 0.
By the conclusion of Rolle’s theorem, there is a number x = c in (a, b) such that

(c) = 0. All that remains to be done is the algebra.

(c) = 0
However, (x) = (x) – (x), which implies that

However, g is a linear function. Thus (x) is everywhere equal to the
slope of the graph. This slope is [f(b) – f(a)]/(b – a). Hence

Q.E.D.

Be careful! Do not read more into the mean value theorem and Rolle’s theorem
than these theorems say. The hypotheses of these theorems are sufficient
conditions to imply the conclusions. They are not necessary conditions.
Figure 5-5g shows two functions that satisfy the conclusions of the mean value
theorem even though the hypotheses are not true.

Figure 5-5g
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(c) = (c) – (c) = 0.

Therefore (c) = (c).

 (c) = ,

As shown in the center graph of Figure 5-5f, the values of h(x) are the vertical
distances between the graph of f and the graph of g. Because the graphs of f
and g coincide at both x = a and x = b, it follows that h(a) = h(b) = 0. The graph
of h is shown in the right graph of Figure 5-5f.

Function h is continuous and differentiable at the same places as function f .
This is true because g is a linear function, which is continuous and

h(x) = f(x) – g(x)



so (0) would be 0–2/3 = 1/02/3 = 1/0, which is infinite. But f is differentiable
on the open interval (0, 8). Function f  is continuous at x = 0 and x = 8 because
the limits of f(x) as x  0 and as x  8 are 0 and 2, the values of f(0) and f(8),
respectively, and f is continuous for all other x in [0, 8] because differentiability
implies continuity.Figure 5-5h

Thus f satisfies the hypotheses of the mean value theorem on [0, 8]. The slope
of the secant line (Figure 5-5h) is

msec  =  

Only the positive value of c is in (0, 8). Thus c = 1.5396... .
To plot the tangent line, find the particular equation of the line with slope 1/4
through the point (1.5396... , f(1.5396...)).

 f(1.5396...) = (1.5396...)1/3 = 1.1547...
  y – 1.1547... = 0.25(x – 1.5396...)  y = 0.25x + 0.7698...

Enter this equation into your grapher as y2. Figure 5-5i shows that the line is
tangent to the graph and also parallel to the secant line.

Given f(x) = x sin x, find the first interval of nonnegative x-values on which the
hypotheses of Rolle’s theorem are true. Then find the point x = c in the
corresponding open interval at which the conclusion of Rolle’s theorem is true.
Illustrate with a graph.

As Figure 5-5j shows, f(x) = 0 at x = 0 and at x =  because sin x is zero at those
points. To establish differentiability,
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  EXAMPLE 1

Solution

 (x) = 

Setting (c) = 1/4 gives

Figure 5-5i

  EXAMPLE 2

Solution

 (x) = sin x + x cos x

Given f(x) = x1/3, plot the graph. Explain why f satisfies the hypotheses of the
mean value theorem on the interval [0, 8]. Find a value of x = c in the open
interval (0, 8) at which the conclusion of the theorem is true, and show on your
graph that the tangent really is parallel to the secant.

Figure 5-5h suggests that f is differentiable everywhere except, perhaps,
at x = 0.



(c) = 0 sin c + c cos c = 0
 c = 2.02875... Use your grapher’s solver feature.

Note that (0) is also zero, but c  0 because 0 is not in the open
interval (0,  ).

Q1.  Integrate: (x + 2) dx

Q2.  Integrate: 10t dt

Q3.  Integrate: csc2 x dx

Q4.  Differentiate: g(x) = csc x

Q5.  Differentiate: p(x) = (ln x)5

Q6.  Sketch a graph that shows x2 dx.

Q7.  Sketch a graph with a removable discontinuity
at the point (3, 5).

Q8.  Sketch a graph of a function that is continuous
at the point (2, 1) but not differentiable at
that point.

Q9.  Find 

Q10.  If f(x) = 2x + 6, then f –1(x) = —?—.

D.  0.5x – 3 E.  0.5x + 3

1.  State the mean value theorem. If you have to
refer to its definition in this book to find out
what it says, then practice stating it until you
can do so without looking.

2.  State Rolle’s theorem. If you have to refer to its
definition in this book to find out what it says,
then practice stating it until you can do so
without looking.

For Problems 3–6, plot the graph. Find a point x = c
in the given interval at which the mean value
theorem conclusion is true. Plot the secant line and

the tangent line, showing that they really are
parallel. Sketch the resulting graphs.

3.  g(x) =  [1, 4]

4.  f(x) = x4, [–1, 2]

5.  c(x) = 2 + cos x, 

6.  h(x) = 5 –  [1, 9]

For Problems 7–10, plot the graph. Find an interval
on which the hypotheses of Rolle’s theorem are met.
Then find a point x = c in that interval at which the
conclusion of Rolle’s theorem is true. Plot a
horizontal line through the point (c, f(c)) and show
that the line really is tangent to the graph. Sketch
the result.

7.  f(x) = x cos x 

8.  f(x) = x2 sin x

9.  f(x) = (6x – x2)1/2

10.  f(x) = x4/3 – 4x1/3

11.  Compound Interest Problem: Suppose you
invest $1000 in a retirement account. The
account pays interest continuously at a rate
that makes the annual percentage rate (APR)
equal 9%. Thus the number of dollars, d(t), in
your account at time t years is given by

d(t) = 1000(1.09t)

a.  When you retire 50 years from now, how
much money will be in the account?
Surprising?

b.  At what average rate does your money
increase?

c.  Differentiate algebraically to calculate the
instantaneous rate at which your money is
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Problem Set 5-
5
Quick Review

which exists for all x. Thus f is differentiable on (0, ). The function is
continuous at 0 and  because it is differentiable there. So the hypotheses are
met for the interval [0, ].

A.            B.           C.  –2x – 6

Figure 5-5j



if t  1

if t  1

where t is the number of seconds since the ball
was pitched (Figure 5-5k).

Figure 5-5k

Discuss how the mean value theorem applies
to function d. For instance, do the hypotheses
apply on the interval [0, 1]? [0, 2]? [1, 2]? Is the
conclusion true anywhere in (0, 1)? (0, 2)?
(1, 2)? How do your answers illustrate the fact
that the hypotheses of the mean value theorem
are sufficient conditions, not necessary ones?

13.  Sketch a graph that clearly shows that you
understand both the hypotheses and the
conclusion of Rolle’s theorem.

For Problems 14–16, sketch a graph that shows why
the conclusion of Rolle’s theorem might not be true
if f  meets all the hypotheses of the theorem on the
interval [a, b] except for the exception noted.

14.  The function f is discontinuous at x = b.

15.  The function f is continuous, but not
differentiable, at x = d in (a, b).

16.  The value of f(a) is not equal to zero.

17.  Sketch a graph that shows that a function may
satisfy the conclusion of Rolle’s theorem even
though the function does not meet all the
hypotheses.

other source. Where and when did he live? Give
your source of information.

For Problems 19–28, plot (if necessary) and sketch
the graph. State which hypotheses of Rolle’s
theorem are not met on the given interval. Then
state whether the conclusion of Rolle’s theorem is
true on the corresponding open interval.

19.  f(x) = x2 – 4x on [0, 1]

20.  f(x) = x2 – 6x + 5 on [1, 2]

21.  f(x) = x2 – 4x on [0, 2]

22.  f(x) = x2 – 6x + 5 on [1, 4]

23.  f(x) = x2 – 4x on [0, 3]

24.  f(x) = |x – 2| – 1 on [1, 3]

25.  f(x) =  on [0, 5]

26.  f(x) = x – [x] on [1, 2]
([x] is the greatest integer less than
or equal to x.)

27.  f(x) = 1 – (x – 3)2/3 on [2, 4]

29.  Given g(x) = , explain why

the hypotheses of the mean value theorem are
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18.  Look up Michel Rolle on the Internet or some

28.  f(x) =  on [1, 3]

increasing now, at t = 0, and when you retire,
at t = 50. Is the average of these two rates
equal to the average rate you found in part b?

d.  Solve algebraically to find the time at which
the instantaneous rate equals the average
rate. Is this time halfway between now and
the time you retire?

12.  Softball Line Drive Problem: Suppose the
displacement, d(t), in feet, of a softball from
home plate was given to be



a.  Use the definition of absolute value to write
an equation for f(x) as a piecewise function,
one part for x  3 and one part for x < 3.
Sketch the graph.

b.  Is f continuous at x = 3? Is f differentiable
at x = 3? Justify your answers.

c.  Which hypothesis of the mean value
theorem is not met on the interval [1, 6]?
Show that there is no point x = c in (1, 6) at
which the conclusion of the mean value
theorem is true.

d.  Is f integrable on [0, 5]? If not, why? If so,
evaluate  f(x) dx graphically.

32.  New Jersey Turnpike Problem: When you enter
the New Jersey Turnpike, you receive a card
that indicates your entrance point and the time
at which you entered. When you exit, therefore,
it can be determined how far you went and
how long it took, and thus what your average
speed was.
a.  Let f(t) be the number of miles you traveled

in t hours. What assumptions must you
make about f so that it satisfies the
hypotheses of the mean value theorem on
the interval from t = a, when you entered
the turnpike, to t = b, when you exited?

b.  Suppose that your average speed is 60 mi/h.
If f meets the hypotheses of the mean value
theorem, prove that your speed was exactly
60 mi/h at some time between t = a
and t = b.

33.  Rolle’s Theorem Proof Illustrated by Graph and
by Table: The proof of Rolle’s theorem shows

that at a high point, f(c), for the open interval
(a, b), the difference quotient

is always positive (or zero) when x < c and
always negative when x > c. In this problem
you will show graphically and numerically that
this fact is true for a fairly complicated
function.
a.  Figure 5-5l shows the graph of

 f(x) = 25 – (x – 5)2 + 4 cos [2 (x – 5)]

Plot the graph as y1. Does your graph agree
with the figure?

Figure 5-5l

b.  Find (x). How is the value of (5)
consistent with the fact that the high point
of the graph is at x = 5?

c.  Let y2 be the difference quotient

Plot y2 on the same screen as y2 using a
different style. Sketch the result. Then make
a table of values of the difference quotient
for each 0.5 unit of x from x = 3 to x = 7.
What do you notice from the table and graph
about values of y2 for x < 5 and for x > 5?

d.  Read the proof of Rolle’s theorem, which
appears in this section. Explain how the
work you’ve done in this problem relates to
the proof. Tell which hypothesis of Rolle’s
theorem has not been mentioned so far in
this problem. Is this hypothesis true for
function f ? Can the conclusion of Rolle’s
theorem be true for a function if the
hypotheses aren’t? Explain.

Section 5-5:   The Mean Value Theorem and Rolle’s Theorem © 2005 Key Curriculum Press 219

not met on any interval containing x = 2. Is the
conclusion true if the theorem is applied on
the interval [1, 3]? On [1, 5]? Justify your
answers. A graph may help.

30.  Given h(x) = x2/3, explain why the hypotheses
of the mean value theorem are met on [0, 8]
but are not met on [–1, 8]. Is the conclusion of
the mean value theorem true for any x = c in
(–1, 8)? Justify your answer. A graph may help.

31.  Suppose f(x) = |x – 3| + 2x.



and a chord drawn between the endpoints
of the graph for the interval [2, 4.5]. Find an
equation, g(x), for the chord. Plot y1 = f(x)
and y2 = g(x) on the same screen. Use a
Boolean variable to restrict y2 to the interval
[2, 4.5]. Do your graphs agree with the
figure?

Figure 5-5m

b.  Find a point x = c in the interval (2, 4.5) at
which the conclusion of the mean value
theorem is true. (There are three such
points.)

c.  Let y3 be the function h mentioned in the
proof of the mean value theorem. Plot y3 on
the same screen as y1 and y2. Then make a
table of values of y3 for each 0.05 unit of x
from x = c – 0.25 to x = c + 0.25. Show that
h(c) is an upper (or lower) bound for the
values of h(x) in the table.

d.  Show that function f meets the hypotheses
of the mean value theorem on the interval
[2, 4.5]. Explain how functions g and h in
this problem illustrate the proof of the
mean value theorem.

35.  Corollary of the Mean Value Theorem:
A corollary of a theorem is another theorem
that follows easily from the first. Explain why
the corollary of the mean value theorem stated
in this box is true.

36.  Converse of a Theorem: It is easy to show that
if two differentiable functions differ by a
constant, then their derivatives are equal for all
values of x in the domain. For instance, if

 f(x) = sin x    and    g(x) = 2 + sin x

Figure 5-5n

The converse of a theorem is the statement
that results from interchanging the hypothesis
and the conclusion of the theorem, as in
this box.

As you probably realize, the converse of a
theorem is not necessarily true. For instance,
the converse of the mean value theorem is
false. However, the converse above is true and
can be proved by contradiction with the help of
the mean value theorem.
a.  Suppose there are two values of x such that

 f(a) = g(a) + D1 and f(b) = g(b) + D2, where
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Property: Corollary of the Mean Value
Theorem

If f is differentiable on the closed
interval [a, b], then there is at least one
number x = c in (a, b) such that

(c) = 

then (x) =  (x) for all x (Figure 5-5n).

Property: Converse of the Equal-Derivative
Theorem

Theorem: If f(x) = g(x) + D for all x in the
domain, where D is a constant, then

(x) =  (x) for all x in the domain.

Converse of the Theorem: If (x) = (x)
for all x in the domain, then f(x) = g(x) + D
for all x in the domain, where D is a constant.

34.  Mean Value Theorem Proof Illustrated by Graph
and by Table: In the proof of the mean value
theorem, a linear function, g, and a difference
function, h, were created. Rolle’s theorem was
then applied to function h. In this problem you
will derive equations for g(x) and h(x) and
illustrate the proof by graph and by a table of
values.
a.  Figure 5-5m shows the graph of

 f(x) = 1 + x + cos x



   

D1  D2. Let h(x) = f(x) – g(x). Explain why

Show that (c) also equals
(D2 – D1)/(b – a).

c.  Show that h (x) = 0 for all x in (a, b) and
thus (c) = 0. Use the result to show that
D1 and D2 are equal, which proves the
converse by contradicting the assumption
you made in part a.

37.  Antiderivative of  Zero: Prove as a corollary of
the property in Problem 36 that if (x) = 0 for
all values of x, then f(x) is a constant function.

38.  Let f(x) = (cos x + sin x)2. Let g(x) = sin 2x. On
the same screen, plot graphs of f and g. Sketch
the result. Make a table of values of the two
functions for convenient values of x, say
0, 1, 2, . . . . What seems to be true about values
of f(x) and g(x) at the same values of x? Prove
algebraically that (x) = (x) for all values
of x.

39.  Maximum and Minimum Values of Continuous
Functions: When you study the analysis of real
numbers you will show that if a function f is
continuous on a closed interval [a, b], then f(x)

has a maximum value and a minimum value at
values of x in that interval. Explain why a
function that meets the hypotheses of Rolle’s
theorem automatically meets these conditions.

40.  Intermediate Value Theorem Versus Mean Value
Theorem: The words intermediate and mean
both connote the concept of betweenness. Both
the intermediate value theorem and the mean
value theorem assert the existence of a number
x = c that is between two numbers a and b.
However, the hypotheses and conclusions of
the theorems are quite different. Write one or
two paragraphs describing how the two
theorems differ and how they are alike. Graphs
will help.

41.  Journal Problem: Update your journal with
what you’ve learned. Include such things as
  •  The one most important thing you have

learned since your last journal entry

  •  The fact that you can now fill in one more
square in your chart of calculus concepts

  •  The two new theorems you have just learned
and how they are related to each other

  •  The difference between the mean value
theorem and the intermediate value theorem

  •  The difference between definite integral and
indefinite integral

  •  The different kinds of Riemann sums
  •  Any technique or idea you plan to ask about

at the next class period

In Section 5-4, you learned the definition of definite integral as a limit of
Riemann sums. In this section you will use this definition and the mean value
theorem to derive an algebraic method for calculating a definite integral. The
resulting theorem is called the fundamental theorem of calculus.
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(c) = 

5-6    The Fundamental Theorem of
Calculus

OBJECTIVE Derive the fundamental theorem of calculus, and use it to evaluate definite
integrals algebraically.

the mean value theorem applies to h on the
interval [a, b].

b.  The mean value theorem lets you conclude
that there is a number x = c in (a, b) such
that



Background: Some Very Special Riemann Sums

the sample points used.

For R3: For R6:

c1 = 1.4858425557 c1 = 1.2458051304

c2 = 2.4916102607 c2 = 1.7470136081

c3 = 3.4940272163 c3 = 2.2476804000

c4 = 2.7481034438

c5 = 3.2483958519

c6 = 3.7486100806

Figure 5-6a

Using these sample points and factoring out x = 1, you get

= 4.666666667

Surprisingly, R6 turns out to be the same number. (In this case, x = 0.5.)

= 4.666666667
Both answers are equal and look suspiciously like .

To see how the sample points were chosen, let

first interval in R6), and thus the mean value theorem applies. Therefore there is
a number x = c in the interval (1, 1.5) for which
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R3 =

R6 = 

g(x) = 

(letting C = 0). Because (x) =  g is differentiable on the interval [1, 1.5] (the

(c) =  = 1.1161564094...

Suppose you want to evaluate the integral
I =

Figure 5-6a shows two Riemann sums, R3 and R6, for this integral with sample
points close to, but not exactly at, the midpoints of the subintervals. Here are



 

Squaring gives

Proof of the Conjecture
Figure 5-6b shows a definite integral,  f(x) dx , that is to be evaluated. The top
graph in Figure 5-6c shows the indefinite integral g(x) =  f(x) dx. Point c2 is the
point in the second subinterval at which the conclusion of the mean value
theorem is true for function g on that subinterval. The bottom graph in
Figure 5-6c shows the corresponding Riemann sum for f(x) using c2 as the
sample point in the second subinterval.

Figure 5-6c
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Let R n be the Riemann sum for the definite integral  f(x) dx , using as sample
points a value of x = c in each subinterval at which the conclusion of the mean
value theorem is true for g on that subinterval.

Conjecture: The value of R n is a constant, independent of the value of n.

Figure 5-6b

c = (1.1161564094) 2 = 1 . 2458051304
which is the value of c1 used in R 6. This observation leads to a conjecture.

Let g be the indefinite integral g(x) =  f(x) dx.

CONJECTURE:  Constant Riemann Sums



Applying the mean value theorem to g on each of the subintervals gives

Now use the points c1, c2, c3, . . . , cn as sample points for a Riemann sum of the
original definite integral, as in the bottom graph of Figure 5-6c. That is,

Rn = f(c1) x + f(c2) x + f(c3) x + · · · + f(cn) x

Replacing  (c1) with , and so forth, canceling the x’s, and

arranging in column form gives

Rn = g(x1) – g(a)
+ g(x2) – g(x1)
+ g(x3) – g(x2)

All the middle terms “telescope,” leaving only –g(a) from the first term and g(b)
from the last. The result is independent of the number of increments. In fact, the
quantity g(b) – g(a) is the exact value of the definite integral. This is what the
fundamental theorem of calculus says. You can calculate the definite integral
by evaluating the antiderivative at the upper limit of integration and then
subtracting from it the value of the antiderivative at the lower limit of
integration. The formal statement of this theorem and its proof are given next.

Proof of the Fundamental Theorem of Calculus

Partition the interval [a, b] into n subintervals of equal width x. Let Ln and Un
be lower and upper sums for  f(x) dx. Let Rn be the Riemann sum equal to
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However, f(x) = g′ (x) for any value of x. Therefore

Rn =  (c1) x +  (c2) x +  (c3) x + · · · +  (cn) x

.

PROPERTY:  The Fundamental Theorem of Calculus

If f  is an integrable function and if g(x) =  f(x) dx,
then  f(x) dx = g(b) – g(a).

 (c1) =

 (c3) =

 (cn) =

 (c2) =

...

..



 

g(b) – g(a), as derived previously. Because any Riemann sum is between the

Take the limit of all three members
of the inequality.
Rn  is a constant, g(b) – g(a).

 f(x) dx  g(b) – g(a)   f(x) dx Definition of definite integral.

 f(x) dx = g(b) – g(a), Q.E.D.

Example 1 shows you a way to use the fundamental theorem to evaluate the
integral presented at the beginning of this section, showing that the area of the
region under the graph of the function y =  from x = 1 to x = 4 really is 
which you suspected.

Use the fundamental theorem of calculus to evaluate 

Q1.   r(x) = m(x) dx if and only if —?—.

Q2.   Write the definition of derivative.

Q3.   How fast is f(x) = x2  changing when x = 3?

Q4.   Find  dy:  y = sec x

Q5.   Find  : y = (x2 + 3)4

Q6.   Find  d2z/du2: z = sin 5u

Q7.   Find (x): f(x) = 73

Q8.   Using equal increments, find the upper Riemann
sum, R4, for  dx.

Q9.   Sketch a graph that shows the conclusion of the
mean value theorem.

Q10.  5x dx = —?—
A.  x5x – 1 + C
B.  5x + C
C.  5x ln x + C
D.  5x ln 5 + C

1.  For the integral I = 10x–1.5 dx, do the
following.
a.  Find the exact value of I using the

fundamental theorem of calculus. What
happens to “+ C” from the indefinite
integral?

b.  Sketch a graph that shows an upper sum
with n = 5 increments for this integral.
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 Ln   Rn     Un

  EXAMPLE 1

Solution

Problem Set 5-

6Quick Review

E.   + C

upper and lower sums, you can write

 L4  g(b) – g(a)   Un

Ln  Rn  Un



Show that midpoint Riemann sums approach
this value as the number of increments
approaches infinity. Sketch an appropriate
graph to show why midpoint Riemann sums
overestimate the value of the definite integral.

3.  State the fundamental theorem of calculus.

4.  Prove that if f is an integrable function, then
for any partition of the interval [a, b] into
n subintervals of equal width there is a
Riemann sum for  f(x) dx whose value is
independent of the number n.

5.  Prove the fundamental theorem of calculus by
using the result of Problem 4 as a lemma.

6.  You have proved that it is possible to pick a
Riemann sum whose value is independent of
the number of increments. Suppose the
interval [a, b] is taken as a whole. That is,
suppose there is just one “subinterval.” Where
should the sample point for this interval be
picked so that the corresponding Riemann
“sum” is exactly equal to the definite integral
from a to b? How does your answer relate to
the fundamental theorem of calculus?

7.  Freeway Exit Problem: In the design of freeway
exit ramps it is important to allow enough
distance for cars to slow down before they
enter the frontage road. Suppose a car’s
velocity is given by v(t) = 100 – 20(t + 1)1/2,
where v(t) is in feet per second and t  is the
number of seconds since it started slowing
down. Write a definite integral equal to the
number of feet the car goes from t = 0 to t = 8.
Evaluate the integral exactly by using the
fundamental theorem of calculus.

8.  The Fundamental Theorem Another Way: Let h
be the square root function h(x) = x1/2. Let P

be the region under the graph of h from x = 4
to x = 9 (Figure 5-6d).

Figure 5-6d

a.  Evaluate the Riemann sum R10 for P, picking
sample points at the midpoints of the
subintervals. Don’t round your answer.

b.  Let u be a value of x in the interval [4, 9].
Let A(u) be the area of the portion of the
region from x = 4 to x = u (Figure 5-6e). Let

u be a small change in u. The area of the
strip from x = u to x = u + u equals
A(u + u) – A(u). Explain why this area is
between h(u) u and h(u + u) u. Write
your result as a three-member inequality.

c.  Use the inequality you found in part b to
prove that dA/du = h(u). This equation is
called a differential equation.

d.  Multiply both sides of the differential
equation given in part c by du. Then take the
indefinite integral of both sides. Find the
constant of integration by observing that
A(4) must equal zero.

e.  Find the area of region P by evaluating A(9).
Explain why your answer to part a is
consistent with your answer to this problem.
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Figure 5-6e

c.  Find U5, L5, and the average of these two
sums. Does the average overestimate or
underestimate the integral? Explain.

d.  Find midpoint Riemann sums M10, M100, and
M1000 for I. Do the Riemann sums seem to
be converging to the exact value of I?

2.  Let I = sin x dx. Find the exact value of I by
using the fundamental theorem of calculus.
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5-7   Definite Integral Properties and Practice

OBJECTIVE Evaluate quickly a definite integral, in an acceptable format, using the
fundamental theorem of calculus.

9.  Riemann Sum Sketching Problem: Sketch
appropriate rectangles to show the following.

a.  An upper sum with four increments, where
the sample points are taken at the left
endpoint of each subinterval

b.  A lower sum with three increments, where
the sample points are taken at the left
endpoint of each subinterval

c.  A Riemann sum with five increments, where
the sample points are taken at the midpoint
of each subinterval

d.  A Riemann sum with four increments, where
no sample point is taken at the middle or at
either end of a subinterval

e.  A Riemann sum with three increments,
where two different sample points are at the
same x-value

f.  A subinterval for an upper sum in which the
sample point must be somewhere between
the two endpoints

10.  Journal Problem: Update your journal with
what you’ve learned. Include such things as

  •  A statement of the fundamental theorem of
calculus

  •  How sample points can be chosen so that a
Riemann sum is independent of the number
of increments, and how this fact leads to the
fundamental theorem

  •  Evidence to show that Riemann sums really
do get close to the value of a definite
integral found by the fundamental theorem
as n approaches infinity

  •  What you now better understand about the
meaning of a Riemann sum

  •  Anything about the fundamental theorem of
calculus that you’re still unclear about

The table shows the four concepts of calculus—limit, derivative, and two kinds
of integral—and the four things you should be able to do with each concept. You
now know precise definitions of the four concepts and have a reasonably good
understanding of their meanings.

Define it. Understand it. Do it. Apply it.
Limit
Derivative
Definite integral
Indefinite integral

In this section you will work on the “Do it” box for the definite integral. You will
be using the fundamental theorem of calculus, so you will also be working on
the “Do it” box for indefinite integrals.



To evaluate a definite integral such as

x2 dx

Read “(1/3)x3 evaluated from x = 1 to x = 4.”

In the first step you find the indefinite integral. The vertical bar at the right
reminds you that the upper and lower limits of integration are to be substituted
into the expression to its left.

As mentioned in Section 5-4, the values 1 and 4 are called limits of integration.
This terminology is unfortunate because these values have nothing to do with
the concept of limit as you have defined it. The term lower and upper bounds of
integration would be more suitable. However, the word limit is firmly entrenched
in mathematical literature, so you should get used to the ambiguity and
interpret the word in its proper context.

Following are some properties of definite integrals that are useful both for
evaluating definite integrals and for understanding what they mean.

Integral with a Negative Integrand
Suppose you must evaluate (x2 – 5x + 2) dx. The result is

= –10.5
The answer should surprise you. How could an area be negative? Figure 5-7a
reveals the reason: The region lies below the x-axis. The Riemann sum has
the form

 f(x) x

Each value of f(x) is negative, and each x is positive. Thus each term in the
sum is negative, and as a result the integral is negative.

Figure 5-7a

Integral from a Higher Number to a Lower Number
Suppose an integral has a lower limit of integration that is greater than the
upper limit, such as

cos x dx
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x2 dx

you could start by writing an indefinite integral, g(x) = x2 dx, integrating, then
finding g(4) – g(1). Here is a compact format that is customarily used.

= 21



Evaluating the integral gives

= –0.86602...

Figure 5-7b

The integral is negative, yet the integrand is positive, as shown in Figure 5-7b.
The reason is the same as that for the previous property but is more subtle. In
this case each x is negative. Because x = (b – a)/n, x will be negative
whenever b is less than a. Thus each term in the sum

f(x) x
will be negative, making the integral itself negative. Combining these
observations leads you to conclude that if both f(x) and x are negative, the
integral is positive. For instance,

Sum of Integrals with the Same Integrand
Suppose you integrate a function, such as x2 + 1, from x = 1 to x = 4 and then
integrate the same function from x = 4 to x = 5. Figure 5-7c shows the two
regions whose areas equal the two integrals. The sum of the two areas equals
the area of the region from x = 1 all the way to x = 5. This fact suggests that the
two integrals should sum to the integral of x2 + 1 from x = 1 to x = 5. This turns
out to be true, as you can see here.

  which equals 24 + Figure 5-7c

In general, 

Integrals Between Symmetric Limits
The integral       f(x) dx is called an integral between symmetric limits. If f
happens to be either an odd function (such as sin x or x5) or an even function
(such as cos x or x6), then the integral has properties that make it easier to
evaluate.

The graph on the left in Figure 5-7d at the top of page 230 shows an odd
function, where f(–x) = – f(x). The area of the region from x = –a to x = 0
equals the area of the region from x = 0 to x = a, but the signs of the integrals
are opposite. Thus the integral equals zero! For instance,
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= sin 0 – sin 
= 0 – 



Figure 5-7d

The graph on the right in Figure 5-7d shows an even function, where
 f(–x) = f(x). The areas of the regions from x = –a to 0 and from x = 0 to a
are again the same. This time the integrals have the same sign. Thus you
can integrate from zero to a and then double the result. For instance,

Integral of a Sum, and Integral of a Constant
Times a Function
In Section 5-3, you learned that the indefinite integral of a sum of two functions
equals the sum of the integrals and that the integral of a constant times a
function equals the constant times the integral of the function. By the
fundamental theorem of calculus, these properties also apply to definite
integrals

Figures 5-7e and 5-7f show graphically what these two properties say. In
Figure 5-7e, the regions representing the two integrals are shaded differently.
The second region sits on top of the first without a change in area. Thus the
integral of the sum of the two functions is represented by the sum of the two
areas. In Figure 5-7f, the region representing the integral of f is dilated by a
factor of k in the vertical direction. The region representing the integral of k f
thus has k times the area of the region representing the integral of f.

Figure 5-7e Figure 5-7f
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 = 48.6 – (–48.6) = 97.2, and

 = 2(48.6) = 97.2

 [f (x) + g(x)] dx =  f(x) dx +  g(x) dx, and

 k f(x) dx = k  f(x) dx



Upper Bounds for Integrals

The properties described above are summarized here.Figure 5-7g

Q1.  Evaluate: x5 dx

Q2.  Evaluate: (3x + 7)5 dx

Q3.  Evaluate: x–4 dx

Q4.  Evaluate: sin5 x cos x dx

Q5.  Evaluate: cos 5x dx

Q6.  Evaluate: (cos2 x + sin2 x) dx

Q7.  Evaluate: sec2 x dx

Q8.  Find : y = ln x

Q9.   f(x) dx is a(n) —?— integral.

Q10.  f(x) dx is a(n) —?— integral.
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 f(x) dx <  g(x) dx

Properties of Definite Integrals

1.  Positive and Negative Integrands: The integral  f(x) dx is
positive if f(x) is positive for all values of x in [a, b] and
negative if f(x) is negative for all values of x in [a, b],
provided a < b.

2.  Reversal of Limits of Integration:  f(x) dx = –  f(x) dx

3.  Sum of Integrals with the Same Integrand:

4.  Integrals Between Symmetric Limits: If f is an odd function, then
- f(x) dx = 0.

If f is an even function, then 
5.  Integral of a Sum and of a Constant Times a Function:

6.  Upper Bounds for Integrals: If f(x) < g(x) for all x in [a, b], then
 f(x) dx <  g(x) dx.

Problem Set 5-7

Quick Review

Suppose that the graph of one function is always below the graph of another.
Figure 5-7g shows functions for which

 f(x) < g(x) for all x in [a, b]
The area of the region corresponding to the integral of f is smaller than that
corresponding to the integral of g. Thus



For Problems 1–26, evaluate the integral exactly by

7.  5 dx

8.   dx

9.   (x2 + 3x + 7) dx

10.   (x2 + 4x + 10) dx

11.  

12.  

13.  4 sin x dx

14.  6 cos x dx

15.  (sec2 x + cos x) dx

16.  (sec x tan x + sin x) dx

17.  e2x dx

18.  e–x dx

19.  sin3 x cos x dx

20.  (1 + cos x)4 sin x dx

21.  

22.  sin 2x dx

23.   (x7 – 6x3 + 4 sin x + 2) dx    (Be clever!)

24.   (cos x + 10x3 – tanx) dx    (Be very clever!)

25.   x–2 dx    (Beware!)

26.      (Beware!)

For the functions in Problems 27–30, state whether
the definite integral equals the area of the region
bounded by the graph and the x-axis. Graphs
may help.

27.  (x2 – 10x + 16) dx

28.  cos x dx

30.   f(x) = 

For Problems 31–36, suppose that

, and

Evaluate the given integral or state that it cannot be
evaluated from the given information.

31.   f(x) dx

32.  4 f(x) dx

33.   g(x) dx

34.   f(x) dx

35.  [f(x) + g(x)] dx

36.  [f(x) + g(x)] dx

For Problems 37 and 38, Figures 5-7h and 5-7i show
the graph of the derivative, , of a continuous
function f. The graph of f is to contain the marked
point. Recall that where (x) = 0, the tangent to the
graph of f is horizontal. Also recall that

amount (x) dx when x changes from a to b. Use
 f(x) = (x) dx, and thus f(x) changes by an

this information and the fact that the definite
integral represents an area to sketch the graph of f
on a copy of the figure.
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29.  

using the fundamental theorem of calculus. You
may check your answers by Riemann sums or by the
trapezoidal rule.

1.  x2 dx

2.  x3 dx

3.  (1 + 3x)2 dx

4.  (5x – 2)2 dx

5.   60x2/3 dx

6.   24x3/2 dx
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The Calculus of
Exponential and
Logarithmic Functions

Rabbits introduced into Australia in the mid-1800s had no natural
enemies, and their population grew unchecked. The rate of
increase was proportional to the number of rabbits—the more
there were, the faster the population grew. You can model this kind
of population growth by exponential functions, with the help of
their inverses, the logarithmic functions. As you have learned,
these functions, which have variable exponents, behave differently
from power functions, which have constant exponents.



Graphically The icon at the top of each
even-numbered page of this chapter
shows the natural logarithm function
and its inverse, the base-e exponential
function.

Numerically

Algebraically ln , the definition of natural logarithm

Verbally I didn’t realize that you can define a function to be the definite
integral of another function. The advantage of doing this is that you
know immediately the derivative of that new function. I was
surprised that the integral of 1/t from t = 1 to t = x is the natural
logarithm function. I need to remember that derivatives and
integrals of exponential functions are not the same as for powers.
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Mathematical Overview

Exponential functions, in which the variable is an exponent, model
population growth. In this chapter you will see how these
functions arise naturally from situations where the rate of change
of a dependent variable is directly proportional to the value of that
variable. You will learn this information in four ways.

 x ex          ln x      
1 2.718...     0
2 7.389...     0.693...
3 20.085...    1.098...
 .                       .                    ..                       .                    ..                       .                    .
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A Population Growth Problem
You have learned how to differentiate and integrate power functions and
exponential functions. However, there is one power function, the reciprocal
function, for which the power rule doesn’t work.

 dx by the power rule would be , which is undefined.

OBJECTIVE Work a problem in which the integral of the reciprocal function arises
naturally.

6-1   Integral of the Reciprocal Function:

In this section you will develop some background to see how to evaluate this
integral.

Exploratory Problem Set 6-1

Population Problem: If the population, P, of a
community is growing at an instantaneous rate of
5% of the population per year, then the derivative of
the population is given by the differential equation

Suppose that the population, P, is 1000 at time
t = 0 years, and grows to P = N at the end of
10 years, where you must find the value of N. By
separating the variables and then integrating,
you get

Get P on one side and
t on the other side.

P = 1000 when t = 0,
and P = N  when t = 10.

1.  Explain why you cannot find the integral of
the reciprocal function on the left using the

power rule for integrals. Evaluate the integral
numerically for N = 1000, 1500, 2000, 2500,
500, and 100. Use these values to sketch the
graph of the integral versus N. What kind of
function has a graph of this shape?

2.  Show that the integral on the right equals 0.5,
which is between two of the values of the
integral on the left that you found in
Problem 1. Use the solver feature of your
grapher to find the value of N that makes the
integral equal exactly 0.5.

3.  The value of N in Problem 2 is P(10), the
population at 10 years. Find P(20) and P(0).
Use these three points to sketch what you
think the graph of P looks like. What kind of
function has a graph of this shape?

4.  Find ln N – ln 1000, where N is the value you
found in Problem 2. What interesting thing do
you notice about the answer?
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Function and Another Form of the
Fundamental Theorem
In the last section you saw that you cannot find the integral of the reciprocal
function by using the power rule for integrals. The power rule leads to division
by zero.

       would be       

OBJECTIVE Find out how to differentiate a function defined as a definite integral between
a fixed lower limit and a variable upper limit, and use the technique to
integrate the reciprocal function.

   = –cos x + cos 1

g(x) =   sin t dt = –cos x + 0.5403...

6-2   Antiderivative of the Reciprocal

In this section you will see that this integral turns out to be the natural
logarithm function. To show this, you will learn the derivative of an integral form
of the fundamental theorem of calculus. As a result, you will find that there is
another definition of the natural logarithm function besides the inverse of the
exponential function. You will also see some theoretical advantages of this new
definition.

Fundamental Theorem—Derivative of an Integral Form
Suppose a definite integral has a variable for its upper limit of integration, for
instance

sin t dt

Evaluating the integral gives

= –cos x + 0.5403...

Figure 6-2a

The answer is an expression involving the upper
limit of integration, x. Thus, the integral is a
function of x. Figure 6-2a shows what is
happening. The integral equals the area of the
region under the graph of y = sin t from t = 1 to
t = x. Clearly (as mathematicians like to say!)
the area is a function of the value you pick for x.
Let g(x) stand for this function.

The interesting thing is what results when you find the derivative of g.

 (x) = sin x
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The answer is the integrand, evaluated at the upper limit of integration, x. Here’s
why this result happens. Because g(x) equals the area of the region, (x) is the
rate of change of this area. Its value, sin x, is equal to the height of the region at 
the boundary where the change is taking place. Figure 6-2b shows this situation 
for three values of x.

EXAMPLE 1

 

 PROPERTY:  Fundamental Theorem of Calculus—Derivative of an Integral Form
 If g(x) =   f(t) dt, where a stands for a constant, and f is continuous in the

 neighborhood of a, then  (x) = f(x).
 

 

  (x) =  (x) – 0

  (x) = f(x), Q.E.D.

Figure 6-2b

The taller the region is, the faster its area increases as x changes. Think of
painting horizontally with a brush whose width is the altitude of the region at x.
The wider the paint brush, the faster the region gets painted for each inch the
brush moves. If sin x is negative, the “area” decreases because the integrand is
negative. This property is called the fundamental theorem of calculus:
derivative of an integral form. It is stated here.

Prove the derivative of an integral form of the fundamental theorem of calculus.

Proof You can prove this form of the fundamental theorem algebraically, using as a
lemma the form of the theorem you already know.

Let g(x) =   f(t) dx.

Let h be an antiderivative of f . That is, let h(x) =  f(x) dx.

   g (x) = h (x) – h(a) Fundamental theorem (first form).

Derivative of a constant is zero.

Definition of indefinite integral.

New Definition and Derivative of ln x
Let g be the function defined by the definite integral



Figure 6-2c shows the integrand as a function of t, and the region whose area
equals g(x). Figure 6-2d shows the graph of y1 = g(x) as a function of x. The
graph is zero at x = 1 because the region degenerates to a line segment. The
graph increases as x increases because 1/t  in Figure 6-2c is positive, but it
increases at a decreasing rate because 1/t  is getting closer to zero. The graph of
g is negative for x  1 because the values of dt in the Riemann sums are negative.

The graph of g looks remarkably like a logarithmic function. In fact, if you plot
 y2 = In x on the same screen, the graphs appear to be identical! This fact serves
as a starting point for a way of developing logarithmic and exponential
functions that has some theoretical advantages over what you have done before.

 

 DEFINITION:  The Natural Logarithm Function

 
               

 where x is a positive number 
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EXAMPLE 2

Solution

EXAMPLE 3

Solution

EXAMPLE 4 If  f(x) = x3 In x, find an equation for (x). Then show graphically and
numerically that your answer is correct.

Solution

   x y1 y2  y3            

  0.5 –0.0866... –0.2698... –0.2698...
  1.0      0      1 1.0000...
  1.5 1.3684... 4.9868... 4.9868...
  2.0 5.5451... 12.3177... 12.3177...
  2.5 14.3170... 23.4304... 23.4304...

Find the derivative of In (argument),
then use the chain rule.

Simplify.

In Section 6-3, you will find out why this answer is so simple.

If y = csc (ln x), find dy/dx.

Observe that Example 3 is a straight application of the derivative of cosecant, a
method you learned earlier, followed by the application of the chain rule on the
inside function, In x.

Equation for derivative.

Graphical Check: First plot.

 y1 = x3 In x
 y2 = numerical derivative of y1 Use regular style.

 y3 = x2(3 In x + 1) Use thick style.

Figure 6-2e shows the three graphs. The graph of y3 overlays the graph of y2.
Figure 6-2e Numerical Check: Use your grapher’s TABLE  feature to generate values of these

three functions.

The numerical and algebraic derivatives give essentially the same values.

If y = In (7x5), find dy/dx.

  f(x)

  f(x)



274 © 2005 Key Curriculum Press Chapter 6:   The Calculus of Exponential and Logarithmic Functions

Let x = –u. If x is negative, then u is a positive
number. The differential, dx, is

 

 PROPERTY:   Integral of the Reciprocal Function

                
 

 
The variable u, rather than x, has been used here to indicate that you can find
the integral of the reciprocal of a function, u, in this way as long as the rest
of the integrand is du, the differential of the denominator.

  EXAMPLE 5

Integral of the Reciprocal Function

Figure 6-2f

Because  x = 1/x, the integral  (1/x) dx
equals ln x + C. But this works only for positive
values of the variable. The function ln x is
undefined for negative values of x because
finding ln x requires you to integrate across a
discontinuity in the graph (Figure 6-2f).
However, it is possible to find  (1/x) dx if x is
a negative number.

dx = d(–u) = –du

Substitute  for x and dx.

By algebra.

The integral has the same form as
(1/x) dx, and u is a positive number.

Reverse substitution.

Putting this result together with the original result gives the piecewise function

You can combine the two pieces with the aid of the absolute value function,
as follows.
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  EXAMPLE 6

Solution

Solution

Decimal value of exact answer.

Exact answer.

Integrate the reciprocal function.

differential of the denominator.
Make the numerator equal to the

  EXAMPLE 7

Solution

Find (x): f(x) =  sec t dt

Let g(x) =  sec x dx.
Then  (x) = sec x.

  f(x) = g(5x) – g(2)

  (x) =  (5x) – g(2)

Write the fraction as a reciprocal. Multiply
the other factor by 5 to make it equal to
the differential of the denominator.

Integrate the reciprocal function.

Example 6 shows a case in which absolute value comes into action. The
argument is often negative when the integral has negative limits of integration.

Use the fundamental theorem to evaluate exactly. Check numerically.

Using your grapher’s numerical integration feature gives 0.225715613..., or an
answer very close to this, which checks!

Figure 6-2g

Note that the answer is a positive number.
Figure 6-2g reminds you that a definite integral
is a limit of a Riemann sum. The terms have the
form f(x) dx. The integrand function is negative,
and so are the dx’s because –5 is less than –4.
If both f(x) and dx are negative, the terms in the
Riemann sum are positive.

Example 7 shows how to differentiate an integral
when the upper limit of integration is a function
of x rather than x itself.

Definition of indefinite integral (antiderivative).

Fundamental theorem, g(b) – g(a) form.

Chain rule and derivative of a constant.

= 5 sec 5x



Figure 6-2h shows the graph of function f .

Figure 6-2h

Solution a.  By finding areas, g(1) = 0, g(2)  1.8, g(3)  2.3, g(4)  1.8, g(5)  0.3,
and g(0)  –1.8. Plot these points and connect them, as shown in
Figure 6-2i.

Figure 6-2i

b.

Fundamental theorem and chain rule.

Substitute  for x. Read
 f(2) from graph.
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Once you see the pattern that appears in Example 7, you can write down the
answer quickly, in one step. The sec 5x is the integrand, evaluated at the upper
limit of integration. This is the result you would expect from the fundamental
theorem in its derivative of the integral form. The 5 is the derivative of 5x, which
is the inside function.

  EXAMPLE 8
a.  Let g(x) =   f(t) dt. Sketch the graph of function g.
b.  Let h(x) =   f(t) dt. Find (3).

h(x) =   f(t) dt



 

Q5.  If  f(x)  =  x3, then f ' (2) = 12. Thus f  is —?— at

Q10.  log 3 + log 4  =  log —?—.

0.  Look Ahead Problem 1: Look at the derivatives
and the integrals in Problem Set 6-6. Make a
list, by problem number, of those you currently
know how to do.

For Problems 1–26, find the derivative.

1.  y = ln 7x

2.  y = ln 4x

3.  f(x) = ln x5

4.  f(x) = ln x3

5.  h(x) = 6 ln x–2

6.  g(x) = 13 ln x–5

7.  r(t) = ln 3t + ln 4t + ln 5t

8.  v(z) = ln 6z + ln 7z + ln 8z

9.  y = (ln 6x)(ln 4x)

10.  z = (ln 2x)(ln 9x)

11.

13.  p = (sin x)(ln x)

14.  m = (cos x)(ln x)

15.  y = cos (ln x)

16.  y = sin (ln x)

17.  y = ln (cos x) (Surprise?)

18.  y = ln (sin x) (Surprise?)

19.  T(x) = tan (ln x)

20.  S(x) = sec (ln x)

21.  y = (3x + 5)–1

22.  y = (x3 – 2)–1

23.  y = x4 ln 3x

24.  y = x7 ln 5x

25.  y = ln (1/x)

26.  y = ln (1/x)4

For Problems 27–46, integrate.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
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Problem Set 6-
2

Q6.  Find : y = sin–1 x

Q7.  Find  : y = csc x

Q8.   f(x) x is called a(n) —?—.

Q9.   f(x) dx is called a(n) —?—.

x = 2.

12.

Q1.  Integrate:  x–0.3 dx

Q2.  Integrate:  x2 dx

Q3.  Differentiate:  f(x) = cos2 x
Q4.   cos x = cos 100, so cos is —?— at
        x = 100.

Quick Review
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40.  (1/v ) dv

41.  (1/x) dx

42.  (1/x) dx

43.  

47.  f(x) = cos 3t dt

48.  f(x) = (t2 + 10t – 17)dt

51.  f(x) =  3t dt

b.  Let h(x) =   f(t) dt. Find h(2).

a.  Let g(x) =   f(t) dt. On a copy of

b.  Let h(x) =  f(t) dt. Find  (4).

55.  Evaluate (5/x) dx by using the fundamental

39.  (1/w ) dw

44.  

45.  (Be clever!)

46.  (Be very clever!)

For Problems 47–54, find the derivative.

49.  

50.  

52.  g(x) = 

53.  h(x) = 

54.  p(x) = 

theorem in its g(b) – g(a) form. Then verify
your answer numerically. Indicate which
numerical method you used.

56.  Look Ahead Problem 1 Follow-Up: In Problem 0,
you were asked to look at Problem Set 6-6 and
indicate which problems you knew how to do.
Go back and list the problems in Problem
Set 6-6 that you know how to do now but that
you didn’t know how to do before you worked
on Problems 1–54 in this problem set.

57.  Figure 6-2j shows the graph of function f .

Figure 6-2j

a.  Let g(x) =   f(t) dt. On a copy of Figure 6-2j,
sketch the graph of function g.

58.  Figure 6-2k shows the graph of function f .

Figure 6-2k

Figure 6-2k, sketch the graph of function g.

59.  Population Problem: In the population problem
of Problem Set 6-1, you evaluated

where P stands for population as a function of
time, t. Use what you have learned in this
section to evaluate this integral using the
fundamental theorem of calculus. You should
get an answer in terms of N. Use the result to
solve for N, the number of people when
t = 10 yr, in the equation
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bicycle tire pump. To compress the inside air,
you exert a force F, in pounds, on the movable
piston by pushing the pump handle. The
outside air exerts a force of 30 lb, so the total
force on the piston is F + 30. By Boyle’s law,
this total force varies inversely with h, in
inches, the distance between the top of the
pump base and the bottom of the movable
piston. Consequently, the general equation is

60.  Tire Pump Work Problem: Figure 6-2l shows a

where k is a constant of proportionality.

Figure 6-2l

a.  Assume that the inside air is not
compressed when h = 20 in., so that F = 0
when h = 20. Find the proportionality
constant, k, and write the particular
equation expressing F as a function of h.

b.  In a sketch, show the region under the graph
of F between h = 10 and h = 20.

c.  The amount of work done in compressing
the air is the product of the force exerted
on the piston and the distance the piston
moves. Explain why this work can be found
using a definite integral.

d.  Calculate the work done by compressing the
air from h = 20 to h = 10. What is the
mathematical reason why your answer is
negative?

e.  The units of work in this problem are
inch-pounds (in.-lb). Why is this name
appropriate?

61.  Radio Dial Derivative Problem: Figure 6-2m
shows an old AM radio dial. As you can see, the
distances between numbers decrease as the
frequency increases. If you study the theory
behind the tuning of radios, you will learn that
the distance from the left end of the dial to a
particular frequency varies logarithmically
with the frequency. That is,

d( f )= a + b ln f

where d( f ) is the number of centimeters from
the number 53 to the frequency number f on
the dial, and where a and b stand for constants.

a.  Solve for the constants a and b to find the
particular equation for this logarithmic
function.

b.  Use the equation you found in part a to make
a table of values of d( f ) for each frequency
shown in Figure 6-2m. Then measure their

Figure 6-2m
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distances with a ruler to the nearest 0.1 cm.
If your calculated and measured answers do
not agree, go back and fix your errors.

e.  Do the values of ( f ) increase or decrease

of  ( f )?

c.  Write an equation for  ( f ). In the table from
part b, put a new column that shows the
instantaneous rates of change of distance
with respect to frequency.

d.  The numbers on the dial in Figure 6-2m are

(x) = sin x.)

given in tens of kilohertz. (One hertz equals
one cycle per second.) What are the units

as f  increases? Explain how this fact is
consistent with the way the numbers are
spaced on the dial.

will explore some properties of ln that you will
prove in Section 6-3.

a.  ln of a product: Evaluate ln 2 , ln 3 , and ln 6.
How are the three values related to one
another? In general, what does ln (ab) equal
in terms of ln a and ln b?

b.  ln of a quotient: Evaluate ln (10/2), ln 10, and
ln 2. How are the three values related to one
another? In general, what does ln (a/b)
equal in terms of ln a and ln b?

c.  ln of a power: Evaluate ln (210) and ln 2. How
are the two values related to each other? In
general, what does ln (ab) equal in terms of
ln a and ln b?

d.  Change-of-base: Find (ln 2)/(log 2). Find
(ln 3)/(log 3). What do you notice? The
common logarithm function is
log x = log10 x, and the natural logarithm
function is ln x = loge x. Find ln 10. Find
1/(log e). What do you notice? Give an
example that shows

63.  Journal Problem: Update your journal with
what you’ve learned since the last entry.
Include such things as

•  The one most important thing you have
learned since your last journal entry

•  The difference between the graph of y = ln x
and the graph of y = 1/t, from which ln x is
defined

•  The second form of the fundamental
theorem of calculus, as the derivative of a
definite integral (You might give an example
such as g(x) =  sin t dt, where you actually
evaluate the integral, then show that

•  The algebraic proof of the fundamental
theorem in its second form

•  The graphical interpretation of the
fundamental theorem, second form, as the
rate at which the area of a region changes

•  Evidence (numerical, graphical, and
algebraic) you have encountered so far that
indicates that ln really is a logarithm

6-3   The Uniqueness Theorem and Properties
of Logarithmic Functions
In Section 6-2, you defined ln x as a definite integral. With this definition as a
starting point, you used the fundamental theorem in the derivative of an
integral form to prove that (d/dx)(ln x) = 1/x. This definition, coupled with the
definition of indefinite integral, also allowed you to prove that the integral of the
reciprocal function is the natural logarithm function. In this section you will see
how this definition of ln x enables you to prove by calculus the properties of
logarithms you studied in previous courses. To do this, you will learn the
uniqueness theorem for derivatives, which says that two functions with identical
derivatives and with a point in common are actually the same function.

62.  Properties of ln Problem: In this problem you
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Learn the uniqueness theorem for derivatives, and use it to prove that ln x,
defined as an integral, is a logarithmic function and has the properties of
logarithms. Use these properties to differentiate logarithmic functions with
any acceptable base.

The Uniqueness Theorem for Derivatives

OBJECTIVE

Figure 6-3a gives graphical evidence that if
functions f and g have derivatives (x) = (x)
for all values of x in a given domain, then the
function values f(x) and g(x) differ at most by a
constant. If f(a) = g(a) for some value x = a in
the domain, then the constant would be zero,
and the function values would be identical for
all x in the domain. The name uniqueness
theorem is chosen because f and g are really
only one (“unique”) function. The property is
stated and proven by contradiction here.

 

 PROPERTY:   The Uniqueness Theorem for Derivatives
 If:  1. (x) =  (x) for all values of x in the domain, and
       2.  f(a) = g(a) for one value, x = a, in the domain,

 then f(x) = g(x) for all values of x in the domain.

 
Verbally: If two functions have the same derivative everywhere and they also
have a point in common, then they are the same function. 
 

 

Proof (by contradiction): Assume that the conclusion is false. Then there is a
number x = b in the domain for which f(b) g(b) (Figure 6-3b, left side). Let h
be the difference function, h(x) = f(x) – g(x) (Figure 6-3b, right side).

Figure 6-3a

Figure 6-3b
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Thus, the secant line through the points (a , h(a)) and (b , h(b)) will have a slope
not equal to zero.

  EXAMPLE 1

Because both f and g are given to be differentiable for all x in the domain,
h is also differentiable, and so the mean value theorem applies to function
h on [a, b].
Therefore, there is a number x = c in (a, b) such that  (c) equals the slope of
the secant line. Thus,  (c )   0.

But  (x) = (x) – (x). Because (x) is given to be equal to (x) for all x in the
domain,  (x) = 0 for all x. Thus,  (c) does equal zero.

 

 PROPERTY:   Logarithm Properties of ln

 (a and b are positive, and r is any real number.)

 Product: ln (ab) = ln a + ln b
 Quotient: ln (a/b) = ln a – ln b

 Power: ln (ar ) = r ln a

 Intercept: ln 1 = 0
 

 
The intercept property is true because ln 1 = (1 / t ) dt = 0 by the properties of

Then (x) =  for all x  0, and (x) = for all x  0.

Thus, (x) =  (x) for all  x  0 and  f(1) = g(1). So, by the uniqueness theorem

Because f(a) = g(a) and f(b)  g(b), it follows that h(a) = 0 and h(b)  0.

This is a contradiction. Therefore, the assumption is false, and f(x) does equal
g(x) for all x in the domain, Q.E.D.

Logarithm Properties of ln
Four properties of logarithms for natural logs are given in this box.

definite integrals. Example 1 shows how you can use the uniqueness theorem
to prove the product property of ln. You will prove the other properties in
Problem Set 6-3.

Prove that ln (ab) = ln a + ln b for all a  0 and b  0.

Proof Let b stand for a positive constant, and replace a with the variable x .

Let  f(x) = ln (xb), and let g(x) = ln x  + ln b .

Substituting 1 for x gives

for derivatives,  f(x) = g(x) for all  x  0.

 f (1) = ln b and g(1) = ln 1 + ln b = 0 + ln b = ln b.
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  EXAMPLE 2

That is, ln (xb) = ln x + ln b for any positive number x and any positive
number b. Replacing x with a gives
ln (ab) = ln a + ln b for all a  0 and all b  0, Q.E.D.

 (x) =  (x) for all x  0

 

 ALGEBRAIC DEFINITION:  Logarithm

 a = logb c if and only if ba = c          where b  0, b   1, and c  0

 Verbally: A logarithm is an exponent.
 

 

Prove that ln x = loge x for all x  0.

Proof Let f(x) = ln x =               , and let g(x) = loge x.

Then (x) = 1/x for all x  0 by the fundamental theorem in the derivative of
the integral form, and  (x) = 1/x for all x  0 by the proof in Chapter 3.

But f(1) = ln 1 =  = 0 by the properties of definite integrals,

and g(1) = loge 1 = 0 by the properties of logarithms (e0 = 1).
  f(1) = g(1)

  f(x) = g(x) for all x  0 by the uniqueness theorem

So ln x = loge x for all x  0, Q.E.D.

Derivatives of Base-b Logarithmic Functions
The new problem of differentiating  y = logb x can be transformed into an old
problem using the change-of-base property. Logarithms to any given base are
directly proportional to logs to any other base. In other words, logb x = k loga x.
To prove this, recall the algebraic definition of logarithm.

Memory aid: For y = log2 x,

•  2 is the base. (log2 is read “log base 2.”)
•  y is the exponent, because a logarithm is an exponent.

•  x is the answer to the expression 2y.

Proof that ln x Is a Logarithm
The uniqueness theorem forms a lemma that you can use to prove that ln x is
really a logarithmic function. Recall from Chapter 3 that the derivative of loge x
is 1/x.
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By the algebraic definition of logarithm.

Take the ln of both sides.

  EXAMPLE 3

Log of a power property.

Substitute  for y.

 

 PROPERTY:   Change-of-Base Property for Logarithms

 

              
 

 

Find an equation for (x) if f(x) = log10 x. Check the formula by evaluating (2)
and showing that the line at the point (2, log10 2), with slope (2), is tangent to
the graph.

 y – 0.3010  0.217(x – 2)            or            y  0.217x – 0.133

  EXAMPLE 4 If  f(x) = log4 3x, find (x) algebraically and find an approximation for (5).

showing that (5) has a sign that agrees with the slope of the graph.

To derive the change-of-base property, start with

The property works for any other base logarithm (b  0, b  1), as well as for
natural logarithms. Note that the logarithms in the numerator and denominator
on the right side have the same base, e.

Solution Use the change-of-base property.

Derivative of a constant times a function.

The line through the point (2, log10 2), which equals (2, 0.3010...), has slope

Thus, the line’s equation is

Figure 6-3c shows the graph of f (x) and the line. The line really is tangent to the
graph, Q.E.D.

Figure 6-3c

Show that your answer is reasonable by plotting  f on your grapher and by

 f (x)

(x)

(2)
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Problem Set 6-
3

  EXAMPLE 5

Quick Review

Solution

By calculator, (5) = 0.144269... .

To plot the graph, enter the transformed equation involving ln, shown above. As
Figure 6-3d shows, f(x) is increasing slowly at x = 5, which agrees with the small
positive value of the derivative.Figure 6-3d

Solution First, use the properties of ln to transform the quotient and powers into sums
that are more easily differentiated.

ln of a quotient.

ln of a power, twice.

Derivative of ln, and the chain rule.

Optional simplification.

Conclusion
You have shown that the function defined by the integral

has the graph of a logarithmic function, including an x-intercept of 1, and you
have proved that ln x, defined this way, is equivalent to loge x and has the
logarithm of a product property. In the following problem set you will prove by
calculus that ln x has the other properties of logarithms.

Q1.  Differentiate:  y = tan–1 x

Q2.  Integrate:  (4x + 1)–1 dx

Q3.  Find: lim  (sin x)/(x)

Q4.  log 12 – log 48 = log —?—

Q5.  log 7 + log 5 = log —?—

Q6.  3 log 2 = log —?—

 f (x)

(x)

Find
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Q7.  Sketch the graph of   y dx for the function
shown in Figure 6-3e.

Figure 6-3e

Q8.  Write one hypothesis of the mean value
theorem.

Q9.  Write the other hypothesis of the mean value
theorem.

Q10.  If  y = x3, then the value of dy when x = 2 and
dx = 0.1 is —?—.
A. 12 B. 1.2 C. 0.8 D. 0.6 E. 0.4

0.  Look Ahead Problem 2: Look at the derivatives
and the integrals in Problem Set 6-6. Make a
list, by problem number, of those you presently
know how to do.

For Problems 1–6, show that the properties of ln are
true by evaluating both sides of the given equation.

1.  ln 24 = ln 6 + ln 4
2.  ln 35 = ln 5 + ln 7
3.  ln  = ln 2001 – ln 667

4.  ln  = ln 1001 – ln 77

5.  ln (17763) = 3 ln 1776
6.  ln (10664) = 4 ln 1066

For Problems 7 and 8, prove the properties. Do this
without looking at the proofs in the text. If you get
stuck, look at the text proof just long enough to get
going again.

7.  Prove the uniqueness theorem for derivatives.
8.  Prove that ln x = loge x for all x  0.

9.  Prove that ln (a/b) = ln a – ln b for all a  0
and b  0.

10.  Prove that ln (ab) = b ln a for all a  0 and for
all b.

11.  Prove that ln (a/b) = ln a – ln b again, using the
property given in Problem 10 as a lemma.

12.  Prove by counterexample that ln (a + b) does
not equal ln a + ln b.

13.  Write the definition of ln x as a definite integral.

14.  Write the change-of-base property for
logarithms.

For Problems 15 and 16, find an equation for the
derivative of the given function and show
numerically or graphically that the equation gives a
reasonable value for the derivative at the given
value of x.

15.  f(x) = log3 x,  x = 5
16.  f(x) = log0.8 x,  x = 4

For Problems 17–24, find an equation for the
derivative of the given function.

17.  g(x) = 8 ln (x5)

18.  h(x) = 10 ln (x0.4)

19.  T(x) = log5 (sin x)

20.  R(x) = log4 (sec x)

21.  p(x) = (ln x)(log5 x)

22.  q(x) =

23.  f(x) = ln 

24.  f(x) = ln (x4 tan x)

25.  Find (ln x3x)

26.  Find (ln 5sec x)

27.  Lava Flow Problem: Velocities are measured in
miles per hour. (When a velocity is very low,
people sometimes prefer to think of how many
hours it takes for the lava to flow a mile.) Lava
flowing down the side of a volcano flows more
slowly as it cools. Assume that the distance, y,
in miles, from the crater to the tip of the
flowing lava is given by

 y = 7 · (2 – 0.9x)



Section 6-3:   The Uniqueness Theorem and Properties of Logarithmic Functions © 2005 Key Curriculum Press 287

where x is the number of hours since the lava
started flowing (Figure 6-3f).

Figure 6-3f

equation to find out how fast the tip of the
lava is moving when x = 0, 1, 5, and 10 h. Is
the lava speeding up or slowing down as
time passes?

b.  Transform the equation y = 7 · (2 – 0.9x)
(from part a) so that x is in terms of y by
taking the log of both sides, using some
appropriate base for the logs.

c.  Differentiate the equation given in part b
with respect to y to find an equation for
dx/dy. Calculate dx/dy when y = 10 mi.
What are the units of dx/dy?

x = 10 h.

e.  You might think that dy/dx and dx/dy are
reciprocals of each other. Based on your
answers above, in what way is this
reasoning true and in what way is it not true?

28.  Compound Interest Problem: If interest on a
savings account is compounded continuously,
and the interest is such that the annual
percentage rate (APR) equal 6%, then M, the
amount of money after t years, is given by the
exponential function M = 1000 × 1.06t. You
can solve this equation for t in terms of M.

a.  Show the transformations needed to get t in
terms of M.

b.  Write an equation for dt/dM.

c.  Evaluate dt/dM when M = 1000. What are
the units of dt/dM? What real-world
quantity does dt/dM represent?

d.  Does dt/dM increase or decrease as M
increases? How do you interpret the
real-world meaning of your answer?

29.  Base e for Natural Logarithms Problem:
Figure 6-3g shows the graph of y = ln x and the
horizontal line y = 1. Because logb b = 1 for
any permissible base b, the value of x where
the two graphs cross must be the base of the
ln function. By finding this intersection
graphically, confirm that e is the base of the
natural logarithm function.

Figure 6-3g

30.  Journal Problem: Update your journal with
what you’ve learned about the natural and
base-b logarithmic functions in this section.

Volcanologists in Hawaii stand on the fresh crust of
recently hardened lava.

a.  Find an equation for dy/dx. Use the

d.  Calculate dx/dy for the value of y when
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and Logarithmic Differentiation
You have studied the natural logarithm function starting with its definition as a
definite integral. In this section you will define the natural exponential function
as the inverse of the natural logarithm function. In doing so you will learn some
properties of exponential functions that you can prove by calculus.

Derive properties of y = ex starting with its definition as the inverse of
 y = ln x. Use the results to define bx, and differentiate exponential functions
by first taking the natural logarithm.

OBJECTIVE

6-4   The Number e, Exponential Functions,

The Number e
In Chapter 3, you found that you can use e as a base for the exponential whose
derivative is the same as the function. That is,

If  f(x) = ex,  then (x) = ex.

There is a way to define e directly. Suppose that you evaluate (1 + n)1/n as n gets
closer to zero. The base gets closer to 1, suggesting the limit may be 1, because
1 to any real power is 1. However, as n approaches zero from the positive side
the exponent becomes very large because the reciprocal of a positive number
close to zero is very large, and raising a number greater than 1 to a very large
power gives a very large answer. And, as n approaches zero from the negative
side, the base is less than 1, and raising a number less than 1 to a very large
negative power also gives a very large answer. Figure 6-4a shows that the limit
is e, which is more than 1 but is finite.

Figure 6-4a

Figure 6-4b

The number e is defined to be this limit. The equivalent definition,

lim (1 + 1/x)x

gives the same answer, e, as shown by graph in Figure 6-4b. In Problem 62
of Problem Set 6-4 you will see how this expression arises naturally when you
use the definition of derivative to differentiate a base-b logarithmic function.
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  EXAMPLE 1

 

 DEFINITION:   e

              
 Numerically: e = 2.7182818284...  (a nonrepeating decimal) 

 
 

Solution

Note that in each of these cases, e takes the form 1 . Like 0/0, this form is also
indeterminate. You can’t determine what the limit is just by looking at the
expression.

Note also that although the digits ...1828... in the decimal part of e seem to be
repeating, the repeat happens only once. Like , the number e is a
transcendental number. Not only is it irrational (a non-ending, nonrepeating
decimal), but you cannot express it using only a finite number of the operations
of algebra (+, –, ×, ÷, and roots) performed on integers. It “transcends,” or “goes
beyond” these operations.

Inverse Relationship between e x and ln x
Recall from Section 3-9 that y = e x and y = ln x are inverses. Also, recall that for
functions that are inverses of each other, f( f –1(x)) = x and f –1( f(x)) = x. So,

ln (ex) = x and eln  x = x

Differentiate: y = cos (ln e7x)

 y = cos (ln e7x)   y = cos 7x Function of an inverse function property.

   = –7 sin 7x

General Exponential Function: y = b x

You can express an exponential expression with any other base in terms of ex.
For example, to express 8x in terms of ex, first write 8 as a power of e.

Let 8 = ek, where k stands for a positive constant.

Then  ln 8 = ln ek Take ln of  both sides.
= k(ln e) Reason?
= k Reason?

 8 = eln 8 Substitute ln 8 for k.

This equation is an example of the inverse relationship

eln  x = x

This relationship leads to a definition of exponentials with bases other than e.

bx = (eln  b)x
Replace b with eln  b.

= ex ln  b Multiply the exponents.



a. Definition of 8x .

Derivative of  base-e exponential
function and the chain rule.
Definition of 8x .

b. Definition of 8x .

Trans form to get the differential
of the inside function.

The formulas for derivatives and integrals of exponential functions that you
learned earlier and proved in this chapter are summarized here for your
reference.

Note: The reason for using u and du in the integration formulas is to show that
anything that is not a part of the exponential must be the differential of the
inside function (that is, the differential of the exponent).

290 © 2005 Key Curriculum Press Chapter 6:   The Calculus of Exponential and Logarithmic Functions

  EXAMPLE 2

 

 DEFINITION:  Exponential with Base b

                 b x = e x ln  b

 

 
The definition of base-b exponential functions allows you to differentiate and
integrate these functions based on the chain rule. Example 2 shows how to
do this.

a. Find . b.  Find .

Solution

 

 PROPERTY:   Derivative and Integral of a Base-b Exponential Function

 Algebraically: For any positive constant b  1 (to avoid division by zero),

 
              

 Verbally: To differentiate, multiply bx by ln b.
 To integrate, divide bu by ln b (and add C ).

 Special case: 
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You can also evaluate the derivative of y = 8x using a procedure called
logarithmic differentiation.

  EXAMPLE 3

 y = 8x

ln y = ln 8x

ln y = x ln 8
Take the ln of both sides.

ln of a power.

If f (x) = , find (x) .

ln f(x) = ln

ln f(x) = ln (3x + 7)5 – ln 

Solution

ln f(x) = 5 ln (3x + 7) –  ln (x + 2)

  EXAMPLE 4

Solution

Logarithmic Differentiation

= 1(ln 8) Differentiate implicitly with respect to x.

 =  y(ln 8) Solve for y′
   =  y 8x(ln 8) Substitute for y.

This method is especially useful when differentiating functions where the base
itself is a variable, as in Example 3.

Find (x): f(x) = (x3 + 4)cos x

 f(x) = (x3 + 4)cos x

ln f(x) = ln (x3 + 4)cos x Take ln of  both sides.

ln f(x) = cos x [ln (x3 + 4)] ln of a power.

Differentiate implicitly
on the left. Derivative of
a product on the right.

The properties of logarithms allow you to turn a power into a product, which
you know how to differentiate. The other properties let you transform products
and quotients to sums and differences, which are even easier to differentiate.
Example 4 shows you how this is done.

Take ln of both sides.

ln of a quotient.

ln of a power.

Differentiate implicitly and
use the chain rule.



 

292 © 2005 Key Curriculum Press Chapter 6:   The Calculus of Exponential and Logarithmic Functions

Problem Set 6-
4
Quick Review

Q1.  Differentiate:  y = ln 7x3

Q2.  Integrate:  (5x)–3 dx

Q4.  Differentiate: y = cos–1 x

Q5.  —?—

For Problems Q9 and Q10, let g(x) =  f t ) dt, where
 f(t ) is shown in Figure 6-4c.

Q3.  Integrate:  (5x)–1 dx

Q6. 

Q7.  ln 12 + ln 3 = ln —?—

Q8.  3 ln 2 = ln —?—

Figure 6-4c

Q9.  g(7) is closest to

A. 2 B. 4 C. 6 D. 8 E. 10

Q10.   (7) is closest to —?—.

A. 2 B. 4 C. 6 D. 8 E. 10

0.  Look Ahead Problem 3: Look at the derivatives
and the integrals in Problem Set 6-6. Make a
list, by problem number, of those you presently
know how to do.

1.  Rabbit Population Problem: When rabbits were
introduced to Australia in the mid-1800s, they
had no natural enemies. As a result, their
population grew exponentially with time. The
general equation of the exponential function R,
where R(t) is the number of rabbits and t is
time in years, is

R(t) = ae kt

a.  Suppose there were 60,000 rabbits in 1865,
when t = 0, and that the population had
grown to 2,400,000 by 1867. Substitute these
values of t and R to get two equations
involving the constants a and k. Use these
equations to find values of a and k, then
write the particular equation expressing R(t)
as a function of t.

b.  How many rabbits does your model predict
there would have been in 1870?

c.  According to your model, when was the first
pair of rabbits introduced into Australia?

2.  Depreciation Problem: The value of a major
purchase, such as a car, depreciates
(decreases) each year because the purchase
gets older. Assume that the value of Otto
Price’s car is given by

v(t ) = 20,000 e- 0.1t

where v  is the value, in dollars, of the car at
time t, in years after it was built.

a.  How much was it worth when it was built?
b.  How much did it depreciate during its

eleventh year (from t =10 to t =11)?

c.  What is the instantaneous rate of change (in
dollars per year) of the value at t =10? Why
is this answer different from the answer you
found in part b?

d.  When will the value have dropped to $5,000?

3.  Compound Interest Problem: In many real-world
situations that are driven by internal forces,
the variables are often related by an
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exponential function. For instance, the more
money there is in a savings account, the faster
the amount in the account grows (Figure 6-4d).

If $1000 is placed in a savings account in which
the interest is compounded continuously, and
the interest is enough to make the annual
percentage rate (APR) equal 6%, then the
amount of money, m, in dollars, in the account
at time, in years after it is invested, is

m(t) = 1000(1.06)t

Figure 6-4d

a.  Find an equation for the derivative, (t ). At
what rate is the amount growing at the
instant t = 0 yr? At t =5 yr? At t = 10 yr?
What are the units of these rates?

b.  Find the amount of money in the account at
t = 0 yr, t =5 yr, and t = 10 yr. Does the rate
of increase seem to be getting larger as the
amount increases?

c.  Show that the rate of the increase is directly
proportional to the amount of money
present. One way to do this is to show that

(t)/m(t) is constant.

d.  Show that the account earns exactly $60 the
first year. Then explain why the rate of
increase at time t = 0 is less than $60/yr.

4.  Door-Closer Problem: In Section 1-1, you
explored a problem in which a door was
pushed open. As the automatic door-closer
slowed the door down, the number of degrees,

d(t), the door was open after time t, in
seconds, was given as

d(t) = 200t · 2 – t, 0  t  7
Use what you have learned about derivatives of
exponential functions to analyze the motion of
the door. For instance, how fast is it opening at
t = 1 and at t = 2? At what time is it open the
widest, and what is the derivative at that time?
A graph might help.

5.  Definition of e Problem: Write the two forms of
the definition of e as a limit, as shown in this
section. Explain why these two limits lead to
indeterminate forms. Show numerically that the
values of the expressions in the two forms of
the definition get closer to 2.7182818284... .
(Note that if you use large enough values of the
exponent, the calculator may round the base
to 1, making the limit seem to be the incorrect
value 1.)

For Problems 6–47, find the derivative. Simplify your
answer.

6.  y = 17e–5x

7.  y = 667e –3x

8.  h(x) = x3ex

9.  g(x) = x–6ex

10.  r(t) = et sin t
11.  s(t) = et tan t

12.  u = 3exe–x

13.  v = e–4xe4x

14.  y = 

15.  y = 

16.  y = 4esec x

17.  y = 7ecos x

18.  y = 3 ln e2x

19.  y = 4 ln e5x

20.  y = (ln e3x)(ln e4x)
21.  y = (ln e–2x)(ln e5x)
22.  g(x) = 4eln  x
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24.  y = ex + e–x

25.  y = ex – e–x

26.  y = e5x3

27.  y = 8ex5

28.  f(x) = 0.42x

29.  f(x) = 10 –0.2x

32.  c(x)= x5 · 3x

33.  m(x)= 5x · x7

30.  g(x) = 4(7x)

31.  h(x) = 1000(1.03x)

34.  y = (ln x)0.7x

35.  y = xln x

36.  y = (csc 5x)2x

37.  y = (cos 2x)3x

23.  h(x) = 6e ln 7x

38.  y = ln

39.  y = ln [(4x – 7)(x + 10)]

40.  y = (2x + 5)3 · 
(Use logarithmic differentiation.)

41.  y =

(Use logarithmic differentiation.)

42. 

43. 

44. 

45. 

46.  (ln x5)

47.  (e7x)

For Problems 48–59, find the indefinite integral.
Simplify the answer.

48.   e5x dx

49.   e7x dx

50.   72x dx

51.   1.05x dx

52.   6ex dx

53.   e0.2x dx

54.   esin x cos x dx

55.   etan x sec2 x dx

56.   e3 ln x dx

57.   60eln 5x  dx

58.   (1 + e 2x)50e 2x dx

59.   (1 – e 4x)100e4x dx

For Problems 60 and 61, evaluate the definite
integral using the fundamental theorem. Show by
numerical integration that your answer is correct.

60.   (ex – e –x) dx

61.  (ex + e –x) dx

62.  Derivative of Base-b Logarithm Function from
the Definition of Derivative: In this problem you
will see how the definition of e as

arises naturally if you differentiate f(x) = logb x
starting with the definition of derivative. Give
reasons for the indicated steps.

Given.

Reason?

Reason?

Reasons?

  f(x)

(x)



Multiply by 1

and rearrange.

Why is this the limit
of a “constant”
times a function?

Reason?

Assuming limit
of log equals
log of limit.

Why is this the
definition of e?

63.  Look Ahead Problem 3 Follow-Up: In Problem 0,
you were asked to look at Problem Set 6-6 and
indicate which problems you knew how to do.
Go back and make another list of the problems
in Problem Set 6-6 that you know how to do
now but that you didn’t know how to do before
you worked on this problem set.

64.  Journal Problem: Update your journal with
what you’ve learned about the exponential
function in this section. In particular, note what
you now know that you did not yet know when
you studied exponential functions in Chapter 3.

6-5   Limits of Indeterminate Forms:
l’Hospital’s Rule

When you use one of the formulas for finding derivatives, you are really using
shortcuts to find the limit of the indeterminate form 0/0. You can use these
formulas to evaluate other limits of the form 0/0. Figure 6-5a shows the graph of

Figure 6-5a
If you try to evaluate f(1), you get

The graph suggests that the limit of  f(x) as x approaches 1 is 4 .

The technique you will use to evaluate such limits is called l’Hospital’s rule,
named after G. F. A. de l’Hospital (1661–1704), although it was probably known
earlier by the Bernoulli brothers. This French name is pronounced “lo-pee-tal′.”
(It is sometimes spelled l’Hôpital, with a circumflex placed over the letter o.) You
will also learn how to use l’Hospital’s rule to evaluate other indeterminate forms
such as / , 1 , 00, 0and  – .

L’Hospital’s rule is easy to use but tricky to derive. Therefore, you will start out
by seeing how it works, then get some insight into why it works. To find the limit
of a fraction that has the form 0/0 or / , you will take the derivatives of the

in the form x/x

Section 6-5:   Limits of Indeterminate Forms: l’Hospital’s Rule © 2005 Key Curriculum Press 295

Given an expression with an indeterminate form, find its limit using
l’Hospital’s rule.

 f(x)

 f(1)

OBJECTIVE
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 PROPERTY:  l′Hospital′s Rule

 If  and if       

 then , provided the latter limit exists. 

 
Corollaries of this rule lead to the same conclusion if x  or if both g(x)
and h(x) approach infinity.
 

 

g(x)/h(x) = (x2 + 2x – 3)/(ln x) (given above),

 

 PROPERTY:    Limit-Function Interchange for Continuous Functions

 For the function f(x) = g(h(x)), if h(x) has a limit, L, as x approaches c and 

 if g is continuous at L, then .

 
 

numerator and the denominator, then find the limit. For instance, if

which agrees with Figure 6-5a. Here is a formal statement of l’ Hospital’s rule.

Background Item: Limit-Function Interchange
for Continuous Functions
If you take the limit of a continuous function that has another function inside,
such as

it is possible to interchange the limit and the outside function,

Consider a simpler case, for which it’s easy to see why continuity is sufficient
for this interchange. The definition of continuity states that if g is continuous at
x = c, then

But c is the limit of x as x approaches c. Replacing c with the limit gives

which shows that the limit and the outside function have been interchanged.

 f(x)

 f(x)

sin (tan x)

sin

g(x) = g(c)

g(x) = g

g(h(x)) = g



Limit of a quotient.
Definition of derivative.

If the derivatives of f and g are also continuous at x = c, you can write

and

Therefore,

Q.E.D.

where the last step is justified by the limit of a quotient property used
“backwards.” A formal proof of l’Hospital’s rule must avoid the difficulty that

proofs of the corollaries are not shown here because they would distract you
from what you’re learning. A graphical derivation of l’Hospital’s rule is
presented in Problem 34 of Problem Set 6-5.

Example 1 gives you a reasonable format to use when you apply l’Hospital’s rule.
The function is the one given at the beginning of this section.

L’Hospital’s rule applies because
the limit has the form 0/0.

L’Hospital’s rule is no longer needed because
the limit is no longer indeterminate.

Example 2 shows how to use l’Hospital’s rule for an indeterminate form other
than 0/0. It also shows a case where l’Hospital’s rule is used more than once.

Solution
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Here’s why l’Hospital’s rule works. Because g(x) and h(x) both approach zero as
x approaches c, g(c) and h(c) either equal zero or can be defined to equal zero
by removing a removable discontinuity. You can transform the fraction for f(x)
to a ratio of difference quotients by subtracting g(c) and h(c), which both equal
zero, and by multiplying by clever forms of 1.

  EXAMPLE 1

[h(x) – h(h(c)] might be zero somewhere other than at x = c. This proof and the

Find L =

  f(x)

  f(x)

  f(x)

(c) = (x) (c) = (x)
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Evaluate  x2e–x

As x goes to infinity, x2 gets infinitely large and e–x goes to zero. A graph of

  EXAMPLE 2

  1.01x =   0.99x = 0

  EXAMPLE 3

Solution

ln L  = –1  L  = e–1

 
 y = x2e–x suggests that the expression goes to zero as x becomes infinite
(Figure 6-5b). To show this by l’Hospital’s rule, first transform the expression
into a fraction.

infinity. Expressions that take on the form 0 and 00 are also indeterminate.
Example 3 shows you how to evaluate an indeterminate form with a variable
base and exponent. As in logarithmic differentiation, shown earlier in this
chapter, the secret is to take the log of the expression. Then you can transform
the result to a fraction and apply l’Hospital’s rule.

If an expression approaches 1 , the answer is indeterminate. You saw such a
case with the definition of e, which is the limit of (1 + 1/x)x as x approaches

The function f(x) = x1/(1–x) takes on the indeterminate form 1  at x = 1. The
graph of f (Figure 6-5c) shows a removable discontinuity at x = 1 and shows
that the limit of f(x) as x approaches 1 is a number less than 0.5. You can find
the limit by using l’Hospital’s rule after taking the log.

L’Hospital’s rule doesn’t apply yet.

L’Hospital’s rule does apply now. Find the
derivative of the numerator and the denominator.

L’Hospital’s rule applies again.

L’Hospital’s rule is no longer needed.

(finite)/(infinite)   0

Figure 6-5b

Indeterminate Exponential Forms
If you raise a number greater than 1 to a large power, the result is very large. A
positive number less than 1 raised to a large power is close to zero. For instance,

and

Evaluate

Figure 6-5c

Let  L

Then  In L Reverse ln and lim.

L’Hospital’s rule applies now.

Find the derivative of the
numerator and the denominator.

The solution to Example 3 agrees with the graph in Figure 6-5c.

Solution

= 0

  L = e–1 = 0.367879...
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Problem Set 6-
5
Quick Review

Q1.  e  —?— (as a decimal)

Q2.  e = —?— (as a limit)
Q3.  In e = —?—

Q4.  In (exp x) = —?—

Q5.  eln x = —?—
Q6.  If logb  x = ln x, then b = —?—.
Q7.  logb  x = —?— (in terms of the function ln)

Q8.  If  f(x)  =  ex, then  f ' (x) = —?—
Q9.   e–x dx = —?—

Q10.  If f(x) =  sin t dt, then f ' (x) = —?—.

1.  

2.  

3.  

4.  

5.  

6.  

7. 

8.  

9.  

10.  

11.  

12.  

13.  

14.  

16.  

17.  

19.  

20.  

18.  

21.   xx

22.    (sin x)sin x

23.   (sin x)tan x

24.  

28.  

27.  

26.    (1 + ax)1/  x where a = constant)

25.    (1 + ax)1/  x where a = positive constant)

A.  sin x
B.  sin x + C
C.  sin (tan x)
D.  sin (tan x) – sin 1
E.  sin (tan x) sec2 x

For Problems 1 and 2, estimate graphically the limit
of f(x) as x approaches zero. Sketch the graph.
Then confirm your estimate using l’Hospital’s rule.

For Problems 3–30, find the indicated limit. Use
l’Hospital’s rule if necessary.

15.  
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29.  

30.  

 f(x) 

Year Total at End of Year
0 1000                         
1 1000(1.06)               
2 1000(1.06)2                     

3 1000(1.06)3                     

               
 t 1000(1.06)t                     

31.  Infinity Minus Infinity Problem: Let
 f(x) = sec2 x – tan2 x. Because both
sec ( /2) and tan ( /2) are infinite, f(x) takes
on the indeterminate form  –  as x
approaches 1. Naive thinking might lead you to
suspect that  –  is zero because the
difference between two equal numbers is zero.
But  is not a number. Plot the graph of f .
Sketch the result, showing what happens at
x = 1, 3, 5, . . . . Explain the graph based on
what you recall from trigonometry.

32.  L’Hospital’s Surprise Problem! Try to evaluate
 using l’Hospital’s rule. What

happens? Find the limit by using some other
method.

33.  Zero to the Zero Problem: Often, the
indeterminate form 00 equals 1. For instance,
the expression (sin x)sin x approaches 1 as
x approaches 0. But a function of the form

 f(x) = xk / (ln x)

(where k stands for a constant) that
approaches 00 does not, in general, approach 1.
Apply l’Hospital’s rule appropriately to
ascertain the limit of f(x) as x approaches
zero. On your grapher, investigate the graph of
 f(x). Explain your results.

34.  L’Hospital’s Rule, Graphically: In this problem
you will investigate

which approaches 0/0 as x approaches 3. You
will see l’Hospital’s rule graphically.

a.  Confirm that g(3) = h(3) = 0.
b.  Figure 6-5d shows the graphs of g and h,

along with the tangent lines at x = 3. Find
equations of the tangent lines. State your
answers in terms of (x – 3).

Figure 6-5d

c.  Because g and h are differentiable at x = 3,
they have local linearity in a neighborhood
of x = 3. Thus, the ratio g(x)/h(x) is
approximately equal to the ratio of the two
linear functions you found in part b. Show
that this ratio is equal to g' (3)/h' (3)

d.  Explain the connection between the
conclusion you made in part c and
l’Hospital’s rule. Explain why the conclusion
might not be true if either g(3) or h(3) were
not equal to zero.

e.  Plot the graph of f . Sketch the result,
showing its behavior at x = 3.

35.  Continuous Compounding of Interest Problem:
Suppose you deposit $1000 in a savings
account that is earning interest at 6% per year,
compounded annually (once a year). At the end
of the first year, it will earn (0.06)(1000), or
$60, so there will be $1060 in your account.
You can easily find this number by multiplying
the original $1000 by 1.06, which is
(1 + interest rate). At the end of each
subsequent year, you multiply the amount in
your account at the beginning of that year
again by 1.06, as shown in this table.
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(twice a year), your account gets half the
interest rate for twice as many time periods.
If m(t) is the number of dollars in the
account after time t, in years, explain why

ii.  

iii.  

iv.  

v.  

Types of Indeterminate Form
Limits that take the following forms can
equal different numbers at different times
and thus cannot be found simply by looking
at the form:

a.  If the interest is compounded semiannually

b.  Write an equation for m(t) if the interest is
compounded n times a year. Then find the
limit of this equation as n approaches
infinity to find m(t) if the interest is
compounded continuously. Treat t as a
constant, because it is n that varies as you
find the limit.

c.  How much more money would you have
with continuous compounding than you
would have with annual compounding after
5 yr? After 20 yr? After 50 yr?

d.  Quick! Write an equation for m(t) if the
interest is 7% per year compounded
continuously.

36.  Order of Magnitude of a Function Problem: Let
L be the limit of f(x)/g(x) as x approaches
infinity. If L is infinite, then f is said to be of a
higher order of magnitude than g. If L = 0,
then f is said to be of a lower order of
magnitude than g. If L is a finite nonzero
number, then f and g are said to have the same
order of magnitude.

a.  Rank each kind of function according to its
order of magnitude.

i.  Power function, f(x) = xn, where n is a
positive constant

ii.  Logarithmic function, g(x) = ln x

iii.  Exponential function, h(x) = ex

b.  Quick! Without using l’Hospital’s rule,
evaluate the following limits.

i.  

37.  Journal Problem: In your journal, write
something about various indeterminate forms.
Include examples of functions that approach
the following forms.

Try to pick examples for which the answer is
not obvious. For instance, pick a function that
approaches 0/0 but for which the limit does
not equal 1. Show how other indeterminate
forms can be algebraically transformed to 0/0
or to /  so that you can use l’Hospital’s rule.

6-6   Derivative and Integral Practice
for Transcendental Functions
You have learned how to differentiate the elementary transcendental functions—
trigonometric and inverse trigonometric, exponential and logarithmic—and how
to integrate some of these. In this section you will learn how to integrate the
remaining four trigonometric functions (sec, csc, tan, and cot). In Chapter 9, you
will learn integration by parts, which will enable you to integrate the remaining
elementary transcendental functions—logarithmic and inverse trigonometric.
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OBJECTIVE Differentiate and integrate algebraically functions involving logs and
exponentials quickly and correctly so that you can concentrate on the
applications in the following chapters.

Integrals of tan, cot, sec, and csc
You can integrate the tangent function by first transforming it to sine and
cosine, using the quotient properties from trigonometry.

 

 PROPERTIES:   Integrals of the Six Trigonometric Functions

  sin x dx = –cos x + C
  cos x dx = sin x + C
  tan x dx = –ln | cos x| + C = ln |sec x| + C
  cot x dx = ln |sin x| + C = –ln |csc x| + C
  sec x dx = ln |sec x + tan x| + C

  csc x dx = –ln |csc x + cot x| + C = ln |csc x – cot x | + C

 

The formulas for  cot x dx and for  csc x dx are derived similarly. These

Transform to the integral of
the reciprocal function.

ln n = –ln (1 /n)

The cotangent function is integrated the same way. The integrals of secant and
cosecant are trickier! A clever transformation is required to turn the integrand
into the reciprocal function. The key to the transformation is that the derivative
of sec x is sec x tan x and the derivative of tan x is sec2 x. Here’s how it works.

Multiply by a “clever” form of 1.

Write as the
reciprocal function.

(sec2 x + sec x tan x) dx is the
differential of the denominator.

integrals are listed, along with sine and cosine, in this box.
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The next two boxes give properties of logs and exponentials that will help you
do calculus algebraically.

 

 PROPERTIES:   Natural Logs and Exponentials

 Definition of the Natural Logarithm Function:

               (where x is a positive number) 

 Calculus of the Natural Logarithm Function:

                    ln x dx   (to be introduced in Chapter 9) 

 Integral of the Reciprocal Function (from the definition):

               

 Logarithm Properties of  ln:

              Product:   ln (ab) = ln a + ln b

              Quotient:   ln (a/b) = ln a – ln b
              Power:    ln (ab) = b ln a         
              Intercept:     ln 1 = 0 

 Calculus of the Natural Exponential Function:

                     

 Inverse Properties of Log and Exponential Functions:

              ln (e x) = x   and   eln  x = x       
 

 Function Notation for Exponential Functions:

              exp (x) = e x

 

 
Definition of e:
                        

              e = 2.7182818284...    (a transcendental number,
                                                   a nonrepeating decimal) 
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 PROPERTIES:   Base-b Logs and Exponentials

 Equivalence of Natural Logs and Base-e Logs:

              ln x = loge x for all x  0       

 Calculus of Base-b Logs:   

                       (to be introduced in Chapter 9)

 Calculus of Base-b Exponential Functions:

              

 Change-of-Base Property for Logarithms:

              

 

For Problems 1–56, find . Work the problems in

Problem Set 6-6

the order in which they appear, rather than just the
odds or just the evens.

1.  y = ln (3x + 4)
2.  y = ln (3x5)
3.  y = ln (e3x)
4.  y = ln (sin 4x)
5.  y = ln (cos5 x)
6.  y = ln (e5)
7.  y = ln [cos (tan x)]

8.  y = ln

9.  y = cos (ln x)
10.  y = sin x · ln x
11.  y = e7x

12.  y = ex3

13.  y = e5 ln x

14.  y = ecos x

15.  y = cos (e x)

16.  y = (cos3 x)(e3x)
17.  y = ex5

18.  y = eex

19.  sin y = e x

20.  y = ex · ln x

21.  y =

22.  tan y = ex

23.  y = ln (eln  x)

24.  y = 2x

25.  y = e x ln 2

26.  y = e2 ln x

27.  y = x2

28.  y = e x ln  x

29.  y = xx

30.  y = x ln x – x
31.  y = e x(x – 1)

32.  y = 



42.  y = 

43.  y = (log8 x) (ln 8)
44.  y = (log4 x)10

45.  y = log5 x7

46.  y = tan e x

47.  y = esin x

48.  y = ln csc x
49.  y = 35

50.  y = ln (cos2 x + sin2 x)
51.  y = sin x

52.  y = sin–1 x
53.  y = csc x

54.  y = tan–1 x
55.  y = tan x
56.  y = cot x

For Problems 57–80, integrate. Work the problems
in the order in which they appear, rather than just
the odds or just the evens.

61.  

62.   5x dx

63.   e x ln 5 dx

64.  

65.  

66.   e–x dx

68.   (x–0.2  + 3x) dx

69.  

70.  

71.  

72.   cos x dx

73.   eln  x dx

74.   ln (e3x) dx

75.   0 dx

For Problems 81–90, find the limit of the given
expression.

82.  
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57.  e4x dx

58.  e4 dx

59.  x3ex4dx

60.  cos x · esin x dx

67.   2x dx

76.  cos x sec x dx

77.  sec 2x dx

78.  tan 3x dx

79.  cot 4x dx

80.  csc 5x dx

83.  

84.  

81.  

37.  y = x–7 log2 x

34.  y = 

33.  y = 

35.  y = 5x

36.  y = log5 x

38.  y = 2–x cos x
39.  y = e–2x ln 5x
40.  y = 

41.  y = 
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86.  

In this chapter you extended your knowledge of exponential and logarithmic
functions. The integral of the reciprocal problem arose naturally from a
population growth problem. The power rule does not work for  x–1 dx, but you
learned another form of the fundamental theorem that allows you to evaluate
this integral by a clever definition of the natural logarithmic function. Using the
uniqueness theorem, you proved that ln x defined this way has the properties of
logarithms. Putting all this together enabled you to define bx so that the answer
is a real number for any real exponent, rational or irrational. Finally, you learned
l’Hospital’s rule, with which you can use derivatives to evaluate limits of
indeterminate forms such as 0/0 or / .

85.  

87.  

88.  

89.  

90.  

6-7   Chapter Review and Test

Review Problems
R0.  Update your journal with what you’ve learned

since your last entry. Include such things as

•  The one most important thing you’ve
learned in studying Chapter 6

•  Which boxes you’ve been working on in the
“define, understand, do, apply” table

•  Your ability to work calculus algebraically,
not just numerically, on logs and exponentials

•  New techniques and properties you’ve learned
•  Any ideas about logs and exponentials you

need to ask about before the test on
Chapter 6

R1.  a.   If money in a savings account earns interest
compounded continuously, the rate of
change of the amount in the account is
directly proportional to the amount of
money there. Suppose that for a particular
account, dM/dt = 0.06M, where M is the
number of dollars in the account and t is the
number of years the money has been

earning interest. Separate the variables so
that M is on one side and t is on the other. If
$100 is in the account at time t = 0, show
that when t = 5 yr,

where x is the number of dollars in the
account after five years.

b.  Use your grapher’s numerical integration
and solver features to find, approximately,
the value of x for which the left integral
equals 0.3.

c.  To the nearest cent, how much interest will
the account have earned when t = 5 yr?

R2.  a.  Explain why you cannot evaluate x–1 dx
using the power rule for integrals.

b.  State the fundamental theorem of calculus
in the derivative of an integral form. Write
the definition of ln x as a definite integral,
and use the fundamental theorem in this
form to write the derivative of  ln x.



c.  Differentiate.

ii.  dx

iii.   x2(x3 – 4)–1 dx

shown in Figure 6-7a. On a copy of this
figure, sketch the graph of h(x) in the
domain [1, 11].

Figure 6-7a

f.  Memory Retention Problem: Paula Tishan
prides herself on being able to remember
names. The number of names she can
remember at an event is a logarithmic
function of the number of people she meets
and her particular equation is

 y = 1 – 101 ln 101 + 101 ln (100 + x)

where y is the number of names she
remembers out of x, the number of people
she meets. The graph is shown in Figure 6-7b.

Figure 6-7b

i.  How many names can Paula remember if
she meets 100 people? If she meets just
1 person? What percent of the people she
meets do these two numbers represent?

ii.  At what rate does she remember names if
she has met 100 people? If she has met
just 1 person?

iii.  What is the greatest number of names
Paula is likely to remember without
forgetting any? What assumptions did you
make to come up with this answer?

R3. a.  i.  State the algebraic definition of y = logb x.
ii.  State the definition of ln x as a definite

integral.
iii.  State the uniqueness theorem for

derivatives.
iv.  Use the uniqueness theorem to prove that

ln x = loge x.
v.  Use the uniqueness theorem to prove the

property of the ln of a power.

b.  i.  Write the definition of e as a limit.
ii.  Write an equation expressing logb x in

terms of ln x.

c.  Differentiate.
i.  y = log4 x
ii.  f(x) = log2 (cos x)

iii.  y = log5 9x

R4. a.  Sketch the graph.
i.  y = ex

ii.  y = e-x

iii.  y = ln x

b.  Differentiate.

i.  f(x) = x1.4e5x

ii.  g(x) = sin e–2x

iii.  

iv.  y = 100x

v.  f(x) = 3.7 · 100.2x

vi.  r(t) = ttan t

c.  Differentiate logarithmically:
 y = (5x – 7)3(3x + 1)5
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i.  y = (ln 5x)3

ii.  f(x) = ln x9

iii.  y = csc (ln x)

iv.  g(x) =  csc t dt

d.  Integrate.

i.   dx

e.  Let h(x) =  where the graph of f is



d.  Integrate.

e.  Chemotherapy Problem: When a patient
receives chemotherapy, the concentration,
C(t), in parts per million, of chemical in the
blood decreases exponentially with time t,
in days since the treatment. Assume that

C(t) = 150e–0.16t

(See Figure 6-7c.)

Figure 6-7c

i.  You can express the amount of exposure
to the treatment, E(x), after t = x days as
the product of the concentration and the
number of days. Explain why a definite
integral must be used to calculate the
exposure.

ii.  Write an equation for E(x). What is the
patient’s exposure in 5 days? In 10 days?
Does there seem to be a limit to the
exposure as x becomes very large? If so,
what is the limit? If not, why not?

iii.  Quick! Write an equation for E′(x). At
what rate is E(x) changing when x = 5?
When x = 10?

f.  Vitamin C Problem: When you take vitamin C,
its concentration, C(t), in parts per million,
in your bloodstream rises rapidly, then drops
off gradually. Assume that if you take a
500-mg tablet, the concentration is given by

C(t) = 200t × 0.6t

where t is time in hours since you took the
tablet. Figure 6-7d shows the graph of C.

Figure 6-7d

i.  Approximately what is the highest
concentration, and when does it occur?

ii.  How fast is the concentration changing
when t = 1? When t = 5? How do you
interpret the signs of these rates?

iii.  For how long a period of time will the
concentration of the vitamin C remain
above 50 ppm?

iv.  If you take the vitamin C with a cola
drink, the vitamin C decomposes more
rapidly. Assume that the base in the
equation changes from 0.6 to 0.3. What
effect will this change have on the highest
concentration and when it occurs? What
effect will this change have on the length
of time the concentration remains above
50 ppm?

R5.  Evaluate the limits.

g.  Write as many indeterminate forms as you
can think of.

R6.  a.  Differentiate.
i.  y = ln (sin4 7x)
ii.  y = x–3e2x

iii.  y = cos (2x)
iv.  y = log3 (x4)

b.  Integrate.

i   e–1.7x dx
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i.   10e–2xdx
ii.    ecos x sin x dx

iii.     dx

iv.   100.2x dx

a.  

b.  

c.    x3 e–x

d.  

e.   3x4

f.   (tan2 x – sec2 x)
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ii.   2sec x(sec x tan x dx)

iii.   (5 + sin x)–1 cos x dx

iv.  dz

i.  

ii.  

for y and . Calculate the constants a, b, and c

 y2 – ln x dx,  with C = 0

x ln x ln x dx
0.5     –0.6931471... –0.8465735...
1.0       0                 –1                  
2.0 0.6931471... –0.6137056...
3.0 1.0986122...   0.2958368...
4.0 1.3862943...   1.5451774...
5.0 1.6094379...   3.0471895...
6.0 1.7917594...   4.7505568...
10.0 2.3025850... 13.0258509...

 

c.  Find each limit.

Concept Problems

C1.  Derivation of the Memory Equation Problem: In
Problem R2f, the number of names, y, that Paula
remembered as a function of people met, x, was

 y = 1 – 101 ln 101+ 101 ln (100 + x)
Suppose that, in general, the number of names
a person remembers is

 y = a + b ln (x + c)
State why the following conditions are reasonable

so that these conditions will be met.

 y = 1 when x = 1
 = 1 when x = 1

 y = 80 when x = 100

C2.  Integral of ln Problem: In Chapter 9, you will
learn how to antidifferentiate y = ln x. In this
problem you will discover what this
antiderivative equals by examining graphs and
a table of values. Figure 6-7e shows

 y1 = ln x

(You will learn how to calculate y2 in
Chapter 9.) The table shows values of xs y1,
and y2. From the tables and the graph, see if
you can find an equation for y2. Describe the
methods you tried and state whether or not
these methods helped you solve the problem.

Figure 6-7e

C3.  Continued Exponentiation Function Problem:
Let g(x) = xx, where both the base and the
exponent are variable. Find g′ (x). Then suppose
that the number of x’s in the exponent is also
variable. Specifically, define the continued
exponentiation function, cont(x), as follows:

where there is x number of x’s in the exponent.
For instance,

which has over 3.6 billion digits. Find a way to
define cont(x) for non-integer values of x. Try
to do so in such a way that the resulting
function is well defined, continuous, and
differentiable for all positive values of x,
including the integer values of x.

C4.  Every Real Number Is the ln of Some Positive
Number: Figure 6-7f (on the next page) shows
the graph of f(x) = ln x. The graph seems to be
increasing, but slowly. In this problem you will
prove that there is no horizontal asymptote
and that the range of the ln function is all real
numbers.

cont(x)

cont(3)
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a.  Prove by contradiction that ln is unbounded
above. That is, suppose that there is a
positive number M such that ln x = M for all
values of x  0. Then pick a clever value of x
and show that you get an answer greater
than M for ln x.

b.  Prove (quickly!) that ln is unbounded below. a.  Find  (x) if g(x) =   sin t dt .
b.  Find  (x) if g(x) =  sin t dt
.c.  Write a generalization: If g(x) =  f(t) dt,

then  (x) = —?—. Include this

C6.  What does equal?

T13. 

Figure 6-7f

c.  Prove (quickly!) that ln is continuous for all
positive values of x.

d.  Prove that for any two numbers a and b, if k
is between ln a and ln b, then there is a
number c between a and b such that
ln c = k. Sketching a graph and using the
intermediate value theorem are helpful here.

e.  Use the connections among parts a-d to
prove that any real number, k, is the natural
log of some positive number. That is, the
range of ln is {real numbers}.

f.  Use the fact that ln x and ex are inverses of
each other to show that the domain of
 y = ex is the set of all real numbers and that
its range is the set of positive numbers.

C5.  Derivative of an Integral with Variable Upper
and Lower Limits: You have learned how to
differentiate an integral such as g(x) = sin t dt
between a fixed lower limit and a variable
upper limit. In this problem you will see what
happens if both limits of integration are
variable.

generalization in your journal.

Chapter
Test
PART 1: No calculators allowed (T1–
T18)

T2.  Write the definition of e as a limit.
T3.  State the fundamental theorem of calculus in

the derivative of an integral form.
T4.  State the uniqueness theorem for derivatives.
T5.  Use the uniqueness theorem to prove that

ln x = loge x for all positive numbers x.

T6.  Let  f(x) = ln (x3ex). Find (x) in the following
two ways. Show that the two answers are
equivalent.

a.  Without first simplifying the equation
for f(x)

b.  First simplifying the equation for f(x) by
using ln properties

For Problems T7–T11, find an equation for the
derivative, then simplify.

T7.  y = e2x ln x3

T8.  v = ln (cos 10x)

T9.  f(x) = (log2 4x)7

T10.  t(x) = ln (cos2 x + sin2 x)

T11.  p(x) = et sin t dt

For Problems T12–T15, evaluate the integral.

T12.   e5x dx

T14.   sec 5x dx

T15.  5x dx (algebraically)

T1.  Write the definition of ln x as a definite integral.
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(x) = (x) for all values of x, then f(x) = g(x)

T17.  Find:   (tan x)cot x

T18.  Figure 6-7g shows the graph of function f .

T16.  Find: 

sketch the graph of function g.
b.  Let h(x) =  f(t) dt. Find h' (3).

Figure 6-7g

PART 2: Graphing calculators allowed (T19–T23)

T19.  Use the definition of ln as a definite integral to
evaluate ln 1.8 approximately by using a
midpoint Riemann sum M4. Show the steps you
used to evaluate this sum. Show that your
answer is close to the calculator’s value of ln 1.8.

T20.  Let g(x) = sin t dt. Find g′ (x) two ways:
(1) by evaluating the integral using the
fundamental theorem in the g(b) – g(a) form,
then differentiating the answer, and (2) directly
by using the fundamental theorem in the
derivative of the integral form. Show that the
two answers are equivalent.

T21.  Proof of the Uniqueness Theorem: The
uniqueness theorem for derivatives states that
if f(a) = g(a) for some number x = a, and if

for all values of x. In the proof of the theorem,

you assume that there is a number x = b for
which f(b) does not equal g(b). Show how this
assumption leads to a contradiction of the
mean value theorem.

T22.  Force and Work Problem: If you pull a box
across the floor, you must exert a certain force.
The amount of force needed increases with
distance if the bottom of the box becomes
damaged as it moves. Assume that the force
needed to move a particular box is given by

 F(x) = 60e0.1x

where F(x) is the number of pounds that must
be exerted when the box has moved distance x,
in feet (Figure 6-7h).

Figure 6-7h

a.  At what rate is the force changing when
x = 5? When x = 10?

b.  Recall that work (foot-pounds) equals force
times distance moved. Explain why a
definite integral is used to find the work
done moving the box to x = 5 from x = 0.

c.  Write an integral for the work done in
moving the box from x = 0 to x = 5. Evaluate
the integral by using the appropriate form of
the fundamental theorem to find a
“mathematical-world” answer (exact). Then
write a real-world answer, rounded
appropriately.

T23.  What did you learn as a result of taking this
test that you did not know before?

6-8   Cumulative Review: Chapters 1–6
The problems in this section constitute a “semester exam” that will help you
check your mastery of the concepts you’ve studied so far. Another cumulative
review appears at the end of Chapter 7.

a.  Let g(x) =   f(t)  dt. On a copy of Figure 6-7g,
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Problem Set 6-
8

and

 f(x) = x3, then (x) = 3x2.

difference quotients for (5) by using

value of (7) for
 f(x) 

1.  The derivative of a function at a point is its
instantaneous rate of change at that point. For
the function

show that you can find a derivative numerically
by calculating (3), using a symmetric
difference quotient with x = 0.1.

2.  A definite integral is a product of x and y,
where y is allowed to vary with x. Show that
you can calculate a definite integral graphically
by estimating the integral of g(x), shown in
Figure 6-8a, from x = 10 to x = 50.

Figure 6-8a

3.  Derivatives and definite integrals are defined
precisely by using the concept of limit. Write
the definition of limit.

4.  Intuitively, a limit is a y-value that f(x) stays
close to when x is close to a given number c.
Show that you understand the symbols for,
and the meaning of, limit by sketching the
graph of one function for which the following
is true.

5.  Limits are the basis for the formal definition of
derivative. Write this definition.

6.  Show that you can operate with the definition
of derivative by using it to show that if

7.  Properties such as the one used in Problem 6
allow you to calculate derivatives algebraically,
so that you get exact answers. Find  (5) for the

function in Problem 6. Then find symmetric

x = 0.01 and x = 0.001. Show that the
difference quotients get closer to the exact
answer as x approaches 0.

8.  When composite functions are involved, you
must remember the chain rule. Find the exact

9.  Derivatives can be interpreted graphically.
Show that you understand this graphical
interpretation by constructing an appropriate
line on a copy of the graph in Figure 6-8b for
the function in Problem 8.

Figure 6-8b

10.  You’ve learned to differentiate products and
quotients, and to find second derivatives.
Evaluate:

a.   if y = e2x cos 3x

b.   (x) if q(x) = 

c.   (5)x

11.  Piecewise functions can sometimes be
differentiable at a point where two pieces meet.
For the function f , use one-sided limits to find
the values of a and b that make f differentiable
at x = 2.

Plot the graph using Boolean variables to
restrict the domain, and sketch the result.

 f(x
)

 f(x)

 f(x)

 f(x) = 2x
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a.  cos5 x sin x dx

b.  

c.  tan x dx

d.  sec x dx

e.  (3x – 5)1/2 dx

by using Riemann sums. Show that you
understand what a Riemann sum is by finding
an upper sum, using n = 6 subintervals, for

13.  The definition of definite integral involves the
limit of a Riemann sum. For the integral in
Problem 12, find midpoint Riemann sums with
n = 10 and n = 100 increments. What limit do
these sums seem to be approaching?

12.  Definite integrals can be calculated numerically

14.  Indefinite integrals are antiderivatives.
Evaluate:

15.  The fundamental theorem of calculus gives an
algebraic way to calculate definite integrals
exactly using indefinite integrals. Use the
fundamental theorem to evaluate

from Problem 12. Show that your answer is the
number you conjectured in Problem 13 for the
limit of the Riemann sums.

16.  The fundamental theorem is proved using the
mean value theorem as a lemma. State the
mean value theorem. Draw a graph that clearly
shows that you understand its conclusion.

17.  Much of calculus involves learning how to work
problems algebraically that you have learned
to do graphically or numerically. Use implicit
differentiation to find dy/dx if

 y = x9/7

thereby showing how the power rule for the
derivative of functions with integer exponents
is extended to functions with non-integer
exponents.

18.  Explain why the power rule for derivatives
never gives x–1 as the answer to a
differentiation problem.

19.  The fundamental theorem in its other form
lets you take the derivative of a function
defined by a definite integral. Find (x) if

20.  Show how the fundamental theorem in its
second form lets you write a function whose
derivative is x–1.

21.  The function you should have written in
Problem 20 is the natural logarithm function.
Use the uniqueness theorem for derivatives
to show that this function has the property of
the log of a power. That is, show that

ln xa = a ln x

for any constant a and for all values of x  0.

22.  Using the parametric chain rule, you can find
dy/dx for functions such as

 x = 5 cos t
 y = 3 sin t

Write a formula for dy/dx in terms of t.

23.  The ellipse in Figure 6-8c has the parametric
equations given in Problem 22. Find dy/dx if
t = 2. On a copy of Figure 6-8c, show
graphically that your answer is reasonable.

Figure 6-8c

24.  You can apply derivatives to real-world
problems. Suppose that a car’s position is

 y = tan-1 t

where y is in feet and t is in seconds. The
velocity is the instantaneous rate of change of
position, and the acceleration is the
instantaneous rate of change of velocity. Find
an equation for the velocity and an equation
for the acceleration, both as functions of time.
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from the mathematical world. For instance,
derivatives can be used to calculate limits by
using l’Hospital’s rule. Find

26.  In the differentiation of the base-b logarithm

 x  f(x)
2.0 100
2.5 150
3.0 170
3.5 185
4.0 190
4.5 220
5.0 300

25.  Derivatives can also be applied to problems

function, this limit appears:

By appropriate use of l’Hospital’s rule, show
that this limit equals e, the base of natural
logarithms.

27.  You can use derivatives to find related rates of
moving objects. Figure 6-8d shows Calvin
moving along Broadway in his car. He
approaches its intersection with East Castano
at 30 ft/s, and Phoebe, moving along East
Castano, pulls away from the intersection at
40 ft/s. When Calvin is 200 ft from the
intersection and Phoebe is 100 ft from the
intersection, what is the instantaneous rate of
change of z, the distance between Calvin and
Phoebe? Is the distance z increasing or
decreasing?

Figure 6-8d

28.  Simpson’s rule can be used to find definite
integrals numerically if the integrand is
specified only by a table of data. Use Simpson’s

rule to find the integral of f (x) from x = 2
to x = 5.

29.  You can use integrals to find the volume of a
solid object that has a variable cross-sectional
area. The solid cone in Figure 6-8e is formed by
rotating about the x-axis the region under the
line y = (r/h)x from x = 0 to x = h (the height
of the cone). Find the volume dV of the
disk-shaped slice of the solid shown in terms
of the sample point (x, y) and the differential
dx. Then integrate to find the volume. Show
that your answer is equivalent to the geometric
formula for the volume of a cone,

Figure 6-8e

30.  It is important for you to be able to write about
mathematics. Has writing in your journal
helped you understand calculus better? If so,
give an example. If not, why not?
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The Calculus of
Growth and Decay

live for thousands of years. You can find the age of one of these
trees by measuring carbon-14, absorbed when the tree grew. The
rate of decay of carbon-14 is proportional to the amount remaining.
Integrating the differential equation that expresses this fact shows
that the amount remaining is an exponential function of time.

Baobab trees, which grow in various parts of southern Africa, can
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Mathematical Overview
If you know the rate at which a population grows, you can use
antiderivatives to find the population as a function of time. In
Chapter 7, you will learn ways to solve differential equations for
population growth and other related real-world phenomena. You
will solve these differential equations in four ways.

Graphically

Numerically

      .            .                .               .       .            .                .               .       .            .                .               . 

The icon at the top of each
even-numbered page of this chapter
shows three particular solutions of the
same differential equation. This graph
also shows the slope field for the
differential equation.

x  y1  y2  y3

0 0.5 1.0 1.5
1 0.64... 1.28... 1.92...
2 0.82... 2.64... 2.47...
3 1.05... 2.11... 3.17...

Algebraically , a differential equation

Verbally I learned that the constant of integration is of vital importance in the
solution of differential equations. Different values of C give different
 particular solutions. So I must remember +C!



7-1  Direct Proportion Property

Exploratory Problem Set 7-1

1.  Suppose the number of dollars, D(t), in a
savings account after time t, in years, is

D(t) = 500(1.06t )

Figure 7-1a shows the graph of function D.
Calculate the number of dollars at t = 0 yr,
t = 10 yr, and t = 20 yr.

Figure 7-1a

2.  For Problem 1, calculate (0), (10), and
 (20). What are the units of (t)? Does the

rate increase, decrease, or stay the same as the
amount in the account increases?

3.  For the account described in Problem 1, let R(t)
be the instantaneous rate of change of money
in dollars per year per dollar in the account.
Calculate R(0), R(10), and R(20).

4.  If you multiply the values of R(t) you found in
Problem 3 by 100, you get the interest rates for
the savings account expressed as percentages.
Does the interest rate go up, go down, or stay
the same as the amount of money in the
account increases?

5.  Recall that if y is directly proportional to x,
then y = kx, where k stands for a constant
(called the constant of proportionality). Show
that the following property is true.

Property: Direct Proportion Property
of Exponential Functions
If f is an exponential function, f(x) = a · bx,
where a and b are positive constants, then

(x) is directly proportional to f(x).

6.  Just for fun, see if you can prove the converse
of the property given in Problem 5. That is,
prove that if (x) is directly proportional to
 f(x), then  f  is an exponential function of x.
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of Exponential Functions
In Chapters 1-6, you learned the heart of calculus. You now know precise
definitions and techniques for calculating limits, derivatives, indefinite integrals,
and definite integrals. In this chapter you will solve differential equations, which
express the rate at which a function grows. The function can represent
population, money in a bank, water in a tub, radioactive atoms, or other
quantities. A slope field, shown in the graph in this chapter’s Mathematical
Overview, helps you solve complicated differential equations graphically. Euler’s
method allows you to solve them numerically. Antiderivatives let you solve them
algebraically. The experience you gain in this chapter will equip you to apply
these concepts intelligently when they arise in your study of such fields as
biology, economics, physics, chemistry, engineering, medicine, history, and law.

OBJECTIVE
functions by working a real-world problem.
Discover, on your own or with your study group, a property of exponential
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At the beginning of Chapter 6, you encountered a population growth problem in
which the rate of change of the population, dP/dt, was directly proportional to
that population. An equation such as dP/dt = kP is called a differential
equation. Finding an equation for P as a function of t is called solving the
differential equation. In this section you will learn an efficient way to solve this
sort of differential equation.

  EXAMPLE 1

OBJECTIVE Given a real-world situation in which the rate of change of y with respect to x
is directly proportional to y, write and solve a differential equation and use
the resulting solution as a mathematical model to make predictions and
interpretations of that real-world situation.

7-2   Exponential Growth and Decay

Population Problem: The population of the little town of Scorpion Gulch is now
1000 people. The population is presently growing at about 5% per year. Write a
differential equation that expresses this fact. Solve it to find an equation that
expresses population as a function of time.

Solution Let P be the number of people after time t, in years after the present. The
differential equation is

The growth rate is dP/dt;  5% of the population is
0.05 times the population.

Use algebra to separate the variables on opposite sides
of the differential equation.

Integrate both sides of the differential equation.

ln |P| = 0.05t + C Evaluate the integral.

eln  |P | = e0.05t+C Exponentiate both sides of the integrated equation.

|P| = e0.05t · eC Exponential of an ln on the left, product of powers
with equal bases on the right.

P = eC · e0.05t |P|  = ±P

P = C1e0.05t eC  is a positive constant. Let C1 = ± eC . This is
the general solution.

1000 = C1e(0.05)(0) = C1 Substitute 0 for t  and 1000 for P.

 P = 1000e0.05t Substitute 1000 for C1. This gives the particular
solution.

This differential equation was solved by separating the variables. The general
solution represents a family of functions (Figure 7-2a), each with a different
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  EXAMPLE 2

 

Figure 7-2a

constant of integration. The population of 1000
at t = 0 is called an initial condition , or
sometimes a boundary condition . The solution
of a differential equation that meets a given
initial condition is called a particular solution.
Figure 7-2a shows the particular solution from
Example 1. It also shows two other particular
solutions, with C1 = 500 and C1 = 1500.

Example 2 shows how you can use a differential
equation to solve another real-world situation.
You can measure the air pressure in a car or
bicycle tire in pounds per square inch (psi). If
the pressure in each of the four tires of a
3000-lb vehicle is 30 psi, the tires will flatten enough on the bottoms to have
“footprints” totaling 100 in2. Lower tire pressure will cause the tires to deform
more so that pressure times area still equals 3000 lb.

Punctured Tire Problem: You have just run over a nail. As air leaks out of your
tire, the rate of change of the air pressure inside the tire is directly proportional
to that pressure.

a.  Write a differential equation that states this fact. Evaluate the
proportionality constant if, at time zero, the pressure is 35 psi and
decreasing at 0.28 psi/min.

b.  Solve the differential equation subject to the initial condition given in
part a.

c.  Sketch the graph of the function. Show its behavior a long time after the
tire is punctured.

d.  What will the pressure be 10 min after the tire was punctured?
e.  The car is safe to drive as long as the tire pressure is 12 psi or greater. For

how long after the puncture will the car be safe to drive?

Solution a.  Let p = pressure, in psi.
Let t = time since the puncture, in minutes.

Rate of change of pressure is directly
proportional to pressure.

–0.28 = k(35) Substitute for dp/dt and p. Because p
is decreasing, dp/dt is negative.

–0.008 = k
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ln

Separate the variables.b.

Integrate both sides.

ln |p| = –0.008t + C1
Use C1 here so that you can use
the simpler symbol C later on.

eln  | p| = e–0.008t+ 

| p| = e  e–0.008t

 p = Ce–0.008t Let  so that you can use
 p instead of |p| .

35 = Ce–0.008(0)  35 = C Substitute the initial condition.

 p = 35e–0.008t Write the particular solution.

Figure 7-2b

c.  The graph is shown in Figure 7-2b. The t-axis is a horizontal asymptote.
You should be able to sketch the graph of a decreasing exponential
function such as this one without plotting it on your grapher first.

d.  p = 35e–0.008(10) = 32.30907...
The pressure 10 min after the tire is punctured will be about 32.3 psi.

e. 12 = 35e–0.008t Substitute 12 for p.

 = e–0.008t

The car will be safe to drive for about 134 min, or slightly less
than  h.

In Problem Set 7-2, you will work more problems in which differential equations
lead to exponential functions.

Problem Set 7-2

Quick Review

Q1.  Sketch:  y = ex

Q2.  Sketch:  y = e–x

Q3.  Sketch:  y = ln x

Q4.  Sketch:  y = x2

Q5.  Sketch:  y = x3

Q6.  Sketch:  y = 1/x

Q7.  Sketch:  y = x

Q8.  Sketch:  y = 3

Q9.  Sketch:  x = 4

Q10.  Sketch:  y = 3 – x

1.  Bacteria Problem: Bacteria in a lab culture
(Figure 7-2c) grow in such a way that the
instantaneous rate of change of the bacteria
population is directly proportional to the
number of bacteria present.

a.  Write a differential equation that expresses
this relationship. Separate the variables and
integrate the equation, solving for the
number of bacteria as a function of time.



Section 7-2:   Exponential Growth and Decay © 2005 Key Curriculum Press 321

b.  Suppose that initially there are 5 million
bacteria. Three hours later, the number has
grown to 7 million. Write the particular
equation that expresses the number of
millions of bacteria as a function of the
number of hours.

Figure 7-2c

c.  Sketch the graph of bacteria versus time.
d.  What will the bacteria population be one full

day after the first measurement?
e.  When will the population reach 1 billion

(1000 million)?

2.  Nitrogen-17 Problem: When a water-cooled
nuclear power plant is in operation, oxygen in
the water is transmuted to nitrogen-17
(Figure 7-2d). After the reactor is shut down,
the radiation from the nitrogen-17 decreases in
such a way that the rate of change in the
radiation level is directly proportional to the
radiation level.

Figure 7-2d

a.  Write a differential equation that expresses
the rate of change in the radiation level in
terms of the radiation level. Solve this
equation to find an equation that expresses
the radiation level in terms of time.

b.  Suppose that when the reactor is first shut
down, the radiation level is 3 × 1017 units.
After 60 s the level has dropped to 5.6 × 1013

units. Write the particular equation.

c.  Sketch the graph of radiation level versus
time.

d.  It is safe to enter the reactor compartment
when the radiation level has dropped to
7 × 10–3 units. Will it be safe to enter the
reactor compartment 5 min after the reactor
has been shut down? Justify your answer.

3.  Chemical Reaction Problem: Suppose that a
rare substance called calculus foeride reacts in
such a way that the rate of change in the
amount of foeride left unreacted is directly
proportional to that amount.

a.  Write a differential equation that expresses
this relationship. Integrate it to find an
equation that expresses amount in terms of
time. Use the initial conditions that the
amount is 50 mg when t = 0 min, and 30 mg
when t = 20 min.

b.  Sketch the graph of amount versus time.
c.  How much foeride remains an hour after the

reaction starts?
d.  When will the amount of foeride equal

0.007 mg?

4.  Car Trade-In Problem: Major purchases, like
cars, depreciate in value. That is, as time
passes, their value decreases. A reasonable
mathematical model for the value of an
object that depreciates assumes that the
instantaneous rate of change of the object’s
value is directly proportional to the value.

a.  Write a differential equation that says that
the rate of change of a car’s trade-in value is
directly proportional to that trade-in value.
Integrate the equation and express the
trade-in value as a function of time.
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is presently $4200. Three months ago its
trade-in value was $4700. Find the
particular equation that expresses the
trade-in value as a function of time since the
car was worth $4200.

c.  Plot the graph of trade-in value versus time.
Sketch the result.

d.  What will the trade-in value be one year after

b.  Suppose you own a car whose trade-in value

the time the car was worth $4700?
e.  You plan to get rid of the car when its trade-in

value drops to $1200. When will this be?
f.   At the time your car was worth $4700, it was

31 months old. What was its trade-in value
when it was new?

g.  The purchase price of the car when it was
new was $16,000. How do you explain the
difference between this number and your
answer to part f ?

5.  Biological Half-Life Problem: While working, you
accidentally inhale some mildly poisonous
fumes. Twenty hours later you still feel a bit
woozy, so you finally report to the medical
facility where you are sent by your employer.
From blood samples, the doctor measures a
poison concentration of 0.00372 mg/mL and
tells you to come back in 8 hours. On the
second visit, she measures a concentration of
0.00219 mg/mL.
Let t be the number of hours that have elapsed
since you first visited the doctor and let C be
the concentration of poison in your blood, in
milligrams per milliliter. From biology, you
realize that the instantaneous rate of change of
C with respect to t is directly proportional to C.

a.  Write a differential equation that relates
these two variables.

b.  Solve the differential equation subject to the
initial conditions specified. Express C as a
function of t.

c.  The doctor says that you could have
suffered serious damage if the
concentration of poison had ever been
0.015 mg/mL. Based on your mathematical
model from part a, was the concentration
ever that high? Justify your answer.

d.  Plot the graph of this function. Sketch the
function, showing the values in part c.

e. The biological half-life of a poison is the
length of time it takes for its concentration
to drop to half of its present value. Find the
biological half-life of this poison.

6.  Carbon-14 Dating Problem: Carbon-14 is an
isotope of carbon that forms when radiation
from the Sun strikes ordinary carbon dioxide
in the atmosphere. Thus, plants such as trees,
which get their carbon dioxide from the
atmosphere, contain small amounts of
carbon-14. Once a particular part of a plant stops
growing, no more new carbon-14 is absorbed
by that part. The carbon-14 in that part decays
slowly, transmuting into nitrogen-14. Let P be
the percentage of carbon-14 that remains in a
part of a tree that grew a number of years ago, t.

a.  The instantaneous rate of change of P with
respect to t is directly proportional to P. Use
this fact to write a differential equation that
relates these two variables.

b.  Solve the differential equation for P in terms
of t. Use the fact that the half-life of
carbon-14 is 5750 yr. That is, if P = 100
when t = 0, then P = 50 when t = 5750.

c.  The oldest living trees in the world are the
bristlecone pines in the White Mountains of
California. Scientists have counted 4000
growth rings in the trunk of one of these
trees, meaning that the innermost ring grew
4000 years ago. What percentage of the
original carbon-14 would you expect to find
remaining in this innermost ring?



d.  A piece of wood claimed to have come from

your answers to parts c–e are correct by showing
that they lie on this graph. Sketch the results.

7.  Compound Interest Problem I: Banks compound
interest on savings continuously, meaning that
the instant the interest is earned, it also starts
to earn interest. So the instantaneous rate at
which the money in your account changes is
directly proportional to the size of your
account. As a result, your money, M, increases
at a rate proportional to the amount of money
in the account (Figure 7-2e),

where M is in dollars, t is in years, and k is a
proportionality constant.

Figure 7-2e

Based on what you have learned so far in
calculus, determine how M varies with t. To
find the value of k for a particular savings
account, use the fact that if $100 is invested at
an interest rate of 7% per year, then M is
increasing at a rate of $7 per year at the instant
M = 100. Once you have found a function that
expresses M in terms of t, investigate the
effects of keeping various amounts in the

account for various times at various interest
rates. For instance, which option gives you
more money in the long run: investing twice the
amount of money, leaving the money twice as
long, or finding an interest rate twice as high?

8.  Compound Interest Problem II: If interest in a
savings account is compounded at discrete
intervals rather than continuously, then the
amount of money, M, in the account is

where M is the number of dollars at time t, in
years after the investment was made, M0 is the
number of dollars invested when t = 0, k is the
interest rate expressed as a decimal, and n is
the number of times per year the interest is
compounded. The ideas behind this equation
are shown in Problem 35 of Problem Set 6-5.
Compare the amount, M, you will have after a
specified time if the money is compounded
yearly, quarterly (four times a year), monthly,
and daily. Compare these amounts with what
you would get if the interest were compounded
continuously, as in Problem 7. What conclusions
can you make about the relative effects of
higher interest rate versus more frequent
compounding of interest? See if you can show
that the function from Problem 7 for continuous
compounding is a logical consequence of taking
the limit of the compound interest formula in
this problem as n approaches infinity.

9.  Negative Initial Condition Problem: Suppose
that the differential equation

has the initial condition y = –4 when x = 0.
Show the steps you used to solve this
differential equation. Make sure to show the
step where you remove the absolute value of y.
Sketch the graph of the particular solution.

10.  Initial Condition Not x = 0 Problem: Suppose
that the differential equation

has the initial condition y = 30 when x = 7.
Show the steps you used to solve this
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Noah’s Ark is found to have 48.37% of its
carbon-14 remaining. It has been suggested
that the Great Flood occurred in 4004 B.C.E.
Is the wood old enough to come from Noah’s
Ark? Explain.

e.  Plot the graph of P versus t for times from
0 years through at least 20,000 years. Use your
grapher’s TRACE  feature to demonstrate that
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  EXAMPLE 1

In Section 7-2, you worked real-world problems in which dy/dx was directly
proportional to y. In this section you will work real-world problems in which
the derivative has a more complicated property than being directly proportional
to y. Some of the resulting functions will be exponential and others will not.

OBJECTIVE Given the relationship between a function and its rate of change, write a
differential equation, solve it to find an equation for the function, and use the
function as a mathematical model.

when x = 0.
then y = y0ekx, where y0 is the value of  y

If ,  y, where k stands for a constant,

Property of Exponential Functions
Theorem: Converse of the Direct Proportiondifferential equation. Make sure you show how

exponential function. Good mathematicians
are quick to spot possible generalizations that
shorten the problem-solving process. Prove the
following property.

7-3   Other Differential Equations
for Real-World Applications

Tin Can Leakage Problem: Suppose you fill a tall (topless) tin can with water,
then punch a hole near the bottom with an ice pick (Figure 7-3a). The water
leaks quickly at first, then more slowly as the depth of the water decreases. In
engineering or physics, you will learn that the rate at which water leaks out is
directly proportional to the square root of its depth. Suppose that at time
t = 0 min, the depth is 12 cm, and dy/dt is –3 cm/min.

Figure 7-3a

a.  Write a differential equation that states that the instantaneous rate of
change of y with respect to t is directly proportional to the square root
of y. Find the proportionality constant.

b.  Solve the differential equation to find y as a function of t. Use the given
information to find the particular solution. What type of function is this?

c.  Plot the graph of y as a function of t. Sketch the graph. Consider the
domain of t in which the function gives reasonable answers.

d.  Solve the equation from part b algebraically to find the time it takes the can
to drain. Compare your answer with the time it would take the can to drain
at a constant rate of –3 cm/min.

a. k is the proportionality constant.
The 1/2 power is equivalent to
the square root.

you found the constant of integration.

11.  Generalization Problem: In this section you
worked problems in which the rate of change
of y was directly proportional to y. Solving
these differential equations always led to an

Solution
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At t = 0, y = 12 and = –3.

 –3 = k(121/2)  k = –3(12–1/2)

  EXAMPLE 2

b.

 y–1/2 dy =  k dt

2y1/2 = kt + C

2(121/2) = k · 0 + C = C

 y = t2 – 3t + 12

dy/dt is negative because y is
decreasing as t  increases.

Separate the variables. It’s simpler
to write k instead of –3(12–1/2).

Substitute the initial condition
 y = 12 when t  = 0.

 y = (kt + C )2 = (k2t2 + 2kCt + C2) Perform the algebra before you
substitute for k and C.

Use your pencil and paper to see
how to get this!

This is a quadratic function.

c.  Figure 7-3b shows the graph of this function. At time t = 8, the can is
empty. Beyond that time the model indicates that the can is filling back up.
Before t = 0, the can was not draining. Thus, the domain in which the
mathematical model gives reasonable answers is 0  t  8. The part of the
graph beyond t = 8 is dotted to show the quadratic nature of the function.

Figure 7-3b d. 0 =  t2 – 3t + 12

0 = (t2 – 16t + 64)  0 = (t – 8)2  t = 8
The can takes 8 min to drain, which is twice as long as it would take at the
original rate of –3 cm/min.

Example 2 shows what can happen if a population is growing at a constant rate
because of one influence and decaying at another rate because of a second
influence. The “population” in this case is water in a lake behind a dam.

Figure 7-3c

Dam Leakage Problem: A new dam is
constructed across Scorpion Gulch
(Figure 7-3c). The engineers need to
predict the volume of water in the lake
formed by the dam as a function of
time. At time t = 0 days, the water starts
flowing in at a fixed rate F, in ft3/h.
Unfortunately, as the water level rises,
some leaks out. The leakage rate, L, in ft3/h, is directly proportional to the
volume of water, W, in ft3, present in the lake. Thus, the instantaneous rate of
change of W is equal to F – L.

a.  What does L equal in terms of W ? Write a differential equation that
expresses dW/dt in terms of F, W, and t.

 y–1/2 dy = k dt
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c.  The engineers know that water is flowing in at F = 5000 ft3/h. Based on

Engineers at the Hoover
Dam can control the flow
of the Colorado River. The
water that the Hoover Dam
backs up forms Lake Mead.

W  =  no. of ft3 of water in the lake (dependent variable)

 F  =  no. of ft3/h the water flows in (a constant)
 L  =  no. of ft3/h the water leaks out (a variable)

W =  (F – C1e–kt )

b.  Solve for W in terms of t, using the initial condition W = 0 when t = 0.

geological considerations, the proportionality constant in the leakage
equation is assumed to be 0.04/h. Write the equation for W, substituting
these quantities.

d.  Predict the volume of water in the lake after 10 h, 20 h, and 30 h. After these
intervals, how much water has flowed in and how much has leaked out?

e.  When will there be 100,000 ft3 of water in the lake?
f.   Find the limit of W as t approaches infinity. State the real-world meaning of

this number.
g.  Draw the graph of W versus t, showing the asymptote.

Solution In a problem this complicated, it helps to write what letters are being used and
whether they stand for variables or constants.

a.  Proceed by putting together the information asked for in the problem.
L = kW Meaning of “directly proportional.” k stands for

the constant of proportionality.

dW/dt = F – L dW/dt is the instantaneous rate of change of W .
 dW/dt = F – kW

b.  Separating the variables appears to be tricky. Recall that F and k are
constants.

Multiply by dt. Divide by F – kW .

Integrate both sides.

The differential of the denominator, d(F – kW ), equals –kdW . Make the
numerator equal to –kdW  by multiplying and dividing by –k.

 ln |F – kW | = t + C Integral of the reciprocal function.

ln |F – kW | = –kt – kC Isolate the ln term.

|F – kW | = e–kt–kc = e–kt · e–kc Exponentiate both sides. Write the
right side as a product.

F – kW = e–kC · e–kt = C1e
–kt |F – KW |  = (F – KW ), so let

C1 = ekC.

Solve for W to get the general
solution.

  t  =  no. of hours since water started flowing (independent variable)
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  EXAMPLE 3

t = = 40.2359...

 W =  125000(1 – e–0.04t )

c.  Substituting 5000 for F and 0.04 for k gives

time t = 10 h is exactly 40,000 ft3. The flow rate is still 5000 ft3/h, as predicted.

Substituting the initial condition W = 0 when t = 0,

W = 125,000(1 – e–0.04t ) This is the particular solution.

d.  Try using your grapher’s TRACE or TABLE  feature to find values of W. Round
to some reasonable value, such as to the nearest cubic foot. The inflow
values are calculated by multiplying 5000 by t. The values of leakage are
found by subtraction.

10 41210 50000 8790
20 68834 100000 31166
30 87351 150000 62649

e.  Substituting 100,000 for W and using the appropriate algebra gives

100000 = 125000(1 – e–0.04t )
0.8 = 1– e–0.04t    e–0.04t = 0.2
–0.04t = ln 0.2 Take ln of both sides.

So it will take a bit more than 40 h for the lake to fill up to 100,000 ft3.

f.

= 125000(1 – 0)
= 125000

In the long run, the volume of water in the lake approaches 125,000 ft3.

Note that as t approaches infinity, e–0.04t has the form 1/ , and therefore
approaches zero.

Figure 7-3d

g.  The graph is shown in Figure 7-3d.

The lake in Example 2 is now filling with water. The actual volume of water at

Use this information to find a more precise value of the leakage constant k.

t            W            Inflow       Leakage

 ,  which implies that C1 = F

0 = (F – C1e0 )

0 = (F – C1)

 W = (F – Fe–kt  )

W =  (1– e–kt  )
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Substituting F = 5000 and the ordered pair (t, W ) = (10, 40000) gives

40000 =  (1 – e –10k)

You cannot solve this equation analytically for k because k appears both
algebraically (by division) and transcendentally (as an exponent). Fortunately,
your grapher allows you to evaluate k as precisely as you like. You might first
divide both sides by 5000 to make the numbers more manageable.

8 = (1 – e –10k)

Quick Review

Solution

Then use your grapher’s solver or intersect feature to find the value of k. The
result is

k = 0.046421...

Figure 7-3e
You can also find k by plotting and tracing (Figure 7-3e). It is close to the 0.04
you assumed in part c of Example 2.

Problem Set 7-3

Q1.  If  dy/dx = ky , then  y = —?—.
Q2.  If  dy/dx = kx, then  y = —?—.

Q3.  If  dy/dx = k, then  y = —?—.

Q4.  If  dy/dx = sin x, then  y = —?—.

Q5.  If  y = sin–1 x, then dy/dx= —?—.

Q6.  ln (e5cos x ) = —?—.

Q7.  eln  tan x = —?—.
Q8.  Sketch the graph of y (Figure 7-3f ) if y(1) = 0.

Figure 7-3f

Q9.  What does it mean for f to be integrable
on [a, b]?

Q10.   If v(t) dt = 17 and v(t) dt = 33, then
v(t) dt = —?—.

A. 33 + 17 B. 33 – 17 C. 17 – 33
D. 33/17 E. 17/33

1.  Sweepstakes Problem I: You have just won a
national sweepstakes! Your award is an income
of $100 a day for the rest of your life! You
decide to put the money into a fireproof filing
cabinet (Figure 7-3g) and let it accumulate. But
temptation sets in, and you start spending the
money at rate S, in dollars per day.

Figure 7-3g

a.  Let M  be the number of dollars you have in
the filing cabinet and t be the number of
days that you’ve been receiving the money.
Assuming that the rates are continuous,
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proportional to the amount of money, M.
Write an equation that expresses this fact,
then substitute the result into the
differential equation. 

dM/dt in terms of S.

b.  Your spending rate, S, is directly

c.  Separate the variables and integrate the
differential equation in part b to get an

write a differential equation that expresses

equation for M in terms of t. For the
initial condition, realize that M = 0 when
t = 0.

d.  Suppose that each day you spend 2% of the
money in your filing cabinet, so the
proportionality constant in the equation for
S is 0.02. Substitute this value into the
equation you found in part c to get M
explicitly in terms of t.

e.  Plot the graph of M versus t, and sketch the
result.

f.   How much money will you have in the filing
cabinet after 30 days, 60 days, and 90 days?
How much has come in? How much have
you spent?

g.  How much money do you have in the filing
cabinet after one year? At what rate is the
amount increasing at this time?

h.  What is the limit of M as t approaches
infinity?

2.  Sweepstakes Problem II: You’ve won a national
sweepstakes that will give you an income of
$100 a day for the rest of your life! You put the
money into a savings account at a bank
(Figure 7-3h), where it earns interest at a rate
directly proportional to the amount, M, in the
account. Assume that the $100 per day rate is
continuous, so that dM/dt  equals 100 + kM,
where k is a proportionality constant. Solve
this differential equation subject to the initial
condition that you had no money in the
account at t = 0 days. Find the proportionality
constant if the interest rate is 0.02% (not 2% !)
per day, or roughly 7% per year. Transform the
solution so that M is in terms of t. Use your
result to explore how M varies with t. (A graph
might help.) Consider such information as how
much of M and of dM/dt comes from the $100

per day and how much comes from interest
after various numbers of days. What is the
limit of M as t approaches infinity?

Figure 7-3h

3.  Electrical Circuit Problem: When you turn on
the switch in an electric circuit, a constant
voltage (electrical “pressure”), E, is applied
instantaneously to the circuit. This voltage
causes an electrical current to flow through the
circuit. The current is I = 0 A (ampere) when
the switch is turned on at time t = 0 s. The part
of this voltage that goes into overcoming the
electrical resistance of the circuit is directly
proportional to the current, I. The
proportionality constant, R, is called the
resistance of the circuit. The rest of the voltage
is used to get the current moving through the
circuit in the first place and varies directly with
the instantaneous rate of change of the current
with respect to time. The constant for this
proportionality, L, is called the inductance of
the circuit. Figure 7-3i shows an electric circuit
diagram.

Figure 7-3i

a.  Write a differential equation stating that E is
the sum of the resistive voltage and the
inductive voltage.
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b.  Solve this differential equation subject to

Sketch the result and show any
asymptotes.

d.  Predict the current for these times:
i.  1 s after the switch is turned on
ii.  10 s after the switch is turned on
iii.  At a steady state, after many seconds

e.  At what time, t, will the current reach 95% of
its steady-state value?

4.  Newton’s Law of Cooling Problem: When you
turn on an electric heater, such as a burner on
a stove (Figure 7-3j), its temperature increases
rapidly at first, then more slowly, and finally
approaches a constant high temperature. As
the burner warms up, heat supplied by the
electricity goes to two places.

i.  Storage in the heater materials, thus
warming the heater

ii.  Losses to the room

Figure 7-3j

Assume that heat is supplied at a constant
rate, R. The rate at which heat is stored is
directly proportional to the rate of change of
temperature. Let T be the number of degrees
above room temperature. Let t be the elapsed
time, in seconds, since heat was applied.
Then the storage rate is C(dT/dt ). The
proportionality constant, C, (calories per
degree), is called the heat capacity of the
heater materials. According to Newton’s law of

cooling, the rate at which heat is lost to the
room is directly proportional to T. The
(positive) proportionality constant, h, is called
the heat transfer coefficient.
a.  The rate at which heat is supplied to the

heater is equal to the sum of the storage rate
and the loss rate. Write a differential
equation that expresses this fact.

b.  Separate the variables and integrate the
differential equation. Transform the answer
so that temperature, T, is in terms of time, t.
Use the initial condition that T = 0 when t = 0.

c.  Suppose that heat is supplied at a rate
R = 50 cal/s. Assume that the heat capacity
is C = 2 cal/deg and that the heat transfer
coefficient is h = 0.04 (cal/s)/deg. Substitute
these values to get T in terms of t alone.

d.  Plot the graph of T versus t. Sketch the result.
e.  Predict T at times of 10, 20, 50, 100, and

200 s after the heater is turned on.
f.  Find the limit of T as t approaches infinity.

This is called the steady-state temperature.
g.  How long does it take the heater to reach

99% of its steady-state temperature?

5.  Hot Tub Problem: Figure 7-3k shows a
cylindrical hot tub 8 ft in diameter and 4 ft
deep. At time t = 0 min, the drain is opened
and water flows out. The rate at which it flows
is proportional to the square root of the depth,
 y, in feet. Because the tub has vertical sides,
the rate is also proportional to the square root
of the volume, V, in cubic feet, of water left.

Figure 7-3k

a.  Write a differential equation for the rate at
which water flows from the tub. That is,
write an equation for dV/dt in terms of V .

b.  Separate the variables and integrate the
differential equation you wrote in part a.
Transform the result so that V is expressed

the initial condition that I = 0 when t = 0.
Write the resulting equation with I as a
function of t.

c.  Suppose that the circuit has a resistance of
10  (ohms) and an inductance of 20 H
(henries). If the circuit is connected to a
normal 110-V (volt) outlet, write the
particular equation and plot the graph.
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with t.
c.  Suppose that the tub initially (when t = 0)

explicitly in terms of t. Tell how V varies

e.  Does this mathematical model predict a
time when the tub is completely empty, or
does the volume, V, approach zero
asymptotically? If there is a time, state it.

f.   Draw a graph of V versus t in a suitable
domain.

g.  See Problem C4 in Section 7-7 to see what
happens if a hose is left running in the
hot tub while it drains.

6.  Burette Experiment: In this problem you will
simulate Problem 5 and Example 1. Obtain a
burette (see Figure 7-3l) from a chemistry lab.
Fill the burette with water, then open the
stopcock so that water runs out fairly slowly.
Record the level of water in the burette at
various times as it drains. Plot volume versus
time on graph paper. Does the volume seem to
vary quadratically with time, as it did in
Example 1? Find the best-fitting quadratic
function for the data. Discuss the implications
of the fact that the volume, V, read on the
burette equals zero before the depth, y, of the
water equals zero.

Figure 7-3l

7.  Differential Equation Generalization Problem:
The solutions of dy/dx = kyn are functions
with different behaviors, depending on the
value of the (constant) exponent n. If n = 1,
then y varies exponentially with x. If n = 0.5,
as in the Hot Tub Problem, then y varies
quadratically with x. In this problem you will
explore the graphs of various solutions of this
equation.

a.  Write the solution of the equation for n = 1.
Let k = 1 and the constant of integration
C = –3. Graph the solution and sketch the
graph.

b.  Solve the equation for n = 0.5. Let k = 1 and
C = –3, as in part a. Graph the solution.

c.  Show that if n = –1, then y is a square root
function of x, and if n = –2, then y is a
cube root function of x. Plot both graphs,
using k = 1 and C = –3, as in part a.

d.  Show that if n  1, then there is a vertical
asymptote at x = –C/k. Plot two graphs that
show the difference in behavior for n = 2 and
for n = 3. Use k = 1 and C = –3, as in part a.

e.  What type of function is y when n = 0?
Graph this function, using k = 1 and C = –3,
as in parts a–d.

8.  Advertising Project: A company that makes
soft drinks introduces a new product. The
company’s salespeople want to predict B, the
number of bottles per day they will sell as a
function of t, the number of days since the
product was introduced. One of the parameters
is the amount per day spent on advertising.
Here are some assumptions the salespeople
make about future sales.

•  The dependent variable is B; the independent
variable is t, in days (Figure 7-3m).

Figure 7-3m

contains 196 ft3 of water and that when the
drain is first opened the water flows out at
28 ft3/min (when t = 0, dV/dt = –28). Find
the particular solution of the differential
equation that fits these initial conditions.

d.  Naive thinking suggests that the tub will be
empty after 7 min since it contains 196 ft3

and the water is flowing out at 28 ft3/min.
Show that this conclusion is false, and
justify your answer.
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•  They spend a fixed amount, M, in dollars
per day, to advertise this soft drink.

•  Part of M, an amount proportional to B, is
used to maintain present users of this soft
drink (Figure 7-3n).

•  The rate of change of B, dB/dt, is directly

•  Advertising costs need to be $80 per day to

warm water to 140°F, to 160°F, and to 180°F.

say, 155°F (when the heat turns on again).

Figure 7-3n

proportional to the rest of M.

maintain sales of 1000 bottles per day.
•  Due to advance publicity, dB/dt  will be

500 bottles per day when t = 0, independent
of M.

Use what you’ve learned in this section to find
an equation for B as a function of t. Then show
the effect of spending various amounts, M, on
advertising. (Calculations and graphs would be
convincing.) You might include such
information as whether sales will continue to
go up without bound or will eventually level
off. To make an impression on management,
assume a certain price per bottle and indicate
how long it will take the product to start
making a profit.

9.  Water Heater Project: You have been hired by a
water-heater manufacturer to determine some
characteristics of a new line of water heaters
(Figure 7-3o). Specifically, they want to know
how long the new heater takes to warm up a
tank of cold water to various temperatures.
Once the tank reaches its upper storage
temperature, the thermostat turns off the heat
and the water starts to cool. So they also want
to know how long it will be before the
thermostat turns the heat on again.

Figure 7-3o

Here’s what you learn from the engineering
and design departments.

•  Heat is supplied at a constant rate of
1200 Btu (British thermal units) per minute.

•  Heat is lost to the surroundings at a rate, L,
proportional to the difference between the
heater temperature and the room
temperature. That is,

L = h(T – 70)

where L is loss rate in Btu/min and T is
water temperature. The room temperature is
70°F, and h is a proportionality constant
called the heat transfer coefficient.

•  The new heater warms water at a rate,
dT/dt, proportional to (1200 – L).

•  The water would warm up at 3°F/min if
there were zero losses to the surroundings.

•  In 10 min the heater warms the water to
90°F from the room temperature of
70°F.Use this information to derive an equation that

expresses temperature, T , in terms of the
number of minutes, t, since the water heater
was turned on. Use this equation to find the
information the manufacturer is seeking (see
the beginning of this problem). For instance,
you might investigate how long it takes to

You can find out how long it takes, when the
heat is off, for the water to cool from 160°F to,

Impress your boss by pointing out any
inadequacies in the proposed design of the
heater and by suggesting which parameters
might be changed to improve the design.

10.  Vapor Pressure Project: The vapor pressure, P,
in millimeters of mercury (mm Hg), of a liquid
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or a solid (Figure 7-3p) increases as the
temperature increases. The rate of change of
the vapor pressure, dP/dT, is directly
proportional to P and inversely proportional to
the square of the Kelvin temperature, T. In
physical chemistry you will learn that this
relationship is called the Clausius-Clapeyron
equation.

Figure 7-3p

a.  Write a differential equation that expresses
dP/dT in terms of P and T. Integrate the
equation, then solve for P in terms of T .

b.  The table shows the vapor pressure for
naphthalene (mothballs, C10H8) from an old
edition of Lange’s Handbook of Chemistry.
Use the data for 293 K (20°C) and 343 K
(70°C) to find the two constants in the
equation you wrote in part a. You may solve
the system of simultaneous equations either
in their logarithmic form or in their
exponential form, whichever is more

convenient. Don’t be afraid of large
numbers! And don’t round them off!

°C K mm Hg

10 283 0.021
20 293 0.054
30 303 0.133
40 313 0.320
50 323 0.815
60 333 1.83
70 343 3.95
80 353 7.4    (melting point)
90 363 12.6

100 373 18.5
110 383 27.3
200 473 496.5

c.  How well does your function fit the actual
data? Does the same equation fit well above
the melting point? If so, give information to
support your conclusion. If not, find an
equation that fits better above the melting
point. Do any other types of functions
available on your grapher seem to fit the
data better than the function from the
Clausius-Clapeyron equation?

d.  Predict the boiling point of naphthalene,
which is the temperature at which the vapor
pressure equals atmospheric pressure, or
760 mm Hg.

e.  What extensions can you think of for this
project?

7-4   Graphical Solution of Differential
Equations by Using Slope Fields
The function y = e0.3x is a particular solution of the differential equation

solution, with a tangent line through the point (2, e0.6). In the right graph, the
curve and most of the tangent line have been deleted, leaving only a short
segment of the tangent, centered at the point (2, e0.6). You can also draw this
segment without ever solving the differential equation. Its slope is
0.3e0.6  0.55, the number you get by substituting e0.6 for y in the original
differential equation.

dy/dx = 0.3y. The left graph in Figure 7-4a, on the next page, shows this
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solution by hand and, if possible, confirm the solution algebraically.
Given a slope field for a differential equation, graph an approximate particularOBJECTIVE

  EXAMPLE 1

Figure 7-4a

The left graph in Figure 7-4b shows what happens if you draw a short segment
of slope 0.3y at every grid point (point with integer coordinates) on the plane.
The result is called a slope field or sometimes a direction field. The right graph
in Figure 7-4b shows the solution y = e0.3x (from Figure 7-4a) drawn on the
slope field. The line segments show the direction of the graph. As a result, you
can draw the graph of another particular solution simply by picking a starting
point and going to the left and to the right “parallel” to the line segments. The
dotted curves on the right graph of Figure 7-4b show three such graphs.

Figure 7-4b

Slope fields are tedious to draw by hand and are best done by grapher. Once you
get a slope field, however, you can graph any particular solution without ever
solving the differential equation. As you can appreciate from difficulties you
may have had integrating the differential equations in Section 7-3, such an
approximate solution method is very welcome! In this section you will sketch
the graphs by hand. However, you will compare some of the graphical solutions
with exact, algebraic solutions. In Section 7-5, you will learn a numerical method
for plotting such approximate graphs on the grapher itself.

Figure 7-4c shows the slope field for the differential equation
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a.  Use the differential equation to find the
slope at the points (5, 2) and (–8, 9). Mark

d.  y dy = – 0.36x dx   y dy = – 0.36  x dx  0.5y2 = – 0.18x2 + C

Figure 7-4c

these points on the figure. Explain why the
calculated slopes are reasonable.

b.  Start at the point (0, 6) and draw a graph
that represents the particular solution of
the differential equation that contains that
point. Go both to the right and to the left.
What geometric figure does the graph
seem to be?

c.  Start at the point (5, 2), from part a, and
draw another particular solution of the
differential equation. How is this solution
related to that in part b?

d.  Solve the differential equation algebraically. Find the particular solution
that contains the point (0, 6). Verify that the graph really is the figure
indicated in part b.

Solution

Figure 7-4d

a.  At the point (5, 2), .

At the point (–8, 9), .

The circled points in Figure 7-4d show
slopes of about –1 and 0.3, which agree
with the calculations.

b.  Figure 7-4d shows the graph. Start at the
boxed point (0, 6). Where the graph goes
between grid points, make its slope an
average of the slopes shown. Don’t try to
head for the grid points themselves! The
graph may not pass through these points. The graph appears to be a
half-ellipse. The dotted curve below the x-axis shows the same elliptical
pattern, but it is not part of the particular solution because a solution of a
differential equation is a function.

c.  The solution that contains the point (5, 2) is the inner half-ellipse in
Figure 7-4d. It’s similar (has the same proportions) to the ellipse described
in part b.

Substituting the point (0, 6) gives 0.5(36) = 0 + C  C = 18.
 0.5y2 = – 0.18x2 + 18  9x2 + 25y2 = 900

This is the equation of an ellipse centered at the origin, as shown
in part b.

Figure 7-4e, on the next page, shows slope fields for three differential equations.
For each slope field or its differential equation, three particular solutions are
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shown, along with the corresponding initial conditions. Note that the graph follows
the pattern but usually goes between lattice points rather than through them.
Note also that two of the solutions for the middle graph stop at the line y = 0.5.
Following the pattern of the slope field would make the curve double back, giving
two values of y for some x-values, resulting in a relation that is not a function.

Problem Set 7-4

Quick Review

Figure 7-4e

Q1.  Differentiate:  y = x5

Q2.  Differentiate:  y = 5x

Q3.  Integrate:  x7 dx

Q4.  Integrate:  7x dx

Q5.  Differentiate implicitly:  xy = 3
Q6.  For Figure 7-4f,  f(x) dx = —?
—.

Figure 7-4f

Q7.  Sketch the graph:  y = x2

Q8.  Sketch the graph:  y = 2x

Q9.  If  g(x) =  f(x) dx, then  f(x) dx = —?—.

Q10.  The slope of the line perpendicular to y = x2  at
the point (3, 9) is

A.  9 B.  6 C.  – 6 D.  E.  – 

1.  Figure 7-4g shows the slope field for the
differential equation

Figure 7-4g



c.  Sketch the graph of the particular solution
that contains the point (5, 1). Draw on both
sides of the x-axis.

d.  Solve the differential equation algebraically.
Find the particular solution that contains
the point (5, 1). How well does your
graphical solution from part b agree with
the algebraic solution?

2.  Figure 7-4h shows the slope field for the
differential equation

Find the slopes at the points (3, 3) and (0, –2),
and explain how you know that these agree
with the slope field. On a copy of Figure 7-4h,
sketch two particular solutions, one containing
(3, 3) and the other containing (0, –2). From
the two graphs, read to one decimal place the
approximate values of y when x = 6. Then
solve the differential equation algebraically and
find the exact values of y for x = 6. How close
do your graphical solutions come to the actual
solutions?

Figure 7-4h

3.  Given the differential equation

a.  Find the slope at the points (3, 2) and (1, 0).
By finding slopes at other points, draw the
slope field on dot paper using the window
shown in Figure 7-4i. You can use symmetry
to reduce the amount of computation.

Figure 7-4i

b.  On your graph from part a, sketch the
particular solution that contains the point
(2, 1) and the particular solution that
contains the point (1, –1). What geometric
figures do the graphs resemble?

c.  Solve the differential equation algebraically
using the initial condition (1, –1). By
plotting this solution on your grapher, show
that your sketch in part b is reasonable. Show
algebraically that the graph is a half-ellipse.

4.  Given the differential equation

a.  Find the slope at the points (3, 1), (1, 2), and
(0, –1). By finding slopes at other points,
draw the slope field on dot paper using the
window shown in Figure 7-4j.

Figure 7-4j
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Use a copy of this figure to answer these
questions.

a.  Show that you understand the meaning of
slope field by first calculating dy/dx at the
points (3, 5) and (–5, 1) and then showing
that the results agree with the figure.

b.  Sketch the graph of the particular solution
of the differential equation that contains the
point (1, 2). Draw on both sides of the
 y-axis. What geometric figure does the
graph seem to be?
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b.  On your graph from part a, sketch the
particular solution that contains the point
(1, 2) and the particular solution that
contains the point (0, –1). What feature do
both graphs have as x gets larger in the
positive and negative directions?

using the initial condition (0, –1). Plot this
solution on your grapher to show that your
sketch in part b is reasonable. Show
algebraically that the graph has the feature
you mentioned in part b as x increases in
absolute value.

c.  Solve the differential equation algebraically

For Problems 5–8, sketch the solutions on copies of
the slope field using the initial conditions given.

5.  (–1, 1), (1, –1)

6.  (1, 1), (0.5, –1)

7.  (2, 2), (–1, 0), (–2, –2)

8.  (0.5, 1), (–2, 1), (–2, –2)

9.  a.  On a copy of the slope field shown in
Figure 7-4k, sketch two particular solutions:
one that contains the point (3, 2) and one
that contains the point (1, –2).

Figure 7-4k

b.  In Quadrant I, the slope is always negative
and gets steeper as x or y increases. The
slope at the point (1, 1) is about –0.2. Make
a conjecture about a differential equation
that could generate this slope field. Give
evidence to support your conjecture.
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Figure 7-4l shows the slope field for

= 0.1x + 0.2y

 = 0.038P(10.5 – P)

 = 32.16 – 0.0015v2

10.  Dependence on Initial Conditions Problem:

Figure 7-4l

a.  On a copy of this figure, draw the particular
solution that contains the point (0, 2). Show
the graph on both sides of the y-axis.

b.  Show that the particular solution containing
the point (0, –5) exhibits a behavior
different from the behavior in part a.

c.  The solution to part a curves upward, and
that to part b curves downward. It seems
reasonable that somewhere between these
two solutions there is one that has a
straight-line graph. Draw this solution.
Where does the graph cross the y-axis?

11.  Rabbit Population Overcrowding Problem: In
the population problems of Section 7-2, the
rate of change of population was proportional
to the population. In the real world, over-
crowding limits the size of the population.
One mathematical model, the logistic
equation, says that dP/dt is proportional to
the product of the population and a constant
minus the population. Suppose that rabbits are
introduced to a small uninhabited island in the
Pacific. Naturalists find that the differential
equation for population growth is

where P is in hundreds of rabbits and t is in
months. Figure 7-4m shows the slope field.

Figure 7-4m

a.  Suppose that 200 rabbits arrive at time
t = 0. On a copy of Figure 7-4m, graph the
particular solution.

b.  Draw another particular solution if the
200 rabbits are instead introduced at time
t = 4. What are the differences and
similarities in the population growth?

c.  Draw a third particular solution if
1800 rabbits are introduced at time t = 0.
With this initial condition, what is the major
difference in population growth? What
similarity does this scenario have to those in
parts a and b?

d.  Think of a real-world reason to explain the
horizontal asymptote each graph
approaches. Where does this asymptote
appear in the differential equation?

12.  Terminal Velocity Problem: A sky diver jumps
from an airplane. During the free-fall stage, her
speed increases at the acceleration of gravity,
about 32.16 (ft/s)/s. But wind resistance
causes a force that reduces the acceleration.
The resistance force is proportional to the
square of the velocity. Assume that the
constant of proportionality is 0.0015 so that

where v is her velocity, in feet per second, and
t is the time she has been falling, in seconds.
The slope field for this differential equation is
shown in Figure 7-4n, on the next page.
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Figure 7-4n

a.  What does the slope appear to be at the
point (5, 120)? What does it actually
equal? Explain any discrepancy between
your two answers.

b.  The sky diver starts at time t = 0 with zero
initial velocity. On a copy of Figure 7-4n,
sketch her velocity as a function of time.

c.  Her velocity approaches an asymptote. What
does this terminal velocity appear to equal?
About how long does it take her to fall until
she is essentially at this velocity?

d.  A second sky diver starts 5 s later with zero
initial velocity. Sketch the velocity-time
graph. What similarities does this graph
have to the graph you sketched in part b?

e.  Suppose that the plane is descending
steeply as a third diver jumps, giving him an
initial downward velocity of 180 ft/s. Sketch
this divers velocity-time graph. How does it
differ from the graphs you sketched in
parts b and d?

f.  The mathematical models for free fall in this
problem and for population in Problem 11
have some similarities. Write a paragraph
that discusses their similarities and
differences. Do you find it remarkable that
two different phenomena have similar
mathematical models?

13.  Escape Velocity Problem:  If a spaceship has a
high enough initial velocity, it can escape Earth’s
gravity and be free to go elsewhere in space.
Otherwise, it will stop and fall back to Earth.

Eileen M. Collins, the first female space shuttle pilot
(STS-63, 1995) and the first female shuttle
commander (STS-93, 1999)

a.  By Newton’s second law of motion, the force,
F, on the spaceship equals its mass, m,
times the acceleration, a. By Newton’s law of

g is the gravitational constant and r is the
distance from the center of Earth to the
spaceship. Give reasons for each step in
these transformations.

b.  If r is in earth-radii (1 earth-radius =
6380 km) and v is in kilometers per second,
then

gravitation, F is also equal to mg/r2, where
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The sign is negative because gravity acts
opposite to the direction of motion. 
Figure 7-4o shows the slope field for this 
differential equation. Confirm that the
differential equation produces the slopes 
shown at the points (r, v) = (5, 2), (1, 10),
and (10, 4).

OBJECTIVE Given a differential equation and its slope field, calculate points on the graph
iteratively by starting at one point and finding the next point by following the
slope for a given x-distance.

Figure 7-4o

c.  If the spaceship starts at Earth’s surface
(r = 1) with an initial velocity of v = 10 km/s,
it will not escape Earth’s gravity. On a copy
of Figure 7-4o, sketch this particular
solution. About how far from Earth’s surface
does the ship stop and begin to fall back?

d.  On your copied figure, show that if the
spaceship starts from Earth’s surface with
an initial velocity of 12 km/s, it will escape
Earth’s gravity. About how fast will it be
going when it is far from Earth?

e.  If the spaceship starts from Earth’s surface
with an initial velocity of 18 km/s, what will
its velocity approach far from Earth? Does it
lose as much speed starting at 18 km/s as it
does starting at 12 km/s? How do you
explain this observation?

f.  Show that the spaceship will escape from
Earth’s gravity if it starts with an initial
velocity of 10 km/s from a space platform in
orbit that is 1 earth-radius above Earth’s
surface (that is, r = 2).

14.  Slope Fields on the Grapher: On your grapher,
generate the slope field for

as shown in Figure 7-4p. If your grapher
doesn’t have a built-in program to generate
slope fields, obtain one or write one. Save this
program because you will use it in Section 7-5.

Figure 7-4p

7-5   Numerical Solution of Differential
Equations by Using Euler’s Method
In Section 7-4, you sketched approximate solutions of differential equations, using
their slope fields. In this section you will learn a numerical method for calculating
approximate y-values for a particular solution, and you’ll plot the points either
by hand or on your grapher. This method is called Euler’s method, after Swiss
mathematician Leonhard Euler (1707–1783). (Euler is pronounced “oi′-ler.”)
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Euler’s method for solving a differential equation numerically is based on the
fact that a differentiable function has local linearity at any given point. For
instance, if dy/dx = cos xy, you can calculate the slope at any point (x, y) and
follow the linear function to another point x units away. If x is small, the new
point will be close to the actual point on the graph. Figure 7-5a illustrates the
procedure.

  EXAMPLE 1

 = 0.5(x + y)

 = 0.5(x + y)

Figure 7-5a

Example 1 shows you a systematic way to use Euler’s method.

Figure 7-5b shows the slope field for the differential equation

Figure 7-5b

a.  Use Euler’s method with dx = 0.2 to
calculate approximate values of y for the
particular solution containing (0, 0.4)
from x = 0.2 through x = 1.2.

b.  Draw this approximate particular solution
on a copy of Figure 7-5b.

c.  Does the approximate solution
overestimate the actual values of y or
underestimate them? Explain.

Solution a.

dy = 0.5(x + y) dx Get an equation for dy.

At (0, 0.4), dy = 0.5(0 + 0.4)(0.2) = 0.04 Substitute (0, 0.4) to
calculate dy.

New x = 0 + 0.2 = 0.2, new  y  0.4 + 0.04 = 0.44 Add dx and dy
to x and y.



At (0.2, 0.44), dy = 0.5(0.2 + 0.44)(0.2) = 0.064

The table shows the results of repeating this procedure through x = 1.2.

Figure 7-5c

b.  Figure 7-5c shows the points connected
by line segments.

c.  Figure 7-5c shows that the actual graph of
 y (shown dashed) is concave up. The
Euler’s method solution consists of
tangent line segments, and tangent lines
go on the convex side of the graph, so
these tangent segments are below the
actual graph. So solutions by Euler’s
method underestimate the actual values
of y.

The box summarizes Euler’s method and how you determine whether the
approximate numerical solution overestimates the actual solution or
underestimates it.

Note: The graph of the solution by Euler’s method lies on the convex side of the
actual graph. Thus, the Euler’s solution underestimates the actual y-values if the
convex side is downward and overestimates the actual y-values of the convex
side is upward.
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Repeat the procedure
at (0.2, 0.44).

Repeat the
procedure at
(0.4, 0.504).

New x = 0.2 + 0.2 = 0.4,  new y  0.44 + 0.064 = 0.504
At (0.4, 0.504), dy = 0.5(0.4 + 0.504)(0.2) = 0.0904

New x = 0.4 + 0.2 = 0.6, new y  0.504 + 0.0904 = 0.5944

 x             y            dy               New y     

0 0.4 0.04 0.44
0.2 0.44 0.064 0.504
0.4 0.504 0.0904 0.5944
0.6 0.5944 0.11944 0.71384
0.8 0.71384 0.151384 0.865224
1.0 0.865224 0.1865224 1.0517464
1.2 1.0517464 — —

 

    TECHNIQUE:   Euler’s Method for Solving Differential Equations

  •  Solve the differential equation for dy in terms of x, y, and dx.
  •  Substitute values of x, y, and dx to calculate a value of dy.
  •  Find the approximate new value of y by adding dy to the old value of y.
  •  Repeat the procedure to find the next value of dy at the next value of x. 
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Q1.  If dy/dx is directly proportional to y, then
dy/dx = —?—.

Q2.  If  dy/dx = 3y, then the general solution for
 y is —?—.

Q3.  If  dy/dx = 0.1 xy, what is the slope of the
slope-field line at the point (6, 8)?

Q4.  If  y = Ce0.2x  and y = 100 when x = 0, then
C = —?—.

Quick Review

D.  

Problem Set 7-5

Q5.  dv/(1 – v) = —?—

Q6.  (d/dx)(sec  x) = —?—

Q7.  Sketch the graph of  y′ for Figure 7-5d.

Figure 7-5d

Q8.  Differentiate implicitly:  x3y5 = x + y
Q9.  If  f(x) = f(4), then f is —?— at x = 4.

Q10.  If  f(x) = (3t + 5)4 dt, then (x) = —?—.

A.  (3x + 5)4 B.  12(3x + 5)3

C.  D.  

1.  How Euler’s Method Works, Problem 1:
Figure 7-5e shows the slope field for the
differential equation

Figure 7-5e

Several points of the Euler’s method solution
containing the point (1, 3) and with dx = 0.5
are shown in Figure 7-5e, along with the actual
solution (dashed).

a.  Show your calculations for the graph of y
using Euler’s method for x = 1.5 and x = 2,
then make a table showing x and the Euler’s
method approximation of y for each 0.5 unit
of x from 0 through 3. For values of x less
than 1, use dx = –0.5. Do the values of y
agree with those shown on the Euler graph?
Explain how the pattern followed by the
points tells you that the Euler’s method
solution overestimates the values of y, both
for x  1 and for x  1. What happens to the
size of the error as x gets farther away
from 1?

b.  Solve the differential equation algebraically.
Show that the solution is a part of a circle,
as shown in Figure 7-5e. Why does the
particular solution stop at the x-axis? By
how much does the Euler’s method solution
overestimate the actual value at x = 3?

2.  How Euler’s Method Works, Problem 2:
Figure 7-5f shows the slope field for the
differential equation



Several points of the Euler’s method solution
containing the point (1, 2) and dx = 0.5 are
shown in the figure, along with the actual
solution (dashed).
a.  Show the calculations by which you find

the points on the Euler graph. For values
of x less than 1, use dx = –0.5. Do the
values of y  agree with those shown on the
graph? Explain how the pattern followed by
the points tells you that the Euler’s method
solution underestimates the values of y,
both for x  1 and for x  1. Why does the
error at x = 0 seem to be larger in absolute
value than the error at x = 3, even though
3 is farther from 1 than 0 is?

b.  Solve the differential equation algebraically.
Show that the solution is a part of a
hyperbola, as shown in Figure 7-5f. By
how much does the Euler’s method
solution underestimate the actual value
at x = 0?

For Problems 3 and 4, the table shows values of the
derivative dy/dx for a function at various values
of x. Use the value of dx you find in going from one
value of x to the next to calculate values of dy. Use
these values of dy along with Euler’s method to find
approximate values of y for each value of x in the
table, starting at the given value of y. Plot the points
on graph paper. Is it possible to tell whether the last
approximate value of y overestimates or
underestimates the actual value of y?

4.

5.  Numerical Program for Euler’s Method: Obtain
or write a program for computing y-values by
Euler’s method. The program should allow you
to enter the differential equation, say as y1, in
terms of both x and y. Then you should be able
to input the initial condition (x, y) and the
value of dx, such as the point (1, 3) and the
number 0.5, respectively, for Problem 1. Test
your program by using it to calculate the values
of y for Problem 1.

6.  Graphical Program for Euler’s Method: Obtain
or write a grapher program for plotting a
particular solution of a differential equation by
Euler’s method. Adapt your program from
Problem 5 if you prefer. You can enter the
differential equation as y1. The input should
include the initial point and the value of x. As
each point is calculated, the grapher should
draw a line segment to it from the previous
point. The program should allow the graph to
be plotted to the right or left of the initial
point, depending on the sign of x. The
program should work in conjunction with the
slope-field program of Section 7-4 so that you
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Figure 7-5f

x dy/dx dy y

      2  3 —— 1
2.2 5 —— ——
2.4 4 —— ——
2.6  1 —— ——
2.8        –3 —— ——
3         –6 —— ——
3.2        –5 —— ——
3.4        –3 —— ——
3.6        –1 —— ——
3.8 1 —— ——
4  2 —— ——

3.

x dy/dx dy y

   1         –3 —— 2
1.3         –2 —— ——
1.6         –1 —— ——
1.9 0 —— ——
2.2 1 —— ——
2.5 2 —— ——
2.8 3 —— ——
3.1 4 —— ——
3.4 5 —— ——
3.7 6 —— ——
3.9 7 —— ——
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superimpose the solution on the corresponding
slope field. Test the program by using the
information in Problem 1, and show that the
graph resembles that in Figure 7-5e.

7.  Figure 7-5g shows the slope field for the
differential equation

Figure 7-5g

a.  Use your grapher programs to plot the slope
field and the particular solution that
contains the point (3, 2). Sketch the solution
on a copy of Figure 7-5g.

b.  Plot the particular solution that contains
the point (1, –2). Sketch the solution on
the copy.

8.  Figure 7-5h shows the slope field for the
differential equation

Figure 7-5h

a.  Use your grapher programs to plot the slope
field and the particular solution that
contains the point (0, 2). Sketch the solution
on a copy of Figure 7-5h.

b.  Plot the particular solution that contains the
point (0, 4). Sketch the solution on the copy.

c.  The solution you plotted in part a curves
downward, and the one in part b curves
upward. It seems reasonable that

somewhere between these two solutions is a
solution that has a straight-line graph. By
experimenting on your grapher, find this
particular solution. Record the initial point
you used and sketch the solution on the copy.

9.  Escape Velocity Problem by Euler’s Method: In
Problem 13 of Section 7-4, you learned that the
acceleration (rate of change of velocity) of a
spaceship moving away from Earth decreases
due to Earth’s gravity according to the
differential equation

where v is the spaceship’s velocity, in km/s,
and r is the distance from Earth’s center, in
earth-radii. The slope field for this differential
equation is reproduced here (Figure 7-5i) for
your use.

Figure 7-5i

a.  Starting with an initial velocity of 12 km/s at
Earth’s surface (r = 1), use your Euler’s
method program with dr = 0.6 to show that
the velocity appears to become negative,
meaning that the spacecraft will stop and
start to fall back to Earth.

b.  Starting at (1, 12) as in part a, use dr = 0.1
to show that the velocity appears to be
positive when r = 20 and the values of v
seem to be leveling off.

c.  Solve the differential equation algebraically
and use the solution to find the actual
velocity at r = 20. Explain why Euler’s
method using a relative large value of dr (as
in part a) erroneously predicts that the
spaceship will not escape Earth’s gravity.



Section 7-5:   Numerical Solution of Differential Equations by Using Euler’s Method © 2005 Key Curriculum Press 347

escape velocity, ve = km/s,
then the spacecraft will eventually reverse
directions and start to fall back toward
Earth. Show also that if the initial velocity is
greater than ve , then the velocity approaches
a positive limit as r approaches infinity and
the spacecraft never returns. What is the
escape velocity in miles per hour?

d.  Show that if the spaceship starts from Earth’s

10.   Terminal Velocity Problem by Euler’s Method: In
Problem 12 of Section 7-4, you assumed that
the vertical acceleration (rate of change of
velocity) of a sky diver in free fall is given by
the differential equation

where v  is the sky diver’s velocity, in ft/s, and
t is the time the sky diver has been falling, in
seconds. The slope field for this differential
equation is reproduced here (Figure 7-5j) for
your use.

Figure 7-5j

a.  The sky diver falls with an initial (t = 0)
downward velocity of zero. Use your Euler’s
method program with dt = 0.5 to estimate
her downward velocity at times 2, 4, 6, 8,
10, and 20 s. Are these underestimates or
overestimates of her velocity? How can
you tell?

b.  On another occasion the plane is descending
steeply, giving the diver an initial downward
velocity of 180 ft/s at time t = 0. Use your
Euler’s method program to estimate this
diver’s downward velocity at times 2, 4, 6,
8, 10, and 20 s. Are these underestimates or

overestimates of her velocity? How can
you tell?

c.  When dv/dt reaches zero, a diver is at his or
her terminal velocity. Calculate this
terminal velocity. Store it, without rounding,
for use in the next part of this problem.

d.  When you study trigonometric substitution
in Chapter 9, you will be able to show that the
algebraic solution of this differential equation
with initial condition (0, 0) as in part a is

Calculate the actual values of v for the six
times given in part a. True or false: “The
farther the values of t are from the initial
condition, the greater the error in Euler’s
approximation for v.”

11.  Euler’s Method for a Restricted Domain
Problem: Figure 7-5k shows the slope field for
the differential equation

The figure also shows the Euler’s method
solution with dx = 0.1 containing the point
(0, –3), and the algebraic solution (dashed)
consisting of the half-ellipse with equation

Figure 7-5k

a.  Explain why the actual (algebraic) solution
has a domain with x  5.

b.  Without drawing the graphs, how can you
tell from the slope field that the Euler’s

surface with an initial velocity less than the
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method value for y at x = 4.9 will
underestimate the actual value? Show
numerically that this Euler’s method value
actually does underestimate the actual
value, but is reasonably close to it.

c.  Find the Euler’s method approximation for y

species preys on another.
population growth in a restricted environment, and in instances where one
Use slope fields and Euler’s method to solve differential equations that modelOBJECTIVE

at x = 5.1, 5.2, and 5.3. Based on Euler’s
method, explain why the predicted y-value
jumps sharply, as shown in the figure, from
the point at x =5.2 to the point at x =5.3. What
does Euler’s method predict for y at x = 6.6?

d.  Why is it important to know the domain of a
particular solution when you use Euler’s
method to find approximate solutions for a
differential equation?

12.  Journal Problem: Update your journal. Include
such things as
•  The one most important thing you have

learned since your last entry
•  How slope fields and numerical methods

can be used to solve differential equations
without finding an algebraic solution

•  How much faith you would put into a
computer-generated prediction of the U.S.
population for the year 2050

•  What you now better understand about
differential equations

•  Any technique or concept about differential
equations that you’re still unclear about

7-6   The Logistic Function, and
Predator-Prey Population Problems
If a population, such as animals or people, has plenty of food and plenty of
room, the population tends to grow at a rate proportional to the size of the
population. You have seen that if dy/dx = ky, then y varies exponentially with x.

In this section you will learn about the logistic function, which accounts for the
decreasing growth rate due to overcrowding. You will also explore what happens
to populations when two species in an environment exist together as predator
and prey. The two populations can rise and fall cyclically depending on
abundance or scarcity of the food species (the prey), and the relative numbers of
predators that prey on the species.

The Logistic Function
Suppose that a particular lake can sustain a maximum of 8000 fish (the
carrying capacity of the lake) and that a number of fish, y, in thousands, live in
the lake at time x, in years. If y is small compared to 8, dy/dx is expected to be
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proportional to y. It’s also reasonable to assume that dy/dx is proportional to
(8 – y)/(8), the fraction of the maximum population at time x. Due to both of
these phenomena,

  EXAMPLE 1

This is an example of the logistic differential equation. Examples 1, 2, and 3
show you how to solve the logistic differential equation graphically, numerically,
and algebraically, and also show some conclusions that you can reach from the
result.

The number of fish, y, in thousands, in a particular lake at time x, in years, is
given by the differential equation

a.  On a copy of the slope field in Figure 7-6a, sketch the particular solution
for the initial condition of 1000 fish in the lake at x = 0 years. Describe
what happens to the fish population as time goes by.

b.  From the differential equation, show that the rate of increase in the fish
population is greatest when y = 4, halfway between the two horizontal
asymptotes.

c.  Suppose that at time x = 4 yr, the lake is restocked with fish, bringing the
total population up to 11,000. On the same copy of Figure 7-6a, sketch the
particular solution subject to this initial condition. Describe what happens
to the fish population as time goes by. Surprising?

Figure 7-6a

Solution a.  Figure 7-6b, on the next page, shows that the population rises more rapidly
at first, then levels off, approaching a horizontal asymptote at y = 8,
corresponding to the maximum sustainable population of 8000 fish.
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b.

  EXAMPLE 2

Transform the product

For y  4, the derivative is positive, so dy/dx is increasing.
For y  4, the derivative is negative, so dy/x is decreasing.

c.  Figure 7-6b shows that when the

x y Number of Fish

2 3.2536... 3254
4 6.1975... 6198
6 7.5769... 7577
8 7.9162... 7916
10 7.9840... 7984

  EXAMPLE 3

to a sum.

= – 0.2y + 0.8 Differentiate with
respect to y.

– 0.2y + 0.8 = 0  y = 4 Set the derivative equal
to 0 and solve for y.

So the maximum value of dy/dx occurs if y = 4. (This means that the point
of inflection is at y = 4.)

Figure 7-6b

population starts above the maximum
sustainable value of 8000, some of the fish
die out due to overcrowding. The
population decreases rapidly at first,
leveling off and approaching the same
horizontal asymptote at y = 8. This is
surprising because you might think that
adding more fish would be good for the
survival of the population.

Solve the differential equation in Example 1, part a, numerically, using Euler’s
method with dx = 0.1. Write the value of y and the number of fish for x = 2, 4, 6, 8,
and 10 years. Do these values agree with the graph in Figure 7-6b? Do these
values overestimate the actual fish population or underestimate it? Explain.

Solution Using the Euler’s method program gives the values in the table. These agree with
the graph. Between x = 0 and x  2.5, the graph is concave up (convex side
down) so the Euler’s method tangents are below the graph, making the Euler’s
method values underestimate the actual values. For higher values of x, the
graph is concave down (convex side up) so the Euler’s method values are
overestimates, compensating at least in part for the earlier underestimation.

a.  Solve the logistic equation in Example 1, part a, algebraically for y explicitly
as a function of x.

b.  Use the result of part a to show that the Euler’s method approximation at
x = 2 actually is an underestimation of the actual value.
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Solution

greatest when y = 4, halfway between the two horizontal asymptotes. Find
the value of x at which the rate of change is the greatest.

a.

Exponentiate both sides.

c.  As shown in Example 1, the rate of change in the fish population is the

Separate the variables and integrate.

To evaluate the integral on the left, resolve the integrand into partial
fractions. This technique is presented in detail in Section 9-7 and is
summarized here for your information.

Let where A and B stand for constants.

Add the fractions on the right.

Combine “like terms” in the numerator.

8 + 0y = 8A + (–A + B)y Equate the numerators. (Note: 8 = 8 + 0y ).
8 = 8A and 0 = – A + B Equate the constant terms and the

 y-coefficients.
A = 1,  so 0 = – 1 + B B = 1

Substitute for A and B .

 Substitute into the differential equation.

ln | y| – ln |8 – y| = 0.8x + C Integrate a sum of two reciprocal functions.
(Why the minus between terms?)

= – 0.8x – C Multiply both sides by –1 to make
the next step easier. Use the ln of a
quotient property.

Remove the absolute value signs.
C1 = e–C .

Substitute the initial condition to find C1.

8 – y = 7ye–0.8x

(1 + 7e–0.8x)y = 8 Factor out y from the y-terms.

Divide by the coefficient of y.
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x = 2: = 3.3149...

The Euler’s method value of 3.2536... is an underestimate of this value, as
predicted.

4 =

Predator-Prey Population Problems

 

 DEFINITIONS: The Logistic Differential Equation and Logistic Function

 The logistic differential equation is

               or 

 The constant M, called the carrying capacity of the system being modeled, is
 the maximum sustainable value of y as x increases. The constant k is a

 proportionality constant.

 The logistic function

 
            

 is the solution of the logistic differential equation, where the constant a is

 determined by the initial condition.
 

 

Quick Review

Q1.   f(x) dx =  f(c) x is a brief statement of

Q2.   f(x) dx = g(b) – g(a) is a brief statement of

Q3.   f(x) dx = g(x) if and only if f(x) = (x) is a

Q4.  “. . . then there is a point c in (a, b) such that

Q5.  “. . . then there is a point c in (a, b) such that

b.

c. Set y = 4 and solve numerically or algebraically for x.

x  2.4323... , which agrees with the graph.

The general form of the logistic differential equation follows from Examples 1, 2,
and 3.

In Problems 9–23 of Problem Set 7-6, you will investigate a situation in which
foxes prey on rabbits, and find that under certain assumptions about population
growth rates, a cyclical behavior occurs, in which the population of one species
increases while the population of the other decreases, then vice versa.

Problem Set 7-6

the —?—.

the —?—.

statement of the —?—.

 f(c) = k” is the conclusion of —?—.

(c) = 0” is the conclusion of —?—.



conclusion of —?—.

Q8.   f(x) = cos x + C  is the —?— solution of a
differential equation.

Q9.   f(x) = cos x + 5 is a(n) —?— solution of a
differential equation.

Q10.   f(0) = 6 is a(n) —?— condition for the
differential equation in Problem Q9.

1.  Bacteria Problem: Harry and Hermione start a
culture of bacteria in a laboratory dish by
introducing 3 million bacteria at time
t = 0 hours. The number of bacteria increases
rapidly at first, then levels off. The two lab
partners estimate that the dish can support a
maximum of 30 million bacteria. They let B
stand for the size of the bacteria population, in
millions, at time t, in hours, and assume that
the rate of change of B is given by the logistic
differential equation

The slope field for this differential equation is
shown in Figure 7-6c.

Figure 7-6c

a.  Explain the real-world influence on the rate
of bacteria growth of the two factors B and
(30 – B)/30 in the differential equation.
Explain why it is reasonable that dB/dt  is
positive for 0  B  30 and negative for
B  30.

b.  On a copy of Figure 7-6c, sketch the graph
of the particular solution subject to the
given initial condition of 3 million bacteria.
Also, sketch the graph of the particular
solution if Harry and Hermione try to speed
up the process by adding enough bacteria at
time t = 10 to make a total of 40 million
bacteria. What is the major difference in the
behavior of the population for the two
different initial conditions?

c.  Use Euler’s method with dt = 0.5 and initial
condition (0, 3) to estimate B at times t = 10,
20, 30, and 40 h. Mark these points on your
graph from part b. Does your graph agree
reasonably well with these values?

d.  Show the steps you used to solve the
differential equation algebraically, subject to
the initial condition that B = 3 when t = 0.
Write B explicitly as a function of t. Use the
particular solution to find out how close the
Euler’s method estimate of B is to the
precise predicted value of B when t = 20.

e.  Use the differential equation to show that
the greatest rate of increase in the bacteria
population occurs when B is halfway
between the horizontal asymptotes at B = 0
and B = 30. Find the value of t  at this “point
of inflection.”

2.  Subdivision Building Problem: A real estate
developer opens up a small subdivision of
120 lots on which to build houses. She builds
houses on five of the lots, then opens the
subdivision for others to build. The total
number of houses increases slowly at first,
then faster, and finally slows down as the last
few lots are built on.

a.  Explain why a logistic function is a
reasonable mathematical model for the
number of houses as a function of time.

b.  The developer estimates that the
proportionality constant is 0.9, so that the
differential equation is
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Q6.  “. . . then there is a point c in (a, b) such that

” is the conclusion of —?—.

Q7.  “. . . then (x) = (h(x)) · (x)” is the



Figure 7-6d

c.  Find the time when 70% of the lots have
been built on, at which time the developer

no longer needs to participate in the
homeowners’ association. Find the time at
which you expect only one unbuilt lot to
remain.

d.  Demonstrate how you can use the original
differential equation to show that the point
of inflection in the graph of y versus x is at
 y = 60, halfway between the asymptotes at
 y = 0 and y = 120. Explain the real-world
significance of this point of inflection.

3.  Merchandise Sales Problem: When a new
product is brought onto the market, sales
typically increase slowly at first, then increase
more rapidly as more people learn about the
product, and finally taper off as there are fewer
new customers who want to buy the product.
Suppose that Ajax Studios releases a new CD
by popular singer Nellie Wilson. The studio
assumes that a logistic function is a reasonable
mathematical model. They know that the
general equation is

where y is the number of CDs, in thousands,
sold after a time x, in days. But k and M are
unknown constants. At a particular time
designated as x = 0 days, they find that y = 10
(10,000 CDs sold) and that sales are increasing
at 500 (  of 1000) CDs per day. When y has
reached 24, sales are increasing at 1100 per
day.

a.  Use the given information to find values of
the constants k and M in the differential
equation. Based on the values of these
constants, how many of Nellie’s CDs does
Ajax eventually expect to sell?
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This development in Davis, California, utilizes
solar panels installed on the roof of each building.

where y is the number of houses that have
been built after time x, in years. Figure 7-6d
shows the slope field for this differential
equation. Show the steps you used to
separate the variables and integrate this
differential equation subject to the initial
condition that y = 5 when x = 0. Write the
particular solution for y  explicitly as a
function of x.

b.  Plot the slope field for this differential
equation using a computer algebra system
or dynamic geometry system such as The
Geometer’s Sketchpad (or at least using the
low-resolution graphics of your hand-held
grapher). Does the slope field confirm
the carrying capacity you found in
part a?



Section 7-6:   The Logistic Function,  and Predator-Prey Population Problems © 2005 Key Curriculum Press 355

as a function of x subject to the initial
condition y = 10 when x = 0. Plot this
solution on the slope field of part b. Does
the graph follow the slope lines?

d.  Use the particular solution to find out the
total sales when x = 50 and when x = 51.
How many CDs does Ajax expect to sell on
this 51st day?

e.  Merchandisers look for the point of
inflection in sales graphs such as this so
that they will know when sales start to slip
and it is time to start advertising. How many
CDs will Ajax have sold at the point of
inflection? At what time should they plan to
start an ad campaign?

If , then 

c.  Find the particular solution for y explicitly

4.  General Solution of the Logistic Differential
Equation: Start with the general logistic
differential equation and show the steps in
separating the variables and integrating to
prove that

where the constant a is determined by the
constant of integration.

5.  Snail Darter Endangered Species Problem: The
snail darter is a small fish found naturally only
in certain waterways. Suppose that a particular
waterway currently has 190 snail darters living
in it. Based on known data, researchers believe
that in this waterway the maximum sustainable
population is 1000 darters and the minimum
sustainable population is 200. In a reasonable
mathematical model for the snail darter
population, F, dF/dt is proportional to the
fraction of the minimum number times the
fraction of the maximum number. That is,

where F is the number of snail darters and
t is time in years from the present, and
the proportionality constant is estimated
to be 130. Figure 7-6e shows the slope field
for this differential equation.

Figure 7-6e

a.  The 190 snail darters present initially is
below the minimum sustainable population!
Use Euler’s method with dt = 0.1 to show
that the darter population is predicted to
decrease, eventually becoming extinct. At
approximately what time does the model
predict extinction? On a copy of Figure 7-6e,
sketch the population as a function of time.

b.  Concerned about the threat of extinction,
the National Wildlife Federation restocks the
waterway at time t = 3 years with enough
snail darters to bring F up to 1200. On a
copy of the slope field, sketch the graph of
the darter population under this condition,
and make a prediction about what will
happen.

c.  Suppose that at time t = 0, enough snail
darters are introduced to bring the
population up to F = 300. Sketch the graph
of F under this condition, and make a
prediction about what will happen.

d.  Solve the differential equation algebraically
for F as a function of t, using the initial
conditions of part c. To transform this new
problem into a more familiar problem, let
F = y + 200. Then dF/dt is the same as
dy/dt, and the differential equation becomes

Solve this differential equation algebraically
for y, then find F by suitable algebra. Plot
the graph of F as a function of t on the
slope field. Does your graphical solution
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solution?

6.  Rumor-Spreading Experiment: Number off the
members of your class. Pick person 1 to be a
person who will start a rumor, and have him or
her stand. By calculator, choose two random
integers to decide which two people will be told
the rumor. Those people stand. Then choose
two more random integers for each person

Year Population

1940 131.7
1950 151.4
1960 179.3
1970 203.2
1980 226.5
1990 248.7

from part c agree with the precise algebraic

standing, and have the people with these
numbers stand. At each iteration, x, record N,
the number of people standing. Continue until
all class members are standing. Then perform
logistic regression on your grapher to find an
equation for N as a function of x. Plot the
equation and the data on the same screen. Does
the graph confirm that a logistic function is a
reasonable mathematical model in this case?

7.  U.S. Population Project: The following table
shows the U.S. population, in millions, from
1940 through 1990. In this problem you will
use these data to make a mathematical model
for predicting the population in future years
and for seeing how far back the model fits
previous years.

a.  For the years 1950, 1960, 1970, and 1980,
find symmetric difference quotients, P/ t,
where P is population in millions and t is
time in years since 1940. (Why can’t you do
this for 1940 and 1990?)

b.  For each year given in part a, find P/ t as
a fraction of P. That is, find ( P/ t)/P.

c.  It is reasonable to assume that the rate of
growth of a population in a fixed region
such as the United States (as a fraction of
the size of that population) is some function

of the population. For instance, when the
population gets too large, its growth rate
slows because of overcrowding. Find the
function (linear, logarithmic, exponential, or
power) that best fits the values of ( P/ t)/P
as a function of P. Justify your answer.

d.  Assume that dP/dt obeys the same equation
as P/ t. Write a differential equation
based on your answer to part c. Transform
the equation so that dP/dt is by itself on
one side. The result is a logistic equation.

e.  Plot a slope field. Use –50  t  100 and
0  P  500. Print the slope field or sketch
it on a copy of Figure 7-6f.

Figure 7-6f

f.  Make a table of population predicted by
Euler’s method for each 10 years from
t = –50 through t = 100. Use the population
in 1940 (t = 0) as the initial condition. Use
steps of t = 1 yr. Plot the points on the
graph you drew in part e and connect them
with a smooth curve.

g.  According to this mathematical model, what
will be the ultimate population of the United
States? How does this number appear in the
differential equation and on the slope field?

h.  Plot the populations for the six years given
in the table on your graph from part e. Does
the population really seem to follow the
solution by Euler’s method?

i.  Write a paragraph describing how well the
predicted populations in part f agree with
the actual populations from 1940 through
1990.



j.   Consult some reference material to find the

about the population growth under this
condition?

8.  Algebraic Solution of the Logistic Equation: As
you have seen, it is possible to solve the
logistic differential equation like that in
Problem 7 algebraically. Suppose that

Separating the variables and integrating gives

In this problem you will learn how to integrate
on the left side. Then you will solve the logistic
equation in Problem 7 algebraically.

a.  The fraction in the left integral can be split
into partial fractions like this:

where A and B stand for constants. Using
suitable algebra, find the values of A and B.

b.  Integrate the differential equation. Show
that you can transform the integrated
equation into

where k is a constant related to the constant
of integration.

c.  Solve the logistic equation from part d of
Problem 7 algebraically. Transform the
answer so that population is in terms of
time. Use the initial condition P = 131.7 in
1940 (when t = 0) to evaluate k.

d.  Use the algebraic solution you found in
part c to predict the population in 1950,
1960, 1970, 1980, and 1990. How well do
the approximate solutions found by Euler’s
method in part f of Problem 7 compare with
these exact solutions? How well do the
exact solutions compare with the actual
population in these years? Write a
paragraph that describes your observations
about how well different mathematical
models agree with each other and about
how well they fit data from the real world.

For Problems 9–23, Ona Nyland moves to an
uninhabited island. Being lonely for company, she
imports some pet rabbits. The rabbits multiply and
become a nuisance! So she imports some foxes to
control the rabbit population.

9.  Let R be the number of rabbits, in hundreds,
and F be the number of foxes at any given
time, t. If there are no foxes, the rabbit
population grows at a rate proportional to the
population. That is, dR/dt  equals k1R, where
k1 is a positive constant. Show that the rabbit
population grows exponentially with time
under this condition.

10.  If there are no rabbits for the foxes to eat, the
fox population decreases at a rate proportional
to the population. That is, dF/dt  equals –k2F,
where k2 is a positive constant. Show that the
fox population decreases exponentially under
this condition.

11.  Assume that the foxes eat rabbits at a rate
proportional to the number of encounters
between foxes and rabbits. This rate is
proportional to the product of the number of
rabbits and foxes. (If there are twice as many
rabbits, there are twice as many encounters,
and vice versa.) So, there are two rates
operating on each population: The rabbit
population is decreasing at a rate k3RF at the
same time it is increasing at k1R. The fox
population is increasing at a rate k4RF and
decreasing at k2F. Write differential equations
for dR/dt  and for dF/dt  under these
conditions.

12.  Use the chain rule to write a differential
equation for dF/dR. What happens to dt?
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results of censuses dating back through
1900. How well do your predicted values
compare with the actual ones? How can you
explain any large discrepancies between
predicted and actual values?

k.  Suppose that in the year 2010, 200 million
people immigrate to the United States.
Predict the population for the next 40 years.
What does the logistic-equation model say
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differential equation are such that

14.  Figure 7-6g shows the slope field for this
differential equation. On a copy of the figure,

13.  Assume that the four constants in the

show the initial condition given in Problem 13.
Then show the relative populations of rabbits
and foxes as time progresses. How do you tell
from the differential equations you wrote for
Problem 11 whether to start going to the right
or to the left?

Figure 7-6g

15.  How would you describe the behavior of the
rabbit and fox populations?

16.  Is there a fixed point at which both the rabbit
and the fox populations do not change?
Explain.

17.  The logistic equation of Problem 7 shows that,
because of overcrowding, the rate of change in
the population is decreased by an amount
proportional to the square of the population.
Assume that

Calculate dF/dR (not dR/dt!) at R = 70 and
F = 15 under this condition.

18.  The slope field in Figure 7-6h is for dF/dR,
which you calculated in Problem 17. On a copy
of the figure, use the initial condition in
Problem 17 to sketch the predicted
populations.

Figure 7-6h

19.  How does the graph in Problem 18 differ from
that in Problem 14? How does overcrowding by
rabbits affect the ultimate rabbit population?
The ultimate fox population?

20.  Ona tries to reduce the rabbit population by
allowing hunters to come to the island. She
allows the hunters to take 1000 rabbits
per unit of time, so dR/dt  is decreased by an
additional 10. Calculate dF/dR at the point
(R, F ) = (70, 15) under these conditions.

21.  The slope field in Figure 7-6i is for the
differential equation

On a copy of Figure 7-6i, trace the predicted
populations under these conditions, starting at
the point (70, 15).

Figure 7-6i

22.  Describe what happens to the populations of
rabbits and foxes under these conditions.

23.  Worried about the fate of the foxes in
Problem 21, Ona imports 15 more of them.
Starting at the point (70, 30), trace the
populations. According to this mathematical
model, what is the effect of importing more
foxes? Surprising?

If R = 70 and F = 15, calculate dF/dR.



7-7   Chapter Review and Test

•  The one most important thing you have
learned in studying Chapter 7

•  Which boxes you’ve been working on in the
“define, understand, do, apply” table

•  The proportion property of exponential
functions and their derivatives, and this
property’s converse

•  The fact that you can find a function
equation from the rate of change of the
function

•  How to solve differential equations
graphically and numerically

•  Any ideas about calculus that you’re still
unclear about

R1.  Punctured Tire Problem: You’ve run over a nail!
The pressure, P(t), in pounds per square inch
(psi), of the air remaining in your tire is
given by

P(t ) = 35(0.98t )

where t is the number of seconds since the tire
was punctured. Calculate P(0), P(10), and
P(20). Show by example that although (t)
decreases as t increases, the ratio (t)/P(t)
stays constant. Prove in general that (t)/P(t)
is constant.

R2.  Ramjet Problem: A ramjet (Figure 7-7a) is a
relatively simple jet engine. The faster the
plane goes, the more air is “rammed” into the
engine and the more power the engine
generates.

Figure 7-7a

a.  Assume that the rate at which the plane’s
speed changes is directly proportional to its
speed. Write a differential equation that
expresses this assumption.

b.  Solve the differential equation. Show the
integration step and describe what happens
to the absolute value sign.

c.  Evaluate the constants in the equation if the
plane is flying at 400 mi/h at time t = 0 s
and 500 mi/h at time t = 40 s.

d.  When will the plane reach the speed of
sound, 750 mi/h?

The X-43A hypersonic research aircraft, powered
by a ramjet engine, can reach speeds up to
10 times the speed of sound (Mach 10).

R3.  a.  Find the general solution of the differential
equation dy/dx = 6y1/2.

b. Find the particular solution of the equation
in part a that contains the point (3, 25).
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In this chapter you have seen that by knowing the rate at which a population is
changing, you can write an equation for the derivative of the population. You can
solve this differential equation numerically by Euler’s method, graphically by
slope field, or exactly by algebraic integration.

Review Problems

R0.  Update your journal with what you’ve learned
since your last entry. Include such things as
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part b. Sketch the result.
d.  Find dy/dx for this differential equation

when x = 2. On your graph, show that your
answer is reasonable.

e.  Memory Retention Problem: Paula Lopez
starts her campaign for election to state
senate. She meets people at a rate of about
100 per day, and she tries to remember as

c.  Plot the graph of the solution you found in

many names as possible. She finds that after
seven full days, she remembers the names
of 600 of the 700 people she met.

i.  Assume that the rate of change in the
number of names she remembers, dN/dt,
equals 100 minus an amount that is
directly proportional to N. Write a
differential equation that expresses this
assumption, and solve the equation
subject to the initial condition that she
knew no names when t = 0.

ii.  How many names should Paula remember
after 30 days?

iii.  Does your mathematical model predict
that her brain will “saturate” after a long
time, or does it predict that she can
remember unlimited numbers of names?

iv.  After how many days of campaigning will
Paula be able to remember the names of
only 30 of the people she meets that day?

R4.  Figure 7-7b shows the slope field for

Figure 7-7b

a.  Calculate the slope at the points (2, 5) and
(10, 16). Show that these slopes agree with
the graph.

b.  On a copy of Figure 7-7b, draw the particular
solutions that contain (1, 8) and (1, 12).
Describe the major difference in the
behavior of the two graphs.

c.  Does the particular solution that contains
(1, 10) behave like that containing (1, 12) or
that containing (1, 8)? Justify your
answer.

R5.  a.  For the differential equation given in
Problem R4, use Euler’s method to calculate
values of y for the particular solution that
contains (1, 9). Use x = 1. Where does the
graph seem to cross the x-axis? On a copy of
Figure 7-7b, plot the points you calculated.

b.  Use Euler’s method, as you did in part a, but
with an increment of x = 0.1. Record the
 y-value for each integer value of x that
shows in Figure 7-7b. Plot these points on
your copy of Figure 7-7b.

c.  Write a few sentences commenting on the
accuracy of Euler’s method far away from
the initial point when you use a relatively
large value of x.

d.  At what value of x would the graph
described in part c cross the x-axis?

R6.  Beaver Logistic Function Problem: The beaver
population, y, in hundreds of beavers, in a
certain area is presently 1200 and is changing
at rate dy/dx, in hundred beavers per year,
given by

Figure 7-7c shows the slope field for the
logistic differential equation.

a.  On a copy of Figure 7-7c, sketch the
particular solution subject to the initial
condition y = 12 when x = 0 years. How do
you interpret the fact that the beaver
population is decreasing? Use Euler’s
method with dx = 0.1 to estimate the
number of beavers at time x = 3.
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Figure 7-7c

b.  At time x = 3 years, a flood washes away
most of the remaining beavers, leaving only
100. On the copy of the slope field, sketch
the graph of the beaver population subject
to the initial condition that y = 2 when
x = 3. Explain what happens to the
population under these conditions.

c.  Find the algebraic solution of the differential
equation using the initial condition given in
part b. At what time after x = 3 is the
population increasing most rapidly?

Predator-Prey Problem: Space explorers visiting
a planet in a nearby star system discover a
population of 600 humanlike beings called
Xaltos living by preying on a herd of 7000
creatures that bear a remarkable resemblance
to yaks. They find that the differential equation
that relates the two populations is

where x is the number of hundreds of Xaltos
and y is the number of thousands of yaks.

Figure 7-7d shows the slope field for this
differential equation.

Figure 7-7d

d.  The numerator of the fraction in the
differential equation is dy/dt and the
denominator is dx/dt. Explain why the two
populations presently seem to be in
equilibrium with each other.

e.  Suppose that 300 more Xaltos move into the
community. Starting at the point (9, 7), draw
the particular solution of the differential
equation on a copy of Figure 7-7d. Explain
why the graph goes clockwise from this
initial point. Describe what happens to the
two populations as time goes on.

f.  Instead of 300, suppose that 1300 more
Xaltos move into the community. Draw the
particular solution, using this initial
condition. What dire circumstance befalls
the populations under this condition?
Surprising?

g.  What if only 900 more Xaltos move in
instead of the 1300 described in part c?
Would the same fate befall the populations?
Justify your answer.

Concept Problems

C1.  Differential Equations Leading to Polynomial
Functions: You have shown that if dy/dx is
directly proportional to y, then y is an
exponential function of x. In this problem you
will investigate similar differential equations
that lead to other types of functions.

a.  If dy/dx is directly proportional to y1/  2,
show that y is a quadratic function of x.

b.  Make a conjecture about what differential
equation would make y a cubic function of x.

c.  Verify or refute your conjecture by solving
the differential equation. If your conjecture
is wrong, make other conjectures until you
find one that is correct.

d.  Once you succeed in part c, you should be
able to write a differential equation whose
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that you see the pattern by writing and
solving a differential equation whose
solution is an eighth-degree function.

*C2.  Film Festival Problem: In this chapter you
assumed a certain behavior for the derivative
of a function. Then you integrated to find an
equation for the function. In this problem you
will reverse the procedure. You will use
measured values of a function, then find the

Maximum Price ($) Number of People

2.00 100
2.50   40
3.00   60
4.00 120
4.50   20
5.50   40
6.00   80

solution is any specified degree. Demonstrate

derivative to make use of the mathematical
model. In order to make money for trips to
contests, the math club at Chelmsdale High
plans to rent some videocassettes and present
an all-night Halloween film festival in the
school gym. The club members want to predict
how much money they could make from such a
project and to set the admission price so that
they make the greatest amount of money.
The club conducts a survey of the entire
student body, concluding with the question
“What is the most you would pay to attend the
festival?” Here are the results.

a.  Make a chart that shows the total number of
people likely to attend as a function of the
admission price.

b.  Plot the data you charted in part a. What
type of function might be a reasonable
mathematical model for people in terms of
dollars? Fit an equation of this function to
the data.

c.  The amount of money club members expect
to make is the product of ticket price and
the number of tickets purchased. Write an
equation that expresses amount of money
as a function of ticket price.

d.  What price should club members charge to
make the greatest amount of money? Justify
your answer.

e.  Why would club members expect to make
less money if they charged more than the
price you determined in part d? Why would
they expect to make less money if they
charged less than the price in part d?

C3.  Gompertz Growth Curve Problem: Another
function with a sigmoid (S-shaped) graph
sometimes used for population growth is the
Gompertz function, whose general equation is

g(t) = ae–ce
–kt

where g(t) is the population at time t, and a, c,
and k are positive constants. The graphs of
these functions look somewhat like Figure 7-7e.
In this problem you will investigate effects of
the constants, maximum growth rates, and
limiting population values.

Figure 7-7e

a.  Let a = 10, c = 0.8, and k = 0.5 so that the
equation is

g(t) = 10e–0.8 e
–0.5 t

Plot the graph of this particular Gompertz
function. Confirm that it looks like the
graph in Figure 7-7e. What does the limit of
g(t) appear to be as t approaches infinity?
Confirm your answer by taking the limit in
the equation. If g(t) represents population
growth, what is the significance of this limit
in the real world?

b.  Find the equation of the particular Gompertz
function that fits the U.S. population figures
for 1960, 1970, and 1980, given in the table
on the next page.

*Adapted from data by Landy Godbold, as cited by Dan Teague.
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Year
U.S. Population

(Millions)

1960 179
1970 203
1980 226

= –2V 1/2

= 0.4y

=12y1/2

Let t = 0 in 1970. To deal with the
exponential constants, you may take the ln
of both sides of the equation twice. By clever
use of algebra, you can get two equations
that involve only the constant a. Then you
can use your grapher to calculate the value
of a. Plot the graph of the function. At what
value does the population seem to level off?

c.  Suppose that the 1980 data point is
227 million instead of 226 million. How does
this change affect the predicted ultimate U.S.
population? Does the Gompertz equation

seem to be fairly sensitive to slight changes
in initial conditions?

C4.  Hot Tub Problem, Continued: In Problem 5 of
Problem Set 7-3, you wrote a differential
equation for the volume of water remaining in
a hot tub as it drained. That equation is

where V is the volume of water that remains
t minutes after the drain is opened. By solving
the differential equation, you found that the
196 ft3 of water initially in the tub drained in
14 min. Now suppose that while the drain is
open, water flows in at a rate of F ft3/min.
Explore the effect of such an inflow on the
remaining amount as a function of time.

Chapter
Test
PART 1: No calculators allowed (T1–T8)

T1.  Write a differential equation stating that the
instantaneous rate of change of y with respect
to x is directly proportional to the value of y.

T2.  What does it mean to solve a differential
equation?

T3.  What is the difference between the general
solution of a differential equation and a
 particular solution?

T4.  On a copy of Figure 7-7f, sketch the particular
solution of the differential equation with slope
field shown subject to the initial condition
 y = –4 when x = 0.

Figure 7-7f

T5.  Why will Euler’s method for solving differential
equations give an underestimate of the values
of y for the particular solution in Problem T4?

T6.  If the constant M is the maximum sustainable
value of a dependent variable y, write the
general logistic differential equation for
dy/dx.

T7.  Show that you know how to solve a differential
equation algebraically by solving

for y explicitly as a function of x if the point
(0, –5) is on the graph.

T8.  Separate the variables and integrate this
differential equation. You may leave the answer
as an implicit relation (that is, you don’t need
to solve for y explicitly in terms of x).
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T9.  Phoebe’s Space Leak Problem: Phoebe is
returning to Earth in her spaceship when she
detects an oxygen tank leak. She knows that
the rate of change of pressure is directly
proportional to the pressure of the remaining

a.  Write a differential equation that expresses
this fact and solve it subject to the initial

oxygen.

= 0.5y · 

PART 2: Graphing calculators allowed (T9–T13)

condition that pressure is 3000 psi (pounds
per square inch) at time t = 0 when Phoebe
discovers the leak.

b.  Five hours after she discovers the leak, the
pressure has dropped to 2300 psi. At that
time, Phoebe is still 20 h away from Earth.
Will she make it home before the pressure
drops to 800 psi? Justify your answer.

T10.  Swimming Pool Chlorination Problem: Suppose
that a pool is filled with chlorine-free water.
The chlorinator is turned on, dissolving
chlorine in the pool at a rate of 30 g/h. But
chlorine also escapes to the atmosphere at a
rate proportional to the amount dissolved in
the water. For this particular pool, the escape
rate is 13 g/h when the amount dissolved
is 100 g.

a.  Write a differential equation that expresses
this information and solve it to express the
amount of chlorine, in grams, in the pool as
a function of the number of hours the
chlorinator has been running. Be clever in
finding an initial condition!

b.  How long will it take for the chlorine content
to build up to the desired 200 g?

T11.  Water Lily Problem: Phoebe plans to plant water
lilies in a small lake in the tropics. She realizes
that the lilies will multiply, eventually filling
the lake. Consulting a Web site on the Internet,
she figures that the maximum number of lilies
her lake can sustain is 1600. She assumes that
a logistic differential equation is a reasonable
mathematical model, and figures that the
differential equation is

where y is in hundreds of lilies and x is in
months. The slope field is shown in
Figure 7-7g.

Figure 7-7g

a.  Use what you have learned about the
relationship between the logistic differential
equation and its solution to find the
particular solution if Phoebe plants
200 lilies (y = 2) at time x = 0 months.

b.  Demonstrate that you understand how
Euler’s method works by showing the steps
in estimating y at x = 0.2 with dx = 0.1.
Show numerically that this Euler’s solution
is an underestimate, as expected, because of
the concavity of the graph.

c.  Phoebe could speed up the process by
planting 400 lilies, or she could wait awhile
until the original number grows to 400. How
long would she have to wait?

d.  On a copy of Figure 7-7g, show what would
happen if Phoebe is impatient and plants
2000 lilies at time x = 0.

T12.  Coyote and Roadrunner Problem: Coyotes are
reputed to prey on roadrunners. Figure 7-7h
shows the slope field for the differential
equation

where C is the number of coyotes at a
particular time t and R is the corresponding
number of roadrunners.
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Figure 7-7h

a.  Starting at the point (C, R) = (80, 700),
which way will the graph go, to the left or to

the right? How can you tell? On a copy of
Figure 7-7h, sketch the particular solution
subject to this initial condition.

b.  You have learned that a solution of a
differential equation is a  function whose
derivative appears in the equation. If you
continue the pattern in the slope field, there
will be places where there are two different
values of R for the same value of C. Explain
why this situation is satisfactory in this
problem.

T13.  Write a paragraph about the most important
thing you learned as a result of studying this
chapter.

7-8   Cumulative Review: Chapters 1–7
In your study of calculus so far, you have learned that calculus involves four
major concepts, studied by four techniques. You should be able to do four major
things with the concepts.

Concepts Techniques Be able to

Limits Graphical Define them.
Derivatives Numerical Understand them.
Indefinite integrals Algebraic Do them.
Definite integrals Verbal Apply them.

Two of these concepts, derivatives and definite integrals, are used to work
problems involving the rate of change of a function (derivatives), and the
product of x and y for a function in which y depends on x (definite integrals).
Both derivatives and definite integrals are founded on the concept of limit.
Indefinite integrals, which are simply antiderivatives, provide an amazing link
between derivatives and definite integrals via the fundamental theorem of
calculus.

The following problems constitute a “semester exam” in which you will
demonstrate your mastery of these concepts as you have studied them so far.

Problem Set 7-8
Rocket Problems: Princess Leia is traveling in her
rocket ship. At time t = 0 min, she fires her rocket
engine. The ship speeds up for a while, then slows
down as the planet Alderaan’s gravity takes its
effect. The graph of her velocity, v(t), in miles per
minute, as a function of t, in minutes, is shown in

Figure 7-8a, on the next page. In Problems 1–16, you
will analyze Leia’s motion.

1.  On a copy of Figure 7-8a, draw a narrow
vertical strip of width dt. Show a sample point
(t, v(t)) on the graph within the strip. What
physical quantity does v(t) dt represent?



t = 8, what calculus concept equals the limit of
this sum as dt approaches zero?

3.  Leia figures that her velocity is given by
v(t) = t3 – 21t2 + 100t + 80

Use the fundamental theorem of calculus to
find the distance she travels from t = 0 to t = 8.

4.  Calculate midpoint Riemann sums with
n = 100 and n = 1000 increments. How do the
results confirm that the fundamental theorem
gives the correct answer for the integral even
though it has nothing to do either with
Riemann sums or with limits?

5.  On a copy of Figure 7-8a, draw a representation
of an upper sum with n = 8 increments.

6.  Explain why, for an integrable function, any
Riemann sum is squeezed to the same limit as
the upper and lower sums as the widths of the
increments approach zero.

7.  Write the definition of definite integral. State
the fundamental theorem of calculus. Be sure
to tell which is which.

8.  Calculate the integral in Problem 3 numerically
by using your grapher’s integrate feature.
Calculate the integral again graphically by
counting squares. Compare the answers with
the exact value.

9.  Use symmetric difference quotients with
t = 0.1 min and t = 0.01 min to estimate the

rate of change of Leia’s velocity when t = 4 min.

10.  Write the definition of derivative.

11.  For most types of functions there is a way to
find the derivative algebraically. Use the
appropriate method to find the exact rate of
change of Leia’s velocity when t = 4.

12.  At t = 4, was Leia speeding up or slowing
down? Justify your answer.

13.  On a copy of Figure 7-8a, draw a line at the

constructed the line. How is the line related to
the graph?

14.  What is the physical name of the instantaneous
rate of change of velocity?

15.  Leia’s maximum velocity seems to occur at t = 3.
Use derivatives appropriately to find out whether
the maximum occurs when t is exactly 3 s.

derivative of v(t) with respect to t.

Related Rates Problems: Suppose that you have
constructed the diagram shown in Figure 7-8b on a
computer screen using a dynamic geometry utility
such as The Geometer’s Sketchpad. The curve has
equation y = 6e–0.5x. A vertical line y units long
connects the x-axis to a point on the graph, and a
diagonal line z units long connects this point on the
graph to the origin.

Figure 7-8b

at a constant rate of 0.3 unit per second. Find
dy/dt when x = 2. Is y increasing or
decreasing at this instant? At what rate?
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Figure 7-8a

2.  If you take the sum  v(t) dt from t = 0 to

point (4, v(4)) with slope  (4). Show how you

16.  Find an equation for (t), the second

17.  Suppose that you drag the point on the x-axis

18.  Find dz/dt when x = 2. Is z increasing or
decreasing at this instant? At what rate?



Compound Interest Problems: When money is left in
a savings account that compounds interest
continuously, the instantaneous rate at which the
money increases, dm/dt, is directly proportional
to m, the amount in the account at that instant.

19.  Write a differential equation that expresses
this property.

20.  Solve the differential equation in Problem 19
for m as a function of t, and show the steps
that you use.

21.  In one word, how does m vary with t?

22.  The solution in Problem 20 is called the —?—
solution of the differential equation.

23.  Find the particular solution in Problem 20 if m
is $10,000 at t = 0 and $10,900 at t = 1.

24.  In Problem 23, the amount of money in the
account grew by $900 in one year. True or
false: The amount of money will grow by $9000
in 10 yr. Justify your answer.

Discrete Data Problems: The techniques of calculus
were invented for dealing with continuous
functions. These techniques can also be applied to
functions specified by a table of data. This table
gives values of y for various values of x.

x  y

30 74
32 77
34 83
36 88
38 90
40 91
42 89

25.  Use Simpson’s rule to estimate y dx.

26.  Estimate dy/dx if x = 36. Show how you got
your answer.

Mean Value Theorem Problems: The proof of the
fundamental theorem is based on the mean value
theorem. This theorem is a corollary of Rolle’s
theorem.
27.  State Rolle’s theorem.
28.  Sketch a graph that illustrates the conclusion

of the mean value theorem.

Graphing Problems: Calculus is useful for analyzing
the behavior of graphs of functions.

29.  Figure 7-8c shows the graph of function f. On a
copy of this figure, sketch the derivative
graph, .

Figure 7-8c

30.  The function

has a discontinuity at x = 1. Sketch the graph.
What type of discontinuity is it?

31.  The function g(x) = x1/3(x – 1) has g(0) = 0.
Show that (0) is undefined. Show what the
graph of g looks like in a neighborhood of
x = 0. You may use your grapher’s cube root
function, if it has one.

Area and Volume Problems: Figure 7-8d shows the
graphs of y = e0.2x and y = 0.6x.

Figure 7-8d

32.  Find numerically the two intersections of the
graphs shown in the figure. Store these,
without rounding. Find the area of the narrow
region bounded by these two graphs between
the two intersections.
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33.  The region bounded by the two graphs in
Problem 32 from x = 0 to the first intersection
is rotated about the x-axis to form a solid. Find
the volume of this solid.

Differential Equation Problems: Figure 7-8e shows
the slope field for the differential equation

Figure 7-8e

34.  On a copy of Figure 7-8e, sketch the particular
solutions that contain the points (0, 3) and
(10, 4).

35.  The two solutions in Problem 34 share a
common asymptote. Sketch the asymptote.
State an initial condition that would give the
asymptote as the graph of the solution.

36.  Solve the differential equation by separating
the variables and integrating. Find the equation
of the particular solution that contains the
point (10, 4).

37.  Use the function in Problem 36 to calculate the
exact value of y when x = 10.5.

38.  Demonstrate that you understand the idea
behind Euler’s method by calculating the first
point to the right of the point (10, 4) in
Problem 36, with x = 0.5. How does this value
compare with the exact value in Problem 37?

Algebraic Techniques Problems: You have learned
algebraic techniques for differentiating,
antidifferentiating, and calculating limits.

39.  Find:  (sin–1 x3 )

40.  Find  if x = ln (cos t) and y = sec t.

41.  Find: 

42.  Find (x) if h(x) = 5x.

43.  Find: 

44.  Plot the graph of the fraction given in
Problem 43. Sketch the result. Show how the
graph confirms your answer to Problem 43.

Journal Problems: Take a moment and think about
what you’ve learned and what you’re still unsure
about. In your journal:

45.  Write what you think is the one most
important thing you have learned so far as a
result of taking calculus.

46.  Write one thing in calculus that you are still
not sure about.
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The Calculus of Plane
and Solid Figures

A cable hanging under its own weight forms a curve called a
catenary. A cable supporting a uniform horizontal load, such as
the cables in the Brooklyn Bridge, forms a parabola. By slicing such
graphs into short segments, you can find the differential of arc
length. Integrating this differential allows engineers to compute
the exact length of hanging cables and chains, important
information for constructing bridges.
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and plane area. To do this, I draw a figure that shows a representative
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differentials and take the limit, which means integrate.
differential of the quantity I’m trying to find, then add up the
slice of the object, pick a sample point within the slice, find the

technique to find length and surface area that I used to find volume
I think the most important thing I learned is that I can use the sameVerbally

Algebraically , volume by slicing into washers

Numerically

Graphically

Mathematical Overview

In Chapter 8, you will learn how definite integrals help you find
exact area, volume, and length by slicing an object into small
pieces, then adding and taking the limit. You will also use
derivatives to find maxima, minima, and other interesting
features of geometric figures. You will explore geometric figures
in four ways.

x  f ′ (x)

The icon at the top of each
even-numbered page of this chapter
shows an object for which you can find
length, area, volume, and points of
inflection.

1.8 0.72 13.931
13.9840.331.9

2.0
2.1
2.2

0
–0.27
–0.48

14  Max.
13.987
13.949

.

...

 f(x)

.. ...



8-1   Cubic Functions and Their Derivatives
Recall that the graph of a quadratic function, f(x) = ax2 + bx + c, is always a
parabola. The graph of a cubic function, f(x) = ax3 + bx2 + cx + d, is called a
cubic parabola. To begin your application of calculus to geometric figures, you
will learn about the second derivative, which tells the rate at which the (first)
derivative changes. From the second derivative you can learn something about
the curvature of a graph and whether the graph curves upward or downward.

Figure 8-1a shows the graphs of three cubic parabolas. They have different
shapes depending on the relative sizes of the coefficients a, b, and c. (The
constant d affects only the vertical placement of the graph, not its shape.)
Sometimes they have two distinct vertices, sometimes none at all. In Exploratory
Problem Set 8-1, you will accomplish the objective of this section.

Exploratory Problem Set 8-1

1.  In Figure 8-1a,

 f(x) = x3 – 6x2 + 9x + 3
g(x) = x3 – 6x2 + 15x – 9
h(x) = x3 – 6x2 + 12x – 3

Figure 8-1a

For each function, find an equation for the
derivative. Plot the function and its derivative
on the same screen. Then list as many
connections as you can find between the

function graph and the derivative graph.
Sketches will help.

2.  What connection can you see between the
graph of the derivative of a function and
whether the function has two distinct vertex
points (high or low points)?

3.  The second derivative of a function is the
derivative of the (first) derivative. For instance,

(x) (read “f double prime of x”) is equal to
6x – 12. Find equations for the second
derivatives  (x) and  (x). What do you
notice?

4.  Figure 8-1a illustrates a curve that is concave
up for certain points and concave down for
others. What do you notice about the sign of
the second derivative and the direction of the
concave side of the graph?

5.  A graph has a point of inflection where it
changes from concave down to concave up or
vice versa. State two ways you can use
derivatives to locate a point of inflection.
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derivatives.

OBJECTIVE
functions and to make connections between a function’s graph and its
Work alone or with your study group to explore the graphs of various cubic



8-2   Critical Points and Points of Inflection
If a moving object comes to a stop, several things can happen. It can remain
stopped, start off again in the same direction, or start off again in some
different direction. When a car stops or reverses direction, its velocity goes
through zero (hopefully!). When a baseball is hit by a bat, its velocity changes
abruptly and is undefined at the instant of contact. Figure 8-2a shows how
displacement, d, and velocity, v (derivative), vary with time, x.

Figure 8-2a

A point where the derivative is zero or undefined is called a critical point, a
term that comes from “crisis.” (When one reaches a crisis, things stop and can
then go in different directions.) “Critical point” is sometimes used for the point
on the x-axis and sometimes for the point on the graph itself. You must decide
from the context which is meant.

The y-value at a critical point can be a local maximum or a local minimum
(Figure 8-2a, center and right). The word local indicates that f(c) is the
maximum or minimum of f(x) when x is kept in a neighborhood (locality) of c.
The global maximum and global minimum are the largest and smallest of the
local maxima and minima, respectively. (Maxima and minima are the plural
forms.) A critical point with zero derivative but no maximum or minimum
(Figure 8-2a, left) is called a plateau point. (Relative and absolute are often used
in place of local and global when expressing maxima and minima.)

There are connections between the derivative of a function and the behavior of
its graph at a critical point. For instance, if the derivative changes from positive
to negative (Figure 8-2a, center), there is a maximum point in the graph of the
function. As you saw in Section 8-1, the second derivative of a function tells
which direction the concave side of the graph points. A point of inflection, or
inflection point, occurs where the concavity changes direction.
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sketch the graph or find the equation of the function.
whether the graph has a point of inflection, then use this information to
whether the y-value is a local maximum or minimum at a critical point and
From information about the first and second derivatives of a function, decideOBJECTIVE



  EXAMPLE 1 For the function graphed in Figure 8-2b, sketch a number-line graph for 
and a number-line graph for  that shows the sign of each derivative in a
neighborhood of the critical point at x = 2. On the number-line graphs, indicate
whether f(2) is a local maximum or a local minimum and whether the graph has
a point of inflection at x = 2.

Figure 8-2b

Solution Sketch a number-line graph for  and another one for . Each number-line
graph needs three regions: one for x, one for the derivative, and one for f(x).
Figure 8-2c shows a convenient way to sketch them. The abbreviation “e.p.”

Figure 8-2c

signifies an endpoint of the domain.

The graph is vertical at x = 2, so (2) is
infinite. Insert the infinity symbol, , in
the (x) region above x = 2, and draw a
vertical arrow above it in the f(x) region.

The graph of f slopes up on both sides
of x = 2. Since the derivative is positive
when the function is increasing, put a
plus sign in the (x) region on both
sides of x = 2. Show upward sloping
arrows in the f(x) region above the plus
signs. There is not a maximum or minimum value of f(x) at x = 2, so you
don’t need to write any words in that region.

The graph is concave up for x < 2 and concave down for x > 2. Because a positive
second derivative indicates concave up and a negative second derivative indicates
concave down, put a plus sign in the (x) region to the left of x = 2 and a minus
sign to the right. Draw arcs in the f(x) region to indicate the direction of concavity
of the f graph. The concavity changes (from up to down) at x = 2, so the graph
has a point of inflection there. Write “p.i.” in the f(x) region above x = 2.

A Note on Concavity and Curvature
The word concave comes from the Latin cavus, meaning “hollow.” (So do “cave”
and “cavity.”) If the second derivative is positive, the first derivative is
increasing. Figure 8-2d shows why the concave side is upward in this case and
vice versa. As shown in Figure 8-2e, the larger the absolute value of (x), the
more sharply the graph curves. However, as you will learn in Section 10-6,

Figure 8-2d Figure 8-2e
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the curvature also depends on the slope of the graph. For a given value of  (x),
the steeper the slope, the less the curvature.

In Example 2, you will reverse the procedure of Example 1 and construct the
graph of a function from the number lines for its first and second derivatives.

  EXAMPLE 2

Figure 8-2f

Figure 8-2f shows number-line graphs
for the first and second derivatives of a
continuous function f. Use this
information to sketch the graph of f if
 f(4) = 0. Describe the behavior of the
function at critical points.

Solution Sketch the number-line graphs. Add arrows and arcs in the f(x) region to show
the slope and concavity in the intervals between critical points (Figure 8-2g).
Add words to describe what features the graph will have at the critical points of
 f and . Sketch a continuous function (no asymptotes) that has the prescribed
features and crosses the x-axis at x = 4 (Figure 8-2h). The graph you draw may
be somewhat different, but it must have the features shown on the number-line
graphs in Figure 8-2g.

Figure 8-2g Figure 8-2h

Example 3 shows you how to sketch the graph of a function if the actual graph
of the derivative function is given, not just the number-line information.

  EXAMPLE 3

Figure 8-2i

Figure 8-2i shows the graph of the derivative of
a continuous, piecewise function f defined on
the closed interval x  [0, 8]. On a copy of the
figure, sketch the graph of f, given the initial
condition that f(1) = 5. Put a dot at the
approximate location of each critical point and
each point of inflection.

Solution Figure 8-2j shows that

•  f(1) = 5, the initial condition, is a local maximum because (x) changes
from positive to negative as x increases through 1.
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Figure 8-2j

•  f(0) is an endpoint local minimum because
 f(x) is increasing between 0 and 1. By
counting squares, f(0)  5 – 1.3 = 3.7. It is
defined because the domain is [0, 8].

•  f(2)  5 – 0.7 = 4.3 is a point of inflection
because (x) has a local minimum at x = 2.

•  f(3)  4.3 – 0.7 = 3.6 is a local minimum
because (x) changes from negative to
positive at x = 3.

•  f(4)  3.6 + 1.3 = 4.9 exists because f is specified to be continuous, and is
a local maximum because (x) changes from positive to negative at x = 4.
There is a cusp or corner (see the note on page 379) at x = 4 because the
direction of the graph changes abruptly (discontinuous derivative).

•  f(6)  4.9 – 2.0 = 2.9 is a local minimum because (x) changes from
negative to positive at x = 6.

•  f(8)  2.9 + 2.0 = 4.9 is an endpoint local maximum because f(x) is
increasing from x = 6 to x = 8.

In Example 4, you are given both the equation for the function and an accurate
graph. You will be asked to find critical features algebraically, and some of them
may be hard to see.

  EXAMPLE 4 Figure 8-2k shows the graph of f(x) = x4/3 + 4x1/3.

a.  Sketch number-line graphs for and that show features that appear
clearly on the graph.

b.  Find equations for (x) and (x). Show algebraically that the critical
points you drew in part a are correct. Fix any errors.

c.  Write x- and y-coordinates of all maxima, minima, and points of inflection.

Figure 8-2k Figure 8-2l

Solution a.  Figure 8-2l shows the two number-line graphs. Note that (x) is zero at
x = –1 and infinite at x = 0. The graph is concave up for x < 0 and appears
to be concave down for x > 0.
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b.  f(x) = Factor out the power of x with
the smaller exponent.

Critical points occur where either (x) = 0 or (x) is undefined.

(x) 

x–2/3 = 0 or x + 1 = 0 A product is zero if  and only if  one of its
factors is zero.

 x = –1 x–2/3 = 1/x2/3, which cannot equal zero.
So the other factor must be zero.

(x) is undefined  x = 0 0–2/3 = 1/02/3 = 1/0, which is infinite.

 critical points occur at x = 0 and x = –1, as observed in part a.

Inflection points can occur where  has critical points; that is, (x) is zero
or undefined.

(x) = 

x–5/3 = 0 or x – 2 = 0
 x = 2
(x) is undefined  x = 0

For there to be a point of inflection, (x) must change sign.

At x = 2, the factor (x – 2) in (x) changes sign. At x = 0, the factor
(4/9)x–5/3 changes sign. (Any power of a positive number is positive. If x is
negative, then x–5/3 is negative. The cube root of a negative number is
negative, the fifth power of that answer is also negative, and the reciprocal
(negative exponent) of that negative answer is still negative.)

So inflection points are at x = 0 and x = 2.

The point at x = 2 did not show up in the original number-line graph for 
in part a, so add this feature to your sketch, as shown in Figure 8-2m.

Figure 8-2m

c.  To find the y-coordinates of the maxima and minima, substitute the
x-values from part b into the f(x) equation.

 f(–1) = (–1)4/3 + 4(–1)1/3 = 1 – 4 = –3
 f(0) = 0
 f(2) = (2)4/3 + 4(2)1/3 = 7.559...

The local and global minima of f(x) are both –3 at x = –1.
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Points of inflection are at (0, 0) and at (2, 7.559...).

There are no local or global maxima, because f(x) approaches 
as x approaches ± .

Sometimes you will find critical points from just the equation for a function.
Example 5 shows how to do this graphically and numerically and how to confirm
the results algebraically.

  EXAMPLE 5 Let f(x) = –x3 + 4x2 + 5x + 20, with domain x  [–2.5, 5].

a.  Plot the graph. Estimate the x- and y-coordinates of all local maxima or
minima and of all points of inflection. State the global maximum and
minimum.

b.  Write equations for (x) and (x). Use them to find, either numerically or
algebraically, the precise values of the x-coordinates in part a.

c.  Show that the second derivative is negative at the local maximum point
and positive at the local minimum point. Explain the graphical meaning of
these facts.

d.  Explain why there are no other critical points or points of inflection.

Solution a.  Figure 8-2n shows the graph in the given domain. Using your grapher’s
maximum and minimum features to find the high points and low point,
and TRACE to find points of inflection, you get

Figure 8-2n

Local minima of 20 at the endpoint x = 5, and about 18.625 at x  –0.5

Global minimum at about 18.625

Local maxima of 48.125 at the endpoint x = –2.5, and about 44.192 at x  3.2

Global maximum at about 48.125

Point of inflection at approximately (1.3, 31)

b. (x) = –3x2 + 8x + 5
(x) = –6x + 8

The graph of is shown on the same screen as f in Figure 8-2n. To locate
the critical points precisely, either use your grapher’s solver feature to find
numerically where (x) = 0, or use the quadratic formula. Thus,

= –0.5225... or 3.1892...

Both of these confirm the estimates in part a.

To find the point of inflection precisely, set (x) = 0 and solve. So,

which confirms the estimate of x  1.3 in part a.
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c.  (–0.5225...) = 11.1355... , which is positive.
(3.1892...) = –11.1355... , which is negative.

The graph is concave up at a low point and concave down at a high point.

d.  Because (x) is quadratic, it can have at most two zeros, both of which
were found in part b. Since (x) is linear, it has exactly one zero, which
was also found in part b. Therefore, there are no more critical points or
points of inflection.

Notes on the Second Derivative

From Example 5 you saw that a point of inflection occurs where the derivative
stops increasing and starts decreasing, and vice versa. You can conclude that a
point of inflection occurs where the derivative function has a local maximum or
local minimum. So the derivative of the derivative (the second derivative), if it is
defined, will be zero at a point of inflection.

Also from Example 5 you can see an algebraic way to determine whether a

Figure 8-2o

critical point is a high point or a low point. If
the graph has a zero first derivative (horizontal
tangent), then there is a high point if the second
derivative is negative (concave down) or a low
point if the second derivative is positive
(concave up). This fact is called the second
derivative test for maxima and minima. It is
illustrated in Figure 8-2o and summarized in
the box on page 380. The figure also shows that
the test fails to distinguish among maximum,
minimum, and plateau points if the second
derivative is zero where the first derivative
is zero.

Figure 8-2p and the accompanying boxes present the definitions and properties
of this section.

Figure 8-2p
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Note that the figure shows local maxima and minima. To find the global
maximum and minimum, you must check each local one to find out which is the
greatest and which is the least.

Note on Cusps and Corners

The cusp at x = 5 in Figure 8-2p has the property that the slope becomes infinite
as x approaches 5 from both directions, and so the graph has a vertical tangent
line. At x = 3, there is a step change in the first derivative (an abrupt change in
direction of the graph) but the slopes approach different values from the
positive and negative sides. The name corner is sometimes used for such
a point.
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DEFINITIONS:  Critical Points and Related Features
•  A critical point on a graph occurs at x = c if and only f(c) is defined and

(c) either is zero or is undefined.

•  f(c) is a local maximum (or relative maximum) of f(x) if and only if f(c)  f(x)
for all x in a neighborhood of c (that is, in an open interval containing c).

•  f(c) is a local minimum (or relative minimum) of f(x) if and only if
 f(c)  f(x) for all x in a neighborhood of c.

•  f(c) is the global maximum (or absolute maximum) of f(x) if and only if
 f(c)  f(x) for all x in the domain of f.

•  f(c) is the global minimum (or absolute minimum) of f(x) if and only if
 f(c)  f(x) for all x in the domain of f.

•  The graph of f is concave up at x = c if and only if for all x in a
neighborhood of c, the graph lies above the tangent line at the point
(c, f(c)). The graph of f is concave down at x = c if and only if for all x in a
neighborhood of c, the graph lies below the tangent line at x = c. The value
of (c) is called the concavity of the graph of f at x = c.

•  The point (c, f(c)) is a point of inflection, or inflection point, if and only if
(x) changes sign at x = c. (Old spelling: inflexion, meaning “not bent.”)

•  The point (c, f(c)) is a cusp if and only if  is discontinuous at x = c. If the
concavity changes at x = c, but the secant lines on both sides of c do not
approach a common tangent line, the term corner is sometimes used
instead of cusp.

•  The point (c, f(c)) is a plateau point if and only if (c) = 0, but (x) does
not change sign at x = c.



Problem Set 8-2

Quick Review

Q1.  Sketch: y = x2

Q2.  Sketch: y = x3

Q3.  Sketch: y = cos x

Q4.  Sketch: y = sin–1 x

Q5.  Sketch: y = e–x

Q6.  Sketch: y = ln x

Q7.  Sketch: y = tan x

Q8.  Sketch: y = x

Q9.  Sketch: y = 1/x

Q10.  Sketch: x = 2

For Problems 1–10, sketch number-line graphs for 
and that show what happens to the value and
to the sign of each derivative in a neighborhood
of x = 2.

1. 2.

3. 4.

5. 6.

380 © 2005 Key Curriculum Press Chapter 8:   The Calculus of Plane and Solid Figures

 

 

 

PROPERTIES:  Maximum, Minimum, and Point of Inflection
•  If (x) goes from positive to negative at x = c and f is continuous at x = c,

then f(c) is a local maximum.

•  If (x) goes from negative to positive at x = c, and f is continuous at x = c,
then f(c) is a local minimum.

•  If (c) is positive, then the graph of f is concave up at x = c.

•  If (c) is negative, then the graph of f is concave down at x = c.

•  If  (x) changes sign at x = c and f is continuous at x = c, then (c, f(c)) is a
point of inflection (by definition).

•  The second derivative test: If (c) = 0 and (c) is positive (graph concave
up), then f(c) is a local minimum. If (c) = 0 and (c) is negative (graph
concave down), then f(c) is a local maximum. If (c) = 0 and (c) = 0,
then the second derivative test fails to distinguish among maximum,
minimum, and plateau points.

•  A maximum or minimum point (but not a point of inflection) can occur at
an endpoint of the domain of a function.



7. 8.

9. 10.

graph of f. Sketch a graph of a continuous function
 f consistent with the information about the
derivatives.

11.

12.

13.

14.

15.

16.

For Problems 17–20, the graph of y = (x), the
derivative of a continuous function f, is given. On a
copy of the graph, sketch the graph of the parent
function y = f(x) in the indicated domain, subject to
the given initial condition.

17.  Initial condition: f(2) = –2
Domain: x  [1, 5]

18.  Initial condition: f(1) = 3
Domain: x  [1, 9]
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For Problems 11–16, on a copy of the number-line
graphs, mark information about the behavior of the



19.  Initial condition: f(2) = 4
Domain: x  [0, 8]

20.  Initial condition: f(0) = 2
Domain: x  [–2, 4]

For Problems 21–26, show that a critical point
occurs at x = 2, and use the second derivative test
to determine algebraically whether this critical point
is a relative maximum or a relative minimum. If the
test fails, use the sign of the first derivative to
decide. Plot the graph and sketch it in a
neighborhood of x = 2, thus confirming your
conclusion.

21.  f(x) = 3ex – xex

22.  f(x) = –sin  x

23.  f(x) = (2 – x)2 + 1

24.  f(x) = –(x – 2)2 + 1

25.  f(x) = (x – 2)3 + 1

26.  f(x) = (2 – x)4 + 1

27.  Let f(x) = 6x5 – 10x3 (Figure 8-2q).

Figure 8-2q

a.  Use derivatives to find the x-coordinates for
all critical points of f and .

b.  Explain why there are critical points in
part a that do not show up on this graph.

c.  Explain why there is no maximum or minimum
point at x = 0, even though (0) equals zero.

28.  Let f(x) = 0.1x4 – 3.2x + 7 (Figure 8-2r).

Figure 8-2r

a.  Use derivatives to find the x-coordinates of
all critical points of f and .

b.  Explain why there is no point of inflection at
x = 0, even though (0) equals zero.

c.  Under what conditions for (x) and (x)
can a graph be “straight” without being
horizontal?

29.  Let f(x) = xe–x (Figure 8-2s).

Figure 8-2s
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a.  Use derivatives to find the x-coordinates of
all critical points of f and .

b.  How can you tell that there is a point of
inflection even though it does not show up
on the graph?

c.  Does the graph cross the x-axis at any point
other than (0, 0)? Justify your answer.

30.  Let f(x) = x2 ln x (Figure 8-2t).

Figure 8-2t

a.  Use derivatives to find the x-coordinates
of all critical points of f and .

b.  Show that the limit of f(x) is zero as x
approaches zero from the right, but not
from the left. L’Hospital’s rule will help.

c.  Are there any critical points that do not
show up on the graph? If so, where, and
what type? If not, explain how you know.

31.  Let f(x) = x5/3 + 5x2/3 (Figure 8-2u).

Figure 8-2u

a.  Use derivatives to find the x-coordinates of
all critical points of f and .

b.  Explain why there is a tangent line at the
cusp, even though (x) is undefined there.

c.  Is there a point of inflection at the cusp? Is
there a point of inflection anywhere else?

32.  Let f(x) = x1.2 – 3x0.2 (Figure 8-2v).

Figure 8-2v

a.  Use derivatives to find the x-coordinates of
all critical points of f and .

b.  The tangent is vertical at x = 0. How do you
know that there aren’t several different
values of y at x = 0?

c.  Is the graph straight or curved when x is
less than –2? If it is curved, which way is
the concave side directed?

For Problems 33–36,

a.  Plot the graph. Using TRACE, and the
maximum and minimum features of your
grapher, find graphically the approximate
x- and y-coordinates of all local maxima,
minima, and points of inflection. Find the
global maximum and global minimum.

b.  Write equations for (x) and (x). Use
them to find numerically or algebraically the
precise values of the x-coordinates in part a.

c.  Show how the second derivative test applies
to the leftmost interior critical point.

d.  Explain how you know that there are no
other critical points or points of inflection.

33.  f(x) = –x3 + 5x2 – 6x + 7

34.  f(x) = x3 – 7x2 + 9x + 10

35.  f(x) = 3x4 + 8x3 – 6x2 – 24x + 37,
for x  [–3, 2]

36.  f(x) = (x – 1)5 + 4, for x  [–1, 3]
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37.  Point of Inflection of a Cubic Function: The
general equation of a quadratic function is

 y = ax2 + bx + c where a  0

the graph of a quadratic function (that is, the
vertex) is at x = –b/(2a). The “middle” of the
graph of a cubic function is at its point of
inflection. Prove that if f(x) = ax3 + bx2 + cx + d,
where a  0, then the point of inflection is
located at x = –b/(3a).

38.  Maximum and Minimum Points of a Cubic
Function: The maximum and minimum points
of a cubic function are located symmetrically
on either side of the point of inflection. Prove
that this is true in general for the cubic
function f(x) = ax3 + bx2 + cx + d. In terms of
the coefficients a, b, c, and d, how far on either
side of the point of inflection do the maximum
and minimum points occur?

For Problems 39 and 40, find the particular
equation of the cubic function described. Use your
grapher to confirm your solutions.

39.  Local maximum at the point (5, 10) and point
of inflection at (3, 2)

40.  Local maximum at the point (–1, 61) and point
of inflection at (2, 7)

41.  Concavity Concept Problem: Figure 8-2w shows
the graph of f(x) = x3. Tangent lines are drawn
where x = –0.8, –0.5, 0.5, and 0.8.

Figure 8-2w

a.  Calculate the slope for each given tangent
point.

b.  What happens to the slope as x increases
from –0.8 to –0.5? As x increases from 0.5
to 0.8? How do the values of the second
derivative confirm these findings?

c.  On which side of the tangent line does the
graph of a function lie if the graph is
concave up at the point of tangency?

42.  Naive Graphing Problem: Ima Evian plots the
graph of y = x3, using x = –1, 0, and 1
(Figure 8-2x). From these three points she
concludes that the graph is a straight line.
Explain to Ima how she can use derivatives to
avoid making this false conclusion.

Figure 8-2x

43.  Connection Between a Zero First Derivative and
the Graph: If (c) = 0, the only thing you know
for sure about the graph of f is that a
horizontal tangent occurs at x = c. Sketch a
graph that shows these behaviors in a
neighborhood of x = c.
a.  f(x) stops increasing and starts decreasing

as x increases through c.
b.  f(x) stops decreasing and starts increasing

as x increases through c.
c.  f(x) stops increasing but starts increasing

again as x increases through c.
d.  f(x) stops decreasing but starts decreasing

again as x increases through c.
e.  f(x) stays locally constant as x increases

through c.

44.  Infinite Curvature Problem: Show that the
graph of

 f(x) = 10(x – 1)4/3 + 2
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Recall from algebra that the “middle” of



is defined and differentiable at x = 1, but that
the second derivative is infinite there. Explore
the behavior of f(x) close to x = 1 by zooming
in on that point on the graph or by constructing
a table of values. Describe what you discover.

45.  Exponential and Polynomial Function Look-Alike
Problem: Figure 8-2y shows the graphs of

 f(x) = e0.06x and
g(x) = 1 + 0.06x + 0.0018x2 + 0.000036x3

Figure 8-2y

Show that although the graphs look similar
and f and g have equal function values and
equal first, second and third derivatives at
x = 0, they are not identical functions.

46.  A Pathological Function: Consider the piecewise
function

 f(x) = 

Plot the graph of f using a window with [0, 2]
for x and [1.99, 2.01] for y. Show that f, as
defined, is continuous and has a zero
derivative at x = 1, even though the graph
makes an infinite number of cycles as x
approaches 1 from either side.

47.  Journal Problem: Update your journal with
what you’ve learned since the last entry.
Include such things as
•  The one most important thing you’ve

learned since your last entry

•  The relationships between the signs of the
first and second derivatives and the
behavior of the graph of the function itself

•  How the first and second derivatives can be
used to locate maxima, minima, and points
of inflection algebraically

•  How your understanding of derivatives has
improved

•  Any techniques or ideas about the behavior
of graphs that are still unclear

8-3   Maxima and Minima in Plane
and Solid Figures
In Section 8-2, you found maximum and minimum values of a function where
the equation was already given. The problems of this section require you first to
find an equation for the area, volume, or perimeter of a geometric figure, then to
use the now-familiar techniques to find extreme values. As a result you will be
able to investigate real-world situations such as how the canning industry saves
money by packaging the maximum volume of product with the minimum
amount of metal.
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Given a plane or solid figure, find the maximum or minimum perimeter, area,
or volume.

OBJECTIVE



  EXAMPLE 1

Figure 8-3a

Suppose you need to build a rectangular corral along
the riverbank. Three sides of the corral will be fenced
with barbed wire. The river forms the fourth side of
the corral (Figure 8-3a). The total length of fencing
available is 1000 ft. What is the maximum area the
corral could have? How should the fence be built to
enclose this maximum area? Justify your answers.

Solution The first thing to note is that the problem asks you to maximize the area. So you
need an equation for area as a function of one or more variables. Letting A stand
for area and x and y stand for the length of fence parallel to and perpendicular
to the river, respectively, you can write

A = xy

Next you must find A in terms of one variable. Because there is a total of 1000 ft
of fencing, you can write an equation relating x and y.

x + 2y = 1000  x = 1000 – 2y,  where y  [0, 500] If x = 0, then
 y = 500.

 A = (1000 – 2y)(y) = 1000y – 2y2

As Figure 8-3b shows, the graph of A versus y is a parabola opening downward,
with its maximum point halfway between the two y-intercepts. Since these
intercepts are y = 0 and y = 500, and these points are the ends of the domain,
the maximum point is at

 y = 250
Figure 8-3b

Confirming this fact by derivatives,

 = 1000 – 4y
 = 0 if and only if

1000 – 4y = 0  y = 250
 x = 1000 – 2(250) = 500
 A = (500)(250) = 125,000

You should build the corral 250 ft perpendicular to the river and 500 ft parallel
to the river. The corral can have a maximum area of 125,000 ft2.

  EXAMPLE 2

Figure 8-3c

In Figure 8-3c, the part of the parabola
 y = 4 – x2 from x = 0 to x = 2 is rotated about
the y-axis to form a surface. A cone is inscribed
in the resulting paraboloid with its vertex at the
origin and its base touching the parabola. At
what radius and height does the maximum
volume occur? What is this maximum volume?
Justify your answer.

Solution Pick a sample point (x, y) on the parabola in
the first quadrant where the cone touches it.
Since you are asked to maximize volume, find
an equation for volume V in terms of x and y.
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Pick sample point (x, y). To get V in terms of x
and y, use V = (base area) (height).

Get V in terms of one variable, and specify a
domain.
Sums are easier to differentiate than products.

Products are easier to equate to zero than sums.

–  is out of the domain.

Figure 8-3d
Figure 8-3d shows that the maximum comes at x  1.4. At the critical point
x = 0, the volume is a minimum. At the other endpoint, x = 2, the volume is also
minimum.

The maximum volume is at x = . The volume at this point is

V =  (2)(4 – 2)

= 4 /3 = 4.18879...

There are key steps in Examples 1 and 2 that will help you succeed in max-min
problems. These steps are listed in this box.

Problem Set 8-3

Q1.  Differentiate: y = (3x + 5)–1

Q2.  Integrate: (x + 6)–1 dx

Q3.  Differentiate: y = x–2/3

Q4.  Integrate: x–2/3 dx

Q5.  Integrate: x–2 dx
Q6.  Integrate: x0 dx

Q7.  cot x dx = —?—

Q8.  Sketch the graph: y = x1/3.
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TECHNIQUE:  Analysis of Maximum-Minimum Problems
1.  Make a sketch if one isn’t already drawn.

statement.

2.  Write an equation for the variable you are trying to maximize or minimize.

3.  Get the equation in terms of one variable and specify a domain.

4.  Find an approximate maximum or minimum by grapher.

5.  Find the exact maximum or minimum by seeing where the derivative is
zero or infinite. Check any endpoints of the domain.

6.  Answer the question by writing what was asked for in the problem

Quick Review



Q9.  Sketch the graph of  for the cubic function in
Figure 8-3e.

Figure 8-3e

Q10.  (d/dx)(cos–1 x) = —?—

A.  sin–1 x B.  –sin–1 x C.  –(cos x)–2

D.  E.  

1.  Divided Stock Pen Problem: Suppose you are
building a rectangular stock pen (Figure 8-3f)
using 600 ft of fencing. You will use part of
this fencing to build a fence across the middle
of the rectangle (see the diagram). Find the
length and width of the rectangle that give the
maximum total area. Justify your answer.

Figure 8-3f

2.  Motel Problem: A six-room motel is to be built
with the floor plan shown in Figure 8-3g. Each
room will have 350 ft2 of floor space.

Figure 8-3g

a.  What dimensions should be used for the
rooms in order to minimize the total length
of the walls? Justify your answer.

b.  How would your answer to part a change if
the motel had ten rooms? If it had just three
rooms?

3.  Two-Field Problem: Ella Mentary has 600 ft of
fencing to enclose two fields. One field will be a
rectangle twice as long as it is wide, and the
other will be a square (Figure 8-3h). The square
field must contain at least 100 ft2. The
rectangular one must contain at least 800 ft2.

Figure 8-3h

a.  If x is the width of the rectangular field,
what is the domain of x?

b.  Plot the graph of the total area contained in
the two fields as a function of x.

c.  What is the greatest area that can be
contained in the two fields? Justify your
answer.

4.  Two-Corral Problem: You work on Bill Spender’s
Ranch. Bill tells you to build a circular fence
around the lake and to use the remainder of
your 1000 yards of fencing to build a square
corral (Figure 8-3i). To keep the fence out of
the water, the diameter of the circular
enclosure must be at least 50 yards.

Figure 8-3i

a.  If you must use all 1000 yards of fencing,
how can you build the fences to enclose the
minimum total area? Justify your answer.

b.  What would you tell Bill if he asked you to
build the fences to enclose the maximum
total area?

5.  Open Box I: A rectangular box with a square base
and no top (Figure 8-3j) is to be constructed
using a total of 120 cm2 of cardboard.
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Figure 8-3j

a.  Find the dimensions of the box of maximum
volume.

b.  Make a conjecture about the depth of the
maximum-volume box in relation to the base
length if the box has a fixed surface area.

6.  Open Box II (Project): For this project you will
investigate the volume of a box. Form the box,
which will not have a top, by cutting out squares
from the four corners of a 20-by-12-unit piece
of graph paper (Figure 8-3k) and folding up the
edges.

Figure 8-3k

a.  Each group should pick a different value
of x, such as 1, 2, 3, 4, . . . , then cut out the
squares from the graph paper, and fold and
tape it to form a box. What is the largest
possible value of x?

b.  Calculate the volume of each box. Which
integer value of x gives the largest volume?

c.  Find the value of x that gives the maximum
volume. What is this volume?

d.  Construct a box of maximum volume.

7.  Open Box III: You are building a glass fish tank
that will hold 72 ft3 of water. You want its base
and sides to be rectangular and the top, of
course, to be open. You want to construct the

tank so that its width is 5 ft but the length and
depth are variable. Building materials for the
tank cost $10 per square foot for the base and
$5 per square foot for the sides. What is the
cost of the least expensive tank? Justify your
answer.

8.  Open Box IV (Project): Figure 8-3l shows an
open-top box with rectangular base x-by-y
units and rectangular sides. The depth of the
box is z units.

Figure 8-3l

a.  Hold the depth constant. Show that the
maximum volume of the box for a given
amount of material occurs when x = y.

b.  Set y = x, but let both vary as the depth
varies. Find the values of x and z that give
the maximum volume for a given amount of
material.

c.  In what ratio are the values of x and z for
the maximum-volume box in part b? Is the
maximum-volume box tall and narrow or
short and wide? Based on geometry, why is
your answer reasonable?

9.  Shortest-Distance Problem: In Figure 8-3m, what
point on the graph of y = ex is closest to the
origin? Justify your answer.

Figure 8-3m

10.  Track and Field Problem: A track of perimeter
400 m is to be laid out on the practice field
(Figure 8-3n). Each semicircular end must have
a radius of at least 20 m, and each straight
section must be at least 100 m. How should the
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track be laid out so that it encompasses the
least area? Justify your answer.

Figure 8-3n

11.  Ladder Problem: A ladder is to reach over a fence
8 ft high to a wall that is 1 ft behind the fence
(Figure 8-3o). What is the length of the shortest
ladder that you can use? Justify your answer.

Figure 8-3o

12.  Ladder in the Hall Problem: A nonfolding
ladder is to be taken around a corner where
two hallways intersect at right angles
(Figure 8-3p). One hall is 7 ft wide, and the
other is 5 ft wide. What is the maximum length
the ladder can be so that it will pass around
such a corner, given that you must carry the
ladder parallel to the floor?

Figure 8-3p

13.  Rotated Rectangle Problem: A rectangle of
perimeter 1200 mm is rotated in space using
one of its legs as the axis (Figure 8-3q). The
volume enclosed by the resulting cylinder
depends on the proportions of the rectangle.
Find the dimensions of the rectangle that
maximize the cylinder’s volume.

Figure 8-3q

14.  Rotated Rectangle Generalization Problem: The
rectangle of maximum area for a given
perimeter P is a square. Does rotating a square
about one of its sides (as in Problem 13)
produce the maximum-volume cylinder? If so,
prove it. If not, what proportions do produce
the maximum-volume cylinder?

15.  Tin Can Problem: A popular size of tin can with
“normal” proportions has diameter 7.3 cm and
height 10.6 cm (Figure 8-3r).

Figure 8-3r

a.  What is its volume?

b.  The volume is to be kept the same, but the
proportions are to be changed. Write an
equation expressing total surface of the can
(lateral surface plus two ends) as a function
of radius and height. Transform the
equation so that the volume is in terms of
radius alone.

c.  Find the radius and height of the can that
minimize its surface area. Is the can tall and
narrow or short and wide? What is the ratio
of diameter to height? Justify your answers.

d.  Does the normal can use close to the
minimum amount of metal? What percentage
of the metal in the normal can could you save
by using cans with the minimum dimensions?
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e.  If the United States uses 20 million of these
cans a day and the metal in a normal can is
worth $0.06, how much money could be
saved in a year by using minimum-area cans?

16.  Tin Can Generalization Project: The tin can of
minimum cost in Problem 15 is not necessarily
the one with minimum surface area. In this
problem you will investigate the effects of
wasted metal in the manufacturing process
and of overlapping metal in the seams.
a.  Assume that the metal for the ends of the

can in Problem 15 costs k times as much per
square centimeter as the metal for the
cylindrical walls. Find the value of k that
makes the minimum-cost can have the
proportions of the normal can. Is it
reasonable in the real world for the ends to
cost this much more (or less) per square
centimeter than the walls? Explain.

b.  Assume that the ends of the normal tin can
in Problem 15 are cut from squares and that
the remaining metal from the squares is
wasted. What value of k in part a minimizes
the cost of the normal can under this
assumption? Is the can that uses the
minimum amount of metal under this
assumption closer to the proportions of the
normal can or farther away?

c.  The specifications require that the ends of
the can be made from metal disks that
overhang by 0.6 cm all the way around. This
provides enough overlap to fabricate the
constructed can’s top and bottom joints.
There must also be an extra 0.5 cm of metal
in the can’s circumference for the overlap in
the vertical seam. How do these
specifications affect the dimensions of the
minimum-area can in Problem 15?

17.  Cup Problem: You have been hired by the
Yankee Cup Company. They currently make a
cylindrical paper cup of diameter 5 cm and
height 7 cm. Your job is to find ways to save
paper by making cups that hold the same
amount of liquid but have different proportions.
a.  Find the dimensions of a same-volume

cylindrical cup that uses a minimum
amount of paper.

b.  What is the ratio of diameter to height for
the minimum-area cup?

c.  Paper costs $2.00 per square meter. Yankee
makes 300 million of this type of cup per
year. Write a proposal to your boss telling
her whether you think it would be
worthwhile to change the dimensions of
Yankee’s cup to those of the minimum cup.
Be sure to show that the area of the
proposed cup really is a minimum.

d.  Show that in general if a cup of given
volume V has minimum total surface area,
then the radius is equal to the height.

18.  Duct Problem: A duct made of sheet metal
connects one rectangular opening in an
air-conditioning system to another rectangular
opening (Figure 8-3s). The rectangle on the left
is at x = 0 in. and the one on the right is at
x = 100 in. Cross sections perpendicular to the
x-axis are rectangles of width z = 30 + 0.2x
and y = 40 – 0.2x.

Figure 8-3s

a.  Find the areas of the two end rectangles.
b.  What is the cross-sectional area of the duct

at x = 80?

c.  What x-values give the maximum and the
minimum cross-sectional areas?

19.  Rectangle in Sinusoid Problem: A rectangle is
inscribed in the region bounded by one arch of
the graph of y = cos x and the x-axis
(Figure 8-3t). What value of x gives the
maximum area? What is the maximum area?

Figure 8-3t

20.  Building Problem: Tom O’Shea plans to build a
new hardware store. He buys a rectangular lot
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that is 50 ft by 200 ft, the 50-ft dimension
being along the street. The store will have
4000 ft2 of floor space. Construction costs
$100 per linear foot for the part of the store
along the street but only $80 per linear foot for
the parts along the sides and back. What
dimensions of the store will minimize
construction costs? Justify your answer.

21.  Triangle under Cotangent Problem: A right
triangle has a vertex at the origin and a leg
along the x-axis. Its other vertex touches the
graph of y = cot x, as shown in Figure 8-3u.

Figure 8-3u

a.  As the right angle approaches the origin, the
height of the triangle approaches infinity,
and the base length approaches zero. Find
the limit of the area as the right angle
approaches the origin.

b.  What is the maximum area the triangle can
have if the domain is the half-open interval
(0, /2]? Justify your answer.

22.  Triangle under Exponential Curve Problem:
A right triangle has one leg on the x-axis. The
vertex at the right end of that leg is at the point
(3, 0). The other vertex touches the graph of
 y = ex. The entire triangle is to lie in the first
quadrant. Find the maximum area of this
triangle. Justify your answer.

23.  Rectangle in Parabola Problem: A rectangle is
inscribed in the region bounded by the x-axis
and the parabola y = 9 – x2 (Figure 8-3v).

a.  Find the length and width of the rectangle of
greatest area. Justify your answer.

b.  Find the length and width of the rectangle of
greatest perimeter. Justify your answer.

c.  Does the rectangle of greatest area have the
greatest perimeter?

Figure 8-3v

24.  Cylinder in Paraboloid Problem: In Figure 8-3w,
the parabola y = 9 – x2 is rotated about the
 y-axis to form a paraboloid. A cylinder is
coaxially inscribed in the paraboloid.

Figure 8-3w

a.  Find the radius and height of the cylinder of
maximum volume. Justify your answer.

b.  Find the radius and height of the cylinder of
maximum lateral area.

c.  Find the radius and height of the cylinder of
maximum total area (including the ends).
Justify your answer.

d.  Does the maximum-volume cylinder have
the same dimensions as either of the
maximum-area cylinders in part b or c?

e.  Does rotating the maximum-area rectangle
in Problem 23a produce the maximum-
volume cylinder in this problem?

f.  If the cylinder of maximum volume is
inscribed in the paraboloid formed by
rotating the parabola y = a2 – x2 about the
 y-axis, does the ratio

(cylinder radius): (paraboloid radius)
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depend in any way on the length of the
paraboloid? (That is, does it depend on the
value of the constant a?) Justify your answer.

25.  Cylinder in Sphere Problem: A cylinder is to be
inscribed in a sphere of radius 10 cm
(Figure 8-3x). The bottom and top bases of the
cylinder are to touch the surface of the sphere.
The volume of the cylinder will depend on
whether it is tall and narrow or short and wide.

Figure 8-3x

a.  Let (x, y) be the coordinates of a point on
the circle, as shown. Write an equation for
the volume of the cylinder in terms of x and y.

b.  What radius and height of the cylinder will
give it the maximum volume? What is this
volume? Justify your answer.

c.  How are the radius and height of the
maximum-volume cylinder related to each
other? How is the maximum cylinder
volume related to the volume of the sphere?

26.  Conical Nose Cone Problem: In the design of a
missile nose cone, it is important to minimize
the surface area exposed to the atmosphere.
For aerodynamic reasons, the cone must be
long and slender. Suppose that a right-circular
nose cone is to contain a volume of 5  ft3. Find
the radius and height of the nose cone of
minimum lateral surface area, subject to the
restriction that the height must be at least
twice the radius of the base. (The
differentiation will be easier if you minimize
the square of the area.)

27.  Cylinder in Cone Problem: In Figure 8-3y, a cone
of height 7 cm and base radius 5 cm has a
cylinder inscribed in it, with the base of the
cylinder contained in the base of the cone.

Figure 8-3y

a.  Find the radius of the cylinder of maximum
lateral area (sides only).

b.  Find the radius of the cylinder of maximum
total area (including the top and bottom
bases). Justify your answer.

28.  General Cylinder in Cone Problem: A given cone
has a cylinder inscribed in it, with its base
contained in the base of the cone.

a.  How should the radius of the cone and
cylinder be related for the lateral surface of
the cylinder to maximize its area? Justify
your answer.

b.  Find the radius of the cylinder that gives the
maximum total area.

c.  If the cone is short and fat, the maximum
total area occurs where the height of the
cylinder drops to zero and all the material is
used in the top and bottom bases. How must
the radius and height of the cone be related
for this phenomenon to happen?

29.  Elliptical Nose Cone Problem: The nose of a new
cargo plane is to be a half-ellipsoid of diameter
8 m and length 9 m (Figure 8-3z). The nose
swings open so that a cylindrical cargo
container can be placed inside. What is the
greatest volume this container could hold?

Figure 8-3z

Section 8-3:   Maxima and Minima in Plane and Solid Figures © 2005 Key Curriculum Press 393



What are the radius and height of this largest
container? Justify your answer.

30.  Submarine Pressure Hull Project: According to a
new design, the forward end of a submarine
hull is to be constructed in the shape of a
paraboloid 16 m long and 8 m in diameter
(Figure 8-3aa). Since this is a doubly curved
surface, it is hard to bend thick steel plates into
this shape. So the paraboloid is to be made of
relatively thin steel, and the pressure hull built
inside as a cylinder (a singly curved surface). A
frustum of a cone is also a singly curved
surface, which would be about as easy to make
and which might be able to contain more
volume (Figure 8-3bb). How much more volume
could be contained in the maximum-volume
frustum than in the maximum-volume
cylinder? Some things you will need to find are
the equation of this particular parabola and the
equation for the volume of a frustum of a cone.

Figure 8-3aa

Figure 8-3bb

31.  Local Maximum Property Problem: The
definition of local maximum is as follows: f(c)
is a local maximum of f on the interval (a, b) if
and only if f(c)  f(x) for all values of x in
(a, b). Figure 8-3cc illustrates this definition.

Figure 8-3cc

a.  Prove that if f(c) is a local maximum of f on
(a, b) and f is differentiable at x = c in  (a, b),
then c) = 0. (Consider the sign of the
difference quotient when x is to the left and
to the right of c, then take left and right
limits.)

b.  Explain why the property in part a would be
false without the hypothesis that f is
differentiable at x = c.

c.  Explain why the converse of the property in
part a is false.

32.  Corral with Short Wall Project: Millie Watt is
installing an electric fence around a
rectangular corral along a wall. Part or all of
the wall forms all or part of one side of the
corral. The total length of fence (excluding the
wall) is to be 1000 ft. Find the maximum area
that she can enclose if

a.  The wall is 600 ft long (Figure 8-3dd, left).
b.  The wall is 400 ft long (Figure 8-3dd, center).
c.  The wall is 200 ft long (Figure 8-3dd, right).

Figure 8-3dd
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33.  Journal Problem: Update your journal with
what you’ve learned in this section. Include
such things as

•  The one most important thing you’ve
learned since your last entry

•  The critical features of the graph of a
function that its two derivatives tell you

•  How you solve real-world problems that
involve a maximum or minimum value

•  Any techniques or ideas about extreme-value
problems that are still unclear to you

8-4       Volume of a Solid of Revolution
by Cylindrical Shells
In Chapter 5, you learned how to find the volume of a solid of revolution by
slicing the rotated region perpendicular to the axis of rotation. Figure 8-4a
shows the region under the graph of y = 4x – x2 from x = 0 to x = 3 that is
to be rotated about the y-axis to form a solid. Slicing perpendicular to the axis
of rotation causes the length of the strip to be a piecewise function of y,
(line – curve) from y = 0 to y = 3 and (curve – curve) from there up. Slicing
 parallel to the axis of rotation avoids this difficulty.

Figure 8-4a

As the region rotates, each strip parallel to the axis of rotation generates a
cylindrical shell, as shown in Figure 8-4b. In this section you will find the
volume of the solid by integrating dV, the volume of a typical shell.

Figure 8-4b
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The shells in Figure 8-4b resemble tin cans without ends. Since a shell is thin,
you can find its volume dV by cutting down its side and rolling it out flat
(Figure 8-4b, right). The resulting rectangular solid has the following
approximate dimensions.

Length: Circumference of the shell at the sample point (2 x, in
this case)

Width: Height of the shell at the sample point (y, in this case)

Thickness: Width of the strip (dx, in this case)

Consequently, the volume of the shell is given by this property.

Figure 8-4c

The volume of the solid will be approximately
equal to the sum of the volumes of the shells
(Figure 8-4c). The exact volume will be the limit
of this sum—that is, the definite integral. The
innermost shell is at x = 0, and the outermost is
at x = 3. Thus, the limits of integration will be
from 0 to 3. (The part of the solid from x = –3
to x = 0 is simply the image of the region being
rotated, not the region itself.) Example 1 shows
the details of calculating the volume of this
solid.

The rings of a tree are like
cylindrical shells that you
can use to measure the
volume of the tree.

  EXAMPLE 1 The region under the graph of y = 4x – x2 from x = 0 to x = 3 is rotated about
the y-axis to form a solid. Find the volume of the solid by slicing into cylindrical
shells. Use the fundamental theorem to obtain the exact answer. Show that your
answer is reasonable.

Solution The volume of a representative cylindrical shell is

dV = (circumference)(height)(thickness) Recall the rolled-out shell in
Figure 8-4b.

= (2 x)(y)(dx)

Substituting 4x – x2 for y gives

dV = 2 x(4x – x2) dx = 2 (4x2 – x3) dx
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PROPERTY:  Differential of Volume for Cylindrical Shells
dV = (circumference)(height)(thickness)



The volume is found by adding all the dV’s and taking the limit (integrating).

Checks:

Volume of circumscribed cylinder: (32)(4) = 36  > 31.5   

Numerical integration: Integral = 31.5   

In case you are wondering whether the distortion of the shell as you roll it out
flat causes the final answer, 31.5 , to be inaccurate, the answer is no. As x
approaches zero, so do the inaccuracies in the shell approximation. In
Problem C4 of Section 11-7, you will learn that if the approximate value of dV
differs from the exact value by nothing more than infinitesimals of higher order,
for instance (dx)(dy), then the integral will give the exact volume.

You can use cylindrical shells to find volumes when these conditions are
encountered.

•  The rotation is not around the y-axis.

•  The axis of rotation is not a bound of integration.

•  Both ends of the shell’s height are variable.

Example 2 shows how this can be done.

  EXAMPLE 2 Let R be the region bounded below by the graph of y = x1/2, above by the graph
of y = 2, and on the left by the graph of y = x. Find the volume of the solid
generated when R is rotated about the line y = –1. Assume that x and y are in
feet. Show that your answer is reasonable.

Solution First draw the region, as in the left diagram of Figure 8-4d. Find the points of
intersection of the graphs. Slice parallel to the axis of rotation. Mark the two
resulting sample points as (x1, y) and (x2, y). Then rotate the region about the
line y = –1. As shown in the center diagram of Figure 8-4d, it helps to draw only
the back half of the solid. (Otherwise, the diagram becomes so cluttered it is
hard to tell which lines are which.) Roll out the shell and find dV.

dV = (circumference)(height)(thickness)
= 2 (y + 1)(x1 – x2) dy Height is always larger value minus

smaller value. Radius is the difference
between the y-values, y – (–1) = y + 1.

For the curve y = x1/2, solve to get x1 = y2.
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For the line y = x, “solve” to get x2 = y.

 dV = 2 (y + 1)(y2 – y)dy

Innermost shell is at y = 1; outermost
shell is at y = 2.

= 4.5 Integrate numerically or algebraically.

= 14.1371...  14.1 ft3

Figure 8-4d

Check:

Outer cylinder – inner cylinder = (32)(3) – (22)(3) = 15  > 4.5   

Problem Set 8-4

Q1.  Sketch the graph: y = x2

Q2.  Sketch the graph: y = –x2

Q3.  Sketch the graph: y = x–2

Q4.  Sketch the graph: y = 2x

Q5.  Sketch the graph: y = 2–x

Q6.  Sketch the graph: y = 2x

Q7.  Sketch the graph: y = ln x

Q8.  Sketch the graph of a continuous function
whose derivative is shown in Figure 8-4e.

Figure 8-4e

Q9.  sec2 x dx = —?—

Q10.  y = x3 – 3x has a local minimum at x = —?—.
A.  0 B.  1 C.  D.  –1 E.  –
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 V =  2 (y + 1)(y2 – y)dy

Quick Review



1.  Figure 8-4f shows the solid formed by rotating
about the y-axis the region in Quadrant I under
the graph of y = 4 – x2.

Figure 8-4f

a.  Find the volume dV of a cylindrical shell.
Transform dV so that it is in terms of one
variable.

b.  Find the exact volume of the solid by using
the fundamental theorem.

c.  Find the volume again by plane slicing. Use
planes perpendicular to the y-axis to form
slabs of thickness dy. Show that you get the
same answer as in part b.

2.  Figure 8-4g shows the solid formed by rotating
about the x-axis the region under the graph of
 y = x2/3 from x = 0 to x = 8.

Figure 8-4g

a.  What is the height of the cylindrical shell in
terms of the sample point (x, y)?

b.  Find the volume dV of a cylindrical shell.
Transform dV so that it is in terms of one
variable.

c.  Find the exact volume of the solid using the
fundamental theorem.

d.  Find the volume again, by plane slicing. Is
the answer the same as in part c?

For Problems 3–18, find the volume of the solid by
slicing into cylindrical shells. You may use numerical
integration. Use familiar geometric relationships to
show geometrically that your answer is reasonable.

3.  Rotate about the y-axis the region under the
graph of y = –x2 + 4x + 3 from x = 1 to x = 4.

4.  Rotate about the y-axis the region under the
graph of y = x2 – 8x + 17 from x = 2 to x = 5.

5.  Rotate about the x-axis the region bounded by
the y-axis and the graph of x = –y2 + 6y – 5.

6.  Rotate about the x-axis the region bounded by
the y-axis and the graph of x = y2 – 10y + 24.

7.  Rotate about the y-axis the region above the
graph of y = x3 that is bounded by the lines
x = 1 and y = 8 (Figure 8-4h).

Figure 8-4h

8.  Rotate about the y-axis the region in Quadrant I
above the graph of y = 1/x that is bounded by
the lines y = 4 and x = 3.

9.  Rotate about the x-axis the region in Quadrant I
above the graph of y = 1/x2 that is bounded by
the lines x = 5 and y = 4 (Figure 8-4i).

Figure 8-4i
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10.  Rotate about the x-axis the region in Quadrant I
below the graph of y = x2/3, above the line
 y = 1 and bounded by the line x = 8.

11.  Rotate about the y-axis the region bounded by
the graph of y = x2 – 6x + 7 and the line
x – y = –1 (Figure 8-4j).

Figure 8-4j

12.  Rotate about the x-axis the region in
Quadrant I bounded by the graph of y = x1/3

and the line y = 0.5x – 2.

13.  Rotate about the line x = 5 the region under
the graph of y = x3/2 from x = 1 to x = 4
(Figure 8-4k).

Figure 8-4k

14.  Rotate about the line x = 3 the region under
the graph of y = x–2 from x = 1 to x = 2.

15.  Rotate about the line x = 4 the region bounded
by the graph of y = x4 and the line y = 5x + 6.

16.  Rotate about the line x = –1 the region
bounded by the graph of y =  and the lines
x + y = 6 and x = 1.

17.  Rotate about the line x = –2 the region
bounded by the graphs of y = –x2 + 4x + 1

and y = 1.4x (Figure 8-4l). You will need to find
one of the intersections numerically.

Figure 8-4l

18.  Rotate about the line y = –1 the region in
Figure 8-4l from Problem 17. Explain why it is
not appropriate to find the volume of this
figure by cylindrical shells.

For Problems 19 and 20, find the volume of the
solid by slicing into plane slabs, thus verifying the
answer obtained by cylindrical shells.

19.  Use the solid given in Problem 7.

20.  Use the solid given in Problem 8.

21.  Limit of Riemann Sum Problem: The region
under the graph of y = x1/3 from x = 0 to x = 8
is rotated about the x-axis to form a solid. Find
the volume exactly by slicing into cylindrical
shells and using the fundamental theorem.
Then find three midpoint Riemann sums for
the integral, using n = 8, n = 100, and n = 1000
increments. Show that the Riemann sums
approach the exact answer as n increases.

22.  Unknown Integral Problem: Figure 8-4m shows
the region under y = sin x from x = 0 to x = 2,
rotated about the y-axis to form a solid.

Figure 8-4m
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a.  Write an integral for the volume of this solid
using cylindrical shells. Evaluate the integral
numerically.

b.  Explain why you cannot evaluate the integral
by the fundamental theorem using the
techniques you have learned so far.

23.  Parametric Curve Problem: Figure 8-4n shows
the ellipse with parametric equations

x = 5 cos t
 y = 3 sin t

Figure 8-4n

a.  Slice the region horizontally, then rotate it
about the x-axis to form an ellipsoid. Find
the volume of the ellipsoid by first writing
dV in terms of the parameter t.

b.  Slice the region vertically, then rotate it
about the x-axis to form the same ellipsoid.
Show that you get the same volume.

c.  Find the volume of the solid generated by
rotating the ellipse about the line x = 7.

24.  Journal Problem: Update your journal with
what you’ve learned since your last entry.
Include such things as

•  The one most important thing you have
learned in this section

•  The basic concept from geometry that is
used to find volumes by calculus

•  The similarities of slicing into disks,
washers, and other plane slices

•  The difference between plane slicing and
cylindrical shells

•  Any techniques or ideas about finding
volumes that are still unclear to you

8-5   Length of a Plane Curve—Arc Length

Figure 8-5a

At the beginning of this chapter you were
introduced to the geometry of plane and solid
figures, such as the bell-shaped solid shown in
Figure 8-5a. You can now find the volume of a
solid by plane slices or cylindrical shells and the
area of a plane region. In the next two sections
you will find the length of a curved line and the
area of a curved surface in space.
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  EXAMPLE 1 Find approximately the length of the parabola y = x2 from x = –1 to x = 2
(Figure 8-5b, left) by dividing it into three chords.

Figure 8-5b

Solution The right diagram in Figure 8-5b shows three chords drawn to the graph. The
sum of the lengths of the chords is approximately the length of the graph. By
the Pythagorean theorem,

 units

In general, the length of any one chord will be

Using smaller values of x (that is, a greater number n of chords), the following
is true.

n = 30: L  6.12417269... By the program of Problem 33 in
Problem Set 8-5.n = 100: L  6.12558677...

n = 1000:    L  6.12572522... The values are approaching a limit!

The limit of the sums of the chord lengths equals the exact length of the curve.

You can find the limit of a chord length sum exactly by transforming it to a
Riemann sum,

g(c) x

The first thing to do is make the factor x appear. Although x2 is not a factor
of both terms in the expression x2 +  y2, you can still factor it out.
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PROPERTY:  Length of a Plane Curve (Arc Length)

A curve between two points in the xy-plane has length

provided that this limit exists.



So you can write a chord length sum

The remaining radicand contains y/ x, which you should recognize as the
difference quotient that approaches (x) as x approaches zero. In fact, if f is a
differentiable function, the mean value theorem tells you that there is a number
x = c within the interval where (c) is exactly equal to y/ x (Figure 8-5c). So
you can write a chord length sum

where the sample points, x = c, are chosen at a point in each subinterval where
the conclusion of the mean value theorem is true. The length L of the curve is
thus the limit of a Riemann sum and hence a definite integral.

The exact length of the curve!

You can write the quantity dL =  dx, the differential of curve length

  EXAMPLE 2

(often called “arc length”), in a form that is easier to remember and use.
Recalling that f ′ (x) = dy/dx, and that the differentials dy and dx can be written
as separate quantities, you can write

or, more simply,

Differential of arc length.

It’s easy to remember dL in this last form because it looks like the Pythagorean
theorem. There are also some algebraic advantages of this form, as you will see
in later examples.

Write an integral to find the exact length of the curve in Example 1 and
evaluate it.

Solution

When you study trigonometric substitution in Chapter 9, you will be able to
evaluate integrals like this using the fundamental theorem. Numerical
integration gives

L = 6.1257266...

You can write equations for more complex curves in parametric form. Example 3
shows how this can be done.
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  EXAMPLE 4

Figure 8-5d

The ellipse in Figure 8-5d has parametric equations

x = 6 + 5 cos t
 y = 4 + 3 sin t

Write an integral equal to the length of the graph and
evaluate it numerically. Check that your answer is
reasonable.

Solution

Explain the “dt.”

Check: A circle of radius 4 has length 2  · 4 = 25.13274... . 

The indefinite integral in Example 3 cannot be evaluated using any of the
elementary functions. It is called an elliptic integral, which you will study in
later courses.

Occasionally a curve length problem involves an integral that you can evaluate
by the fundamental theorem. Example 4 shows one instance.

Plot the graph of y = x3/2. Find exactly the length from x = 0 to x = 9.

Solution The graph is shown in Figure 8-5e. It starts at the origin and rises gently to the
point (9, 18).

Figure 8-5e

Exact length.
Approximation for exact length.

  EXAMPLE 3
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Problem Set 8-5

Q1.  Sketch: y = x2

Q2.  Show the region under y = x2 from x = 1 to x = 4.

Q3.  Write an integral for the area of the region in
Problem Q2.

Q4.  Find the antiderivative in Problem Q3.

Q5.  Evaluate the integral in Problem Q4.

Q6.  Sketch the solid generated by rotating the
region in Problem Q2 about the y-axis.

Q7.  Write an integral for the volume of the solid in
Problem Q6.

Q8.  Find the antiderivative in Problem Q7.

Q9.  Evaluate the integral in Problem Q8.

Q10.  Figure 8-5f illustrates the —?— theorem.
A.  Fundamental B.  Parallelism
C.  Average slope D.  Derivative
E.  Mean value

Figure 8-5f

For Problems 1–4,

a.  Sketch the graph for x in the given interval.
b.  Find its approximate length using five

chords with equal values of x.

c.  Find its length more precisely using a
definite integral evaluated numerically.

1.  y = ex x  [0, 2]

2.  y = 2x x  [0, 3]

3.  y = tan x x  [0, 1.5]

4.  y = sec x x  [0, 1.5]

For Problems 5–16,

a.  Plot the graph for x in the given interval.
Sketch the result.

b.  Find the approximate length using a definite
integral evaluated numerically.

c.  Show that your answer is reasonable.

5.  y = x2 – 5x + 3 x  [1, 6]

6.  y = 4x – x2 x  [0, 4]

7.  y = 16 – x4 x  [–1, 2]

8.  y = x3 – 9x2 + 5x + 50 x  [–1, 9]

9.  y = (ln x)2 x  [0.1, e]

10.  y = x sin x x  [0, 4 ]

11.  y = tan x x  [0, 1.5]

12.  y = sec x x  [0, 1.5]

13.  Astroid: t  [0, 2 ]
x = 5 cos3 t
 y = 5 sin3 t

14.  Cardioid: t  [0, 2 ]
x = 5(2 cos t – cos 2t)
 y = 5(2 sin t – sin 2t)

15.  Epicycloid: t  [0, 2 ]
x = 5 cos t – cos 5t
 y = 5 sin t – sin 5t

16.  Involute of a circle: t  [0, 4 ]
x = cos t + t sin t

 y = sin t – t cos t

For Problems 17–20,
a.  Plot the graph for x in the given interval.

Sketch the result.
b.  Find the exact length using a definite

integral evaluated by the fundamental
theorem.

c.  Show that your answer is reasonable. (For
Problem 19, find a common denominator
under the radical sign.)

17.  y = 4x3/2 x  [0, 4]

18.  x  [1, 2]
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19.  y = 3x2/3 + 5 x  [1, 8]

20.   (x2 + 2)3/2 x  [0, 3]

21.  Golden Gate Bridge Problem: The photograph
shows the Golden Gate Bridge across
San Francisco Bay in California. The center
span of the bridge is about 4200 ft long. The
suspension cables hang in parabolic arcs from
towers about 750 ft above the water’s surface.
These cables come as close as 220 ft to the
water at the center of the span. Use this
information to write an equation of the
particular quadratic function that expresses
the distance of the cables from the water as a
function of the horizontal displacement from
center span. Use the equation to calculate the
length of the parabolic cable.

22.  Chain Problem: When a chain hangs under its
own weight, its shape is a catenary (from the
Latin catina, meaning “chain”). Figure 8-5g
shows a catenary with its vertex on the y-axis.
Its equation is

 y = 0.2(ex + e–x)

Figure 8-5g

where x and y are in feet. Find the length of
this chain from x = –4 to x = 4. How does this
length compare with that of a parabola,

 y = ax2 + c

which has the same vertex and endpoints?

23.  Stadium Problem: Figure 8-5h shows the
seating area for a sports stadium. The ellipses
have these parametric equations.

Outer Ellipse: Inner Ellipse:
x = 120 cos t x = 100 cos t
 y = 100 sin t  y = 50 sin t

Both x and y are in meters. Find the lengths of
the boundaries between the outer ellipse and
the parking lot, and between the inner ellipse
and the playing field.

Figure 8-5h

24.  Parabola Surprise Problem!: A parabola has
parametric equations

x = 8 cos 2t
 y = 5 sin t

Find the length from t = 0 to t = 2 . Why does
the answer seem unreasonably high?

25.  Implicit Relation Problem I: Use the
fundamental theorem to find exactly the length
of the graph of 9x2 = 4y3 between the points
(0, 0) and (2 , 3). Consider y to be the
independent variable.

26.  Implicit Relation Problem II: Use the
fundamental theorem to find exactly the length
of the semicubical parabola x2 = y3 between
the points (–1, 1) and (8, 4). Consider y to be
the independent variable. You will have to
break the graph into two branches (sketch a
graph).
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27.  Spiral Problem: Figure 8-5i shows the spiral
whose parametric equations are

x =  cos t

 y =  sin t

What range of t generates the part of the spiral
shown in the figure? Find the length of the
spiral by the fundamental theorem if you can,
or by numerical methods.

Figure 8-5i

28.  Length of a Circle Problem: Write parametric
equations for a circle of radius r centered at
the origin. Then use appropriate algebra,
trigonometry, and calculus to prove the
familiar circumference formula C = 2 r.

29.  Sinusoid Length Investigation Problem: Write an
integral for the length of one cycle of the
sinusoid of constant amplitude A,

 y = A sin x

Find lengths of the sinusoid for various values
of A. From the results of your work, try to
reach a conclusion about how the length varies
with A. For instance, does doubling A double
the length?

30.  Ellipse Length Investigation Problem: Write an
integral for the length of the ellipse

x = cos t
 y = A sin t

Find lengths of the ellipse for various values
of A. From the results of your work, try to
reach a conclusion about how the length varies
with A. For instance, does doubling A double
the length?

31.  Fatal Error Problem: Mae wants to find the
length of y = (x – 2)–1 from x = 1 to x = 3. She
partitions [1, 3] into five equal subintervals and
gets 18.2774... for the length. Explain to Mae
why her approach to the problem has a fatal
error.

32.  Mistake Problem: Amos finds the length of the
curve y = sin 2 x from x = 0 to x = 10 by
dividing the interval [0, 10] into 5 subintervals
of equal length. He gets an answer of exactly 10.
Feeling he has made a mistake, he tries again
with 20 subintervals and gets the same answer,
10. Show Amos that he really did make a
mistake. Show him how he can get a very
accurate answer using only 5 subintervals.

33.  Program for Arc Length by Brute Force: Write a
program that calculates the approximate
length of a curve by summing the lengths of
the chords. Store the equation for the function
in the Y = menu. Your program should allow
you to input the lower and upper bounds of the
domain and the number of increments to be
used. The output should be the approximate
length of the curve. To make the program more
entertaining to run, you might have it display
the increment number and the current sum of
the lengths at each pass through the loop. You
can assume that your program is working
correctly if it gives 6.12417269... for the length
of y = x2 from x = –1 to x = 2 (Example 1) with
n = 30 increments.

8-6   Area of a Surface of Revolution
Suppose that the graph of a function y = f(x) is rotated about the x-axis. The
result will be a surface in space (Figure 8-6a, left, on the next page). You are to
find the area of the surface.
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Figure 8-6a

A graph curved in one direction that rotates in another direction forms a doubly
curved surface. Like a map of Earth, a doubly curved surface cannot be flattened
out. But if you draw chords on the graph as you did for finding arc length, the
rotating chords generate singly curved frustums of cones, as shown in the right
diagram in Figure 8-6a. Flattening the frustums (Figure 8-6b) allows you to find
their areas geometrically.

Figure 8-6b

The surface area of a cone is S = RL, where R is the base radius and L is the
slant height (Figure 8-6c). The area of a frustum is the area of the large cone
minus the area of the small one; that is,

S = RL – rl
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where R and L are for the large cone and r and l are for the small one. By clever
algebra (which you will be asked to use in Problem 26), you can transform this
equation to

Figure 8-6c

The quantity (R + r)/2 is the average of the two radii. The quantity (L – l) is the
slant height of the frustum. It is the same as dL in the arc length problems of
Section 8-5. So the differential of surface area, dS, is

dS = 2 (average radius)(slant height) = 2 (average radius) dL

Note that 2 (average radius) equals the distance traveled by the midpoint of the
chord as the chord rotates.

  EXAMPLE 1 The graph of y = sin x from x = 1 to x = 3 is rotated about various axes to form
surfaces. Find the area of the surface if the graph is rotated about

a.  The y-axis

b.  The line y = 2

Show that your answers are reasonable.

Solution a.  Figure 8-6d shows the surface for the graph rotated about the y-axis.

dy = cos x dx

Figure 8-6d
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PROPERTY:  Area of a Surface of Revolution
If y is a differentiable function of x, then the area of the surface formed by
rotating the graph of the function about an axis is

S = (circumference) dL = 2   (radius) dL

where dL = dx2 + dy2 and a and b are the x- or y-coordinates of the
endpoints of the graph.
The radius must be found from information about the surface.



                

Radius = x, so

By numerical integration,

S  9.5111282...  = 29.88009...

As a check on this answer, consider the area of a flat washer of radii 1
and 3 (Figure 8-6e). Its area is

(32 – 12) = 25.132...

So the 29.88... answer is reasonable.

Figure 8-6e

b.  Figure 8-6f shows the surface for rotation about y = 2. Note that even
though the graph is rotated about a horizontal axis instead of a vertical one
(and therefore must use a different radius), dL can still be expressed in
terms of dx.

radius = 2 – y = 2 – sin x

So the surface area is

By numerical integration,

S  5.836945...  = 18.337304...

Figure 8-6f Figure 8-6g

To be reasonable, the answer should be a bit more than a cylinder of
altitude 2 and radius 1 (Figure 8-6g). That area is

2 (12)(2) = 12.566...

so the answer is reasonable.
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Problem Set 8-6

Q1.  If y = x3, then dL (arc length) = —?—.

Q2.  If y = tan x, then dL = —?—.

Q3.  sin5 x cos x dx = —?—

Q4.   —?—

Q5.  If y = x ex, then y′ = —?—.

Q6.  The maximum of y = x2 – 8x + 14 on the
interval [1, 6] is —?—.

Q7.  Write the definition of derivative.

Q8.  Give the physical meaning of derivative.

Q9.  sec 2x dx = —?—

Q10.  If lim Un = lim Ln for function f, then f is —?—.
A.  Differentiable B.  Continuous
C.  Constant D.  Integrable
E.  Squeezed

1.  Paraboloid Problem: A paraboloid is formed by
rotating about the y-axis the graph of
 y = 0.5x2 from x = 0 to x = 3.
a.  Write an integral for the area of the

paraboloid. Evaluate it numerically.

b.  Show that your answer is reasonable by
comparing it with suitable geometric figures.

c.  The indefinite integral in part a is relatively
easy to evaluate. Do so, and thus find the
exact area. Show that your answer in part a
is close to the exact answer.

2.  Rotated Sinusoid Problem: One arch of the
graph of y = sin x is rotated about the x-axis to
form a football-shaped surface.

a.  Sketch the surface.
b.  Write an integral equal to the area of the

surface. Evaluate it numerically.
c.  Show that your answer is reasonable by

comparing it with suitable geometric figures.

3.  ln Curved Surface, Problem I: The graph of
 y = ln x from x = 1 to x = 3 is rotated about the
x-axis to form a surface. Find the area of the
surface.

4.  ln Curved Surface, Problem II: The graph of
 y = ln x from x = 1 to x = 3 is rotated about the
 y-axis to form a surface. Find the area of the
surface.

5.  Reciprocal Curved Surface Problem I: The graph
of y = 1/x from x = 0.5 to x = 2 is rotated
about the y-axis to form a surface. Find its area.

6.  Reciprocal Curved Surface Problem II: The
graph of y = 1/x from x = 0.5 to x = 2 is
rotated about the x-axis to form a surface. Find
its area. How does this answer compare with
that in Problem 5?

7.  Cubic Paraboloid Problem I: The cubic
paraboloid y = x3 from x = 0 to x = 2 is rotated
about the y-axis to form a cuplike surface. Find
the area of the surface.

8.  Cubic Paraboloid Problem II: The part of the
cubic parabola

 y = –x3 + 5x2 – 8x + 6
in Quadrant I is rotated about the y-axis to
form a surface. Find the area of the surface.

For Problems 9–16, write an integral equal to the
area of the surface. Evaluate it exactly, using the
fundamental theorem. Find a decimal
approximation for the exact area.

9.  y = , from x = 0 to x = 1, about the x-axis

10.  y = x3, from x = 1 to x = 2, about the x-axis

11.  y = , from x = 1 to x = 2, about the

x-axis

12.  y = x2, from x = 0 to x = 2, about the y-axis

13.  y = (x2 + 2)3/2, from x = 0 to x = 3, about the
 y-axis

14.  y = 2x1/3, from x = 1 to x = 8, about the y-axis

15.  y = , from x = 1 to x = 3, about the

line y = –1

16.  y =  , from x = 1 to x = 3, about the

line x = 4
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17.  Sphere Zone Problem: The circle with equation
x2 + y2 = 25 is rotated about the x-axis to form
a sphere (Figure 8-6h).

Figure 8-6h

a.  Slice the sphere with planes perpendicular
to the x-axis. Write the differential of
surface area, dS, in terms of x.

b.  Find the area of the zone between
i.  x = 0 and x = 1
ii.  x = 1 and x = 2

iii.   x = 2 and x = 3
iv.  x = 3 and x = 4
v.  x = 4 and x = 5

c.  As you progress from the center of a sphere
toward a pole, you would expect the areas of
zones of equal height to decrease because
their radii are decreasing, but also to
increase because their arc lengths are
increasing (Figure 8-6i). From the results of
part b, which of these two opposing features
seems to predominate in the case of a sphere?

Figure 8-6i

18.  Sphere Total Area Formula Problem: Prove that
the surface area of a sphere of radius r is given
by S = 4 r2.

19.  Sphere Volume and Surface Problem: You can
find the volume of a sphere by slicing it into
spherical shells (Figure 8-6j). If the shell is
thin, its volume is approximately equal to its
surface area times its thickness. The
approximation becomes exact as the thickness
of the shell approaches zero. Use the area
formula in Problem 18 to derive the volume
formula for a sphere,

V = r3

Figure 8-6j

20.  Sphere Rate of Change of Volume Problem:
Prove that the instantaneous rate of change of
the volume of a sphere with respect to its
radius is equal to the sphere’s surface area.

21.  Paraboloid Surface Area Problem: Figure 8-6k
shows the paraboloid formed by rotating about
the y-axis the graph of a parabola y = ax2.
Derive a formula for the surface area of a

Figure 8-6k
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paraboloid in terms of its base radius r and the
constant a in the equation.

22.  Zone of a Paraboloid Problem: Zones of equal
altitude on a sphere have equal areas
(Problem 17). Is this property also true for a
paraboloid (Figure 8-6k)? If so, support your
conclusion with appropriate evidence. If not,
does the area increase or decrease as you move
away from the vertex?

23.  Ellipsoid Problem: The ellipse with x-radius 5
and y-radius 3 and parametric equations

x = 5 cos t
 y = 3 sin t

is rotated about the x-axis to form an ellipsoid
(a football-shaped surface). Write an integral
for the surface area of the ellipsoid and
evaluate it numerically. Show why the Cartesian
equation (x/5)2 + (y/3)2 = 1 for the same
ellipsoid would be difficult to use because of
what happens to dL at the end of the ellipsoid,
that is, at x = 5.

24.  Cooling Tower Problem: Cooling towers for
some power plants are made in the shape of
hyperboloids of one sheet (see the
photograph). This shape is chosen because it
uses all straight reinforcing rods. A framework
is constructed, then concrete is applied to form
a relatively thin shell that is quite strong, yet
has no structure inside to get in the way. In this
problem you will find the area of such a
cooling tower.

The cooling tower shown in Figure 8-6l is
formed by rotating about the y-axis the
hyperbola with the parametric equations

x = 35 sec t
 y = 100 + 80 tan t

where x and y are in feet.

Figure 8-6l

a.  The hyperbola starts at y = 0. What is the
radius of the hyperboloid at its bottom?

b.  The hyperbola stops where t = 0.5. What is
the radius at the top of the hyperboloid?
How tall is the cooling tower?

c.  What is the radius of the cooling tower at its
narrowest? How high up is this narrowest
point located?

d.  Find the surface area of the hyperboloid.
e.  The walls of the cooling tower are to be 4 in.

thick. Approximately how many cubic yards
of concrete will be needed to build the
tower?

25.  Lateral Area of a Cone Problem: Figure 8-6m
shows a cone of radius R and slant height L.
The cone is a singly curved surface, so you can
cut it and roll it out into a plane surface that is
a sector of a circle. Show that the area of the
lateral surface of a cone is

S = RL

Figure 8-6m
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26.  Lateral Area of a Frustum Problem: Figure 8-6n
shows that a frustum of a cone is a difference

Figure 8-6n

between two similar cones, one of radius and
slant height R and L, the other of r and l. By
the properties of similar triangles,

Use this fact and clever algebra to transform
the area of the frustum so that it is in terms of
the average radius and the frustum slant
height,

8-7   Lengths and Areas for Polar Coordinates

You have seen how to find lengths of curves specified by parametric equations
and by regular Cartesian equations. In this section you will find lengths and
areas when the curve is specified by polar coordinates. In polar coordinates, the

Figure 8-7a

position of a point is given by the displacement
from the origin (the pole) and the angle with
the positive x-axis (the polar axis).

Suppose that an object is located at point (x, y)
in the Cartesian plane (Figure 8-7a). Let r (for
“radius”) be the directed distance from the pole
to the object. Let  be the directed angle from
the polar axis to a ray from the pole through
the point (x, y). Then the ordered pair (r, )
contains polar coordinates of (x, y). Note that
in (r, ) the variable r is the dependent
variable, not the independent one. Figure 8-7a
also shows how you can plot (r, ) if r is
negative. In this case,  is an angle to the ray
opposite the ray through (x, y).

Suppose that the polar coordinates of a moving object are given by

r = 5 + 4 cos 

Figure 8-7b By picking values of , you can calculate and plot by hand or by grapher the
corresponding values of r. The polar graph in this case (Figure 8-7b) is a
limaçon, French for “snail.” (The cedilla under the c makes its pronunciation “s.”)
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Area

Figure 8-7c shows a wedge-shaped region between a polar curve and the pole,
swept out as  increases by a small amount d . The point (r, ) on the graph
can be used as a sample point for a Riemann sum. The area of the region is
approximately the area of a circular sector of radius r and central angle d . The
sector has area d /(2 ) of a whole circle. Let dA be the sector’s area.

Figure 8-7c
The area of an entire region swept out as  increases from a to b is found by
summing the areas of the sectors between a and b and taking the limit as d
approaches zero (that is, integrating).

  EXAMPLE 1 Find the area of the region enclosed by the limaçon r = 5 + 4 cos .

Solution The graph is shown in Figure 8-7b. You can plot it with your grapher in polar
mode. If you start at  = 0, the graph makes a complete cycle and closes
at  = 2 .

dA =  (5 + 4 cos )2 d Find the area of a sector, dA.

The entire limaçon is generated as  increases from 0 to 2 .

Add the sector areas and take the limit (that
is,  integrate).

= 103.672... square units By numerical integration.

Note: Because the limaçon is symmetrical, you can integrate from 0 to  and
double the answer.

As a rough check, the limaçon is somewhat larger than a circle of diameter
10 units. The area of the circle is 25  = 78.5... . So 103.6... is reasonable for
the limaçon.

You cannot use the integral of a power property in Example 1 because you
cannot make d  the differential of the inside function. In Section 9-5, you will
learn a way to evaluate this integral algebraically using the fundamental
theorem. You will find that the exact answer is 33 . If you divide the unrounded
numerical answer, 103.672... , by  you should get 33.
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DEFINITION:  Area of a Region in Polar Coordinates
The area A of the region swept out between the graph of r = f( ) and the pole
as  increases from a to b is given by



Example 2 shows you how to find the area swept out as a polar curve is
generated if r becomes negative somewhere, or if part of the region overlaps
another part.

  EXAMPLE 2

Figure 8-7d

Figure 8-7d shows the limaçon r = 1 + 3 sin .

a.  Find the area of the region inside the inner
loop.

b.  Find the area of the region between the
outer loop and the inner loop.

Solution a.  Figure 8-7d shows a wedge-shaped slice of
the region and a sample point (r, ) on
the inner loop of the graph.

dA = r2 d  = (1 + 3 sin )2

By plotting and tracing, you will find that
the inner loop corresponds to values of  roughly between  and 2 . You
will also find that r is negative, as shown in Figure 8-7d. However, dA will
be positive for positive values of d  because the r is squared. To find the
limits of integration precisely, set r equal to zero and solve numerically or
algebraically for .

1 + 3 sin  = 0  sin  = –

  = –0.3398... + 2 n or  – (–0.3398...) + 2 n

By using n = 1 in the first equation and n = 0 in the second equation, you
can find values of  in the desired range.

 = 3.4814... or 5.9433...

For convenience, store these values as a and b in your grapher.

By numerical integration.

As a rough check, the inner loop has an area slightly smaller than that of a
circle of diameter 2. See Figure 8-7d. That area is  · 12 = 3.141... .

b.  The outer loop begins and ends where the inner loop ends and begins. The
appropriate values of the limits of integration as found in part a are
a = –0.3398... and b = 3.4814... . Store these values in your grapher and
repeat the numerical integration.

It’s important to realize that this is the area of the entire outer loop,
between the graph and the pole, swept out as  increases from –0.33... to
3.48... . The area of the region between the two loops is the difference
between this and the area of the inner loop.

A  14.751123... – 2.527636... = 12.223487...
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Arc Length

Figure 8-7e

Figure 8-7e shows a part of a polar curve traced
out as  increases by d . An arc of a circle
drawn at (r, ) would have length r d  since 
is measured in radians. The length dL is close
to the length of the hypotenuse of a right
triangle of legs r d  and dr. By the
Pythagorean theorem,

Factoring out d 2 and taking its square root,

The length of the entire path traced as 
increases from a to b is found by summing the dL’s and finding the limit (that
is, integrating).

  EXAMPLE 3 Find the length of the limaçon r = 1 + 3 sin  in Example 2 (Figure 8-7d).

Solution

By plotting the graph and tracing, you will find that the graph starts repeating
itself after  has increased by 2  radians. So, convenient limits of integration
are 0 to 2 . A smaller interval will not generate the entire graph. A larger
interval will count parts of the graph more than once.

L  19.3768... units By numerical integration.

The inner and outer loops of the limaçon are close to circles of diameters 2
and 4, respectively. The circumferences of these circles sum to 2  · 1 + 2  · 2 =
18.84... . So 19.3... is reasonable for the length of the limaçon.
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DEFINITION:  Length of a Curve in Polar Coordinates

The length L traced out along the polar curve r = f( ) as  increases from a
to b is given by



Problem Set 8-7

Q1.  Differentiate: f(x) = 5x3 – 7x2 + 4x – 11

Q2.  Differentiate: g(x) = (4x – 9)3

Q3.  Differentiate: h(x) = sin3 x

Q4.  Differentiate: u(x) = sec 3x

Q5.  Differentiate: v(x) = e–x

Q6.  Differentiate: r(x) = 1/x

Q7.  Integrate: (1/x) dx

Q8.  Integrate: x dx

Q9.  Integrate:  3 dx

Q10.  Integrate:  dx

1.  Figure 8-7f shows the polar graph of the circle
r = 10 sin , with diameter 10.

Figure 8-7f

a.  Find the area of the region swept out
between the graph and the pole in one
revolution as  increases from 0 to 2 .

b.  Why is the answer in part a twice the area of
the region inside the circle? Why don’t you
get a negative value for the area integral as 
increases from  to 2 , even though r is
negative for these values of ?

2.  Find the length of the circle r = 10 sin  in
Figure 8-7f that is traced out as  makes one
revolution, increasing from 0 to 2  radians.
Why is the answer twice the circumference of
the circle? Why do you suppose the polar
coordinate length formula is phrased
dynamically, in terms of the length “traced

out,” rather than statically in terms of the
length “of” the curve?

For Problems 3–10,

a.  Plot the graph, thus confirming the one
given here.

b.  Find the area of the region enclosed by the
graph.

c.  Find the length of the graph.

3.  The limaçon r = 4 + 3 sin   

4.  The limaçon r = 5 – 3 cos 

5.  The curve r = 7 + 3 cos 2
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6.  The four-leaved rose r = 8 cos 2

7.  The cardioid r  = 5 + 5 cos   

8.  The ellipse 

9.  The three-leaved rose r = sin 3  (Be careful of
the range of -values!)

10.  The cissoid of Diocles r = 4 sec  – 4 cos , and
the lines  = –1 and  = 1

11.  Figure 8-7g shows the lemniscate of Bernoulli
with polar equation

What range of values of  causes the right loop
to be generated? What is the total area of the
region enclosed by both loops?

Figure 8-7g

12.  The polar graph of r = csc  + 4 is a conchoid
of Nicomedes. The graph is unbounded but
contains a closed loop. Find the area of the
region inside the loop.

13.  Figure 8-7h shows these polar graphs.

Cardioid: r = 4 + 4 cos 
Circle: r = 10 cos 

Where do the graphs intersect? What is the
area of the region outside the cardioid and
inside the circle?

Figure 8-7h

14.  Find the area of the region that is inside the
circle r = 5 and outside the cardioid
r = 5 – 5 cos .
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15.  Figure 8-7i shows the Archimedean spiral
r = 0.5 .

Figure 8-7i

a.  Find the length of the part of the spiral
shown.

b.  Find the area of the region in Quadrant I
that lies between the outermost branch of the
spiral and the next branch in toward the pole.

16.  For the limaçon r = 4 + 6 cos , find the area of
the region that lies between the inner and
outer loops.

17.  Column Scroll Problem: The spiral design at the
top of Ionic columns in ancient Greek
architecture is an example of a lituus
(pronounced “lit′ -you-us”). Plot the lituus

r = 5  –1/2

traced out as  increases from 0 to 6 .

This column at Villa Barbaro in Maser, Italy, was
built in the 1500s.

a.  Find the length from  = /2 to  = 6 .
b.  Let  = 1 radian. Sketch an arc of a circle

centered at the pole, from the polar axis to
the point (r, 1) on the lituus. Find the area
of the sector of the circle corresponding to
this arc. Repeat the calculation for  = 2 and

 = 3. What seems to be true about these
areas?

18.  Line Problem: Show that the graph of r = sec  
is a line. Find the length of the segment from
 = 0 to  = 1.5 using the calculus of polar

coordinates. Then confirm that your answer is
correct by appropriate geometry.

19.  LP Record Project: In this project you will
calculate the length of the groove on an old
33  rpm record. Obtain such a record. Figure
out a way to measure the number of grooves
per centimeter in the radial direction. Then
find a polar equation for the spiral formed by
the grooves. By integrating, calculate the length
of the groove from the outer one to the inner
one. Perform a quick calculation to show that
your answer is reasonable.
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20.  Kepler’s Law Project: Figure 8-7j shows the path
of a satellite in an elliptical orbit. Earth is at the
pole (one focus of the ellipse). The polar
equation of the ellipse is

where  is in radians and r is in thousands of
miles. In this problem you will investigate the
speed of the satellite at various places.

Figure 8-7j

a.  Find the area of the elliptical sector from
 = 0 to  = 0.2.

b.  German astonomer Johannes Kepler
(1571–1630) observed that an object in orbit
sweeps out sectors of equal area in equal
times. This fact is known as Kepler’s second
law of planetary motion. (His first law states
that the orbit is an ellipse where the object
being orbited is located at one focus.) If the
sector in Figure 8-7j starting at  = 0.8 has
area equal to the one in part a, at what value
of  does the sector end?

c.  Kepler’s third law states that the period of
an orbiting object is related to its distance
from the object being orbited. If a is half the
major axis of the orbit, then the period P is

P = ka1.5

Find the value of the constant k using data
for the moon. The moon is about
a = 240,000 mi from Earth and has a period
of about 655 h (27.3 d · 24 h/d).

d.  What is the period of the satellite in
Figure 8-7j?

e.  How many hours does it take the satellite to
travel from  = 0 to  = 0.2? How many
hours does it take to travel from  = 0.8 to
the value of  in part b?

f.  How many miles does the satellite travel on
its elliptical path between  = 0 and  = 0.2?
How many miles does it travel between

 = 0.8 and the value of  in part b?
g.  Find the average speed (distance/time) of

the satellite for each of the two arcs in part f.
h.  See whether you can explain physically why

a satellite would move faster when it is
closer to Earth than it does when it is farther
away.

21.  The Derivative dy/dx for Polar Coordinates
Problem: Figure 8-7k shows the polar graph of
the spiral

r = 

superimposed on a Cartesian xy-plane.
A tangent line is plotted at the point (r, 7).

Figure 8-7k

a.  Estimate the slope of the tangent line.
b.  Polar and Cartesian coordinates are related

by the parametric equations

x = r cos 
 y = r sin 

By appropriate use of the parametric chain
rule, find an equation for dy/dx and use it
to show algebraically that the slope you
found in part a is correct.
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22.  Project—The Angle Between the Radius and the
Tangent Line: A remarkably simple relationship
exists between dr/d  in polar coordinates and
the angle ψ (Greek letter psi, pronounced
“sigh”) measured counterclockwise from the
radius to the tangent line (Figure 8-7l). In this
project you will derive and apply this
relationship.

Figure 8-7l

a.  Explain why tan  = y/x.
b.  Let  (Greek letter phi, “fee” or “fye”) be the

angle from the positive horizontal direction
to the tangent line (Figure 8-7l). The slope of
the tangent line is dy/dx. Explain why

c.  Recall from trigonometry that

Use this property, the results of parts a and
b, and appropriate algebra to show that

d.  Use the fact that x = r cos  and y = r sin 
to show that the numerator in part c
equals r2.

e.  Use the fact that r2 = x2 + y2, and its

derivative, to show that r  equals the

denominator in part c, and thus the
following property holds:

f.  Figure 8-7m shows the cardioid

r = a – a cos 

where a stands for a nonzero constant.
Prove that for this cardioid the angle ψ is
always equal to . The half-argument
properties for tangent, which you may recall
from trigonometry, are helpful.

Figure 8-7m

g.  Figure 8-7n shows a cross section through a
chambered nautilus shell. The spiral has the
property that the angle ψ is a constant. Use

Figure 8-7n
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Property: The Angle ψ in Polar Coordinates

If ψ is the angle measured counterclockwise

graph, then
from the radius to the tangent line of a polar



this fact and the property in part e to find the
general equation of this equiangular spiral.
Choose two values of  on the photograph
and measure the corresponding values of r.
(You may arbitrarily pick any point on the
spiral to be  = 0. Treat points closer to the
center as  < 0 and points farther from the
center as  > 0.) Use these values as initial
conditions to find the particular equation
for the spiral. Confirm that your equation is
correct by plotting it, tracing to another value
of , and showing that the point is actually on
the photographed spiral. Use the constants
in your equation to calculate the value of ψ.
Measure a copy of the shell to show that
your calculated value of ψ is correct.

8-8   Chapter Review and Test

In this chapter you have seen applications of derivatives and integrals to
geometrical problems. The rate of change of the area or volume of a figure
describes how fast these quantities change as a given dimension changes.
Maximum or minimum areas or volumes occur where the rate of change equals
zero. Areas, volumes, and curved lengths can be calculated by slicing a figure
into small pieces, adding the pieces, and taking the limit. The resulting limits of
Riemann sums are equal to definite integrals. You have evaluated these integrals
numerically or by the fundamental theorem if you were able to find the
indefinite integral.

Review Problems
R0.  Update your journal with what you’ve learned

since your last entry. Include such things as
•  The one most important thing you have

learned in studying Chapter 8
•  How the volume, length, and surface area of

a geometric figure are found
•  How volume, length, and surface area are

found in polar coordinates or with
parametric functions

•  Which boxes you have been working on in
the “define, understand, do, apply” table

R1.  Three cubic functions have equations

 f(x) = x3 – 9x2 + 30x – 10
g(x) = x3 – 9x2 + 27x – 10
h(x) = x3 – 9x2 + 24x – 10

a.  Plot the graphs on the same screen. Sketch
the results.

b.  Write equations for the first and second
derivatives of each function.

c.  Which function has two distinct values of x
at which the first derivative is zero? What
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are these values of x? What features occur at
these points?

d.  Which function has a horizontal tangent line
somewhere but no local maximum or
minimum points?

e.  Each function has a point of inflection. Show
that the second derivative is zero at each of
the points of inflection.

R2.  a.  For the function in Figure 8-8a, sketch a
number-line graph for and for that
shows the sign of each derivative in a
neighborhood of the critical point at x = 2.
Indicate on the number lines whether there
is a local maximum, a local minimum, or a
point of inflection at x = 2.

Figure 8-8a

b.  Sketch the graph of a function whose
derivatives have the features given in
Figure 8-8b.

Figure 8-8b

c.  Figure 8-8c shows the graph of

 f(x) = x2/3 – x

i.  Write equations for (x) and (x).
ii.  The graph appears to slope downward for

all x. Does f(x) have any local maxima or
minima? If so, where? If not, explain how
you can tell.

Figure 8-8c

iii.  The graph appears to be concave down for
all x. Are there any points of inflection? If
so, where? If not, explain how you can tell.

iv.  Write the global maximum and minimum
values of f(x) for x in the closed interval
[0, 5].

d.  For f(x) = x2e–x, find the maxima, minima,
and points of inflection and sketch the graph.

R3.  a.  Storage Battery Problem: A normal
automobile battery has six cells divided by
walls. For a particular battery, each cell must
have an area of 10 in.2, looking down from the
top, as shown in Figure 8-8d. What dimensions
of the battery will give the minimum total
wall length (including outsides)? A typical
battery is 9 in. by 6.7 in. (that is, 1.5-in. cell
width). Does minimum wall length seem to
be a consideration in battery design?

Figure 8-8d

b.  Cylinder in Cubic Paraboloid Problem:
A rectangle is inscribed in the region in
Quadrant I under the cubic parabola
 y = 8 – x3. Two sides of the rectangle are on
the x- and y-axes, and the opposite corner of
the rectangle touches the graph. The figure
is rotated about the y-axis. The curve
generates a cubic paraboloid, and the
rectangle generates a cylinder. What
rectangle dimensions give the
largest-volume cylinder?
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R4.  a.  The region in Quadrant I bounded by the
graphs of y = x1/3 and y = x2 is rotated
about the x-axis to form a solid. Find the
volume of the solid by cylindrical shells.

b.  Find the volume of the solid in part a by
plane slices. Show that the answer is the
same.

c.  Various Axes Problem: The region bounded
by the parabola y = x2 and the line y = 4 is
rotated to form various solids. Find the
volume of the solid for the following axes of
rotation:
i.  y-axis

ii.  x-axis
iii.  Line y = 5
iv.  Line x = 3

R5.  a.  Write an integral equal to the length of the
parabola y = x2 between x = –1 and x = 2.
Evaluate the integral numerically.

b.  Find exactly the length of the graph of
y = x3/2 from x = 0 to x = 9 using the
fundamental theorem. Find a decimal
approximation for the answer. Check your
answer by employing suitable geometry.

c.  Find the length of the following spiral from
t = 0 to t = 4.

x = t cos t
 y = t sin t

R6.  a.  Find exactly, by the fundamental theorem,
the area of the surface formed by rotating

about the y-axis the graph of y = x1/3 from
x = 0 to x = 8. Find a decimal approximation
for the answer. Check your answer by
using geometry.

b.  The graph of y = tan x from x = 0 to x = 1 is
rotated about the line y = –1 to form a
surface. Write an integral for the area of the
surface. Evaluate it numerically.

c.  The spiral in Problem R5c is rotated about
the y-axis to form a “sea shell.” Find its
surface area.

R7.  Figure 8-8e shows the spiral

r = 

from  = 0 to  = 5 /2.

Figure 8-8e

a.  Find the length of this part of the spiral.
b.  Find the area of the region in Quadrant I

that is outside the first cycle and inside the
second cycle of the spiral.

Concept Problems

C1.  Oil Viscosity Problem: The viscosity (resistance
to flow) of normal motor oil decreases as the
oil warms up. “All-weather” motor oils retain
about the same viscosity throughout the range
of operating temperatures. Suppose that the
viscosity of 10W-40 oil is given by

 = 130 – 12T + 15T2 – 4T3    for 0  T   3

where  (Greek letter mu, pronounced “mew”
or “moo”) is the viscosity in centipoise and T  is
the temperature in hundreds of degrees.

a.  At what temperature in this domain will the
maximum viscosity occur?

b.  What is the minimum viscosity in this
domain? Justify your answer.
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C2.  “Straight Point” Problem: Show that the graph
of f(x) = (x – 1)4 + x has a zero second
derivative at x = 1 but does not have a point of
inflection there. Sketch what the graph will
look like in the vicinity of x = 1. Describe what
is true about the graph at x = 1.

C3.  Infinite Derivative Problem: The functions
 f(x) = x2/3 and g(x) = x–2/3 both have infinite
first derivatives at x = 0, but the behavior of
each is quite different there. Sketch a graph
showing the difference.

C4.  Chapter Logo Problem: The icon at the top of
each even-numbered page of this chapter
shows a solid formed by rotating about the line
x = 4 the part of the graph

from x = 5 to x = 7.5. A cylindrical hole 1 unit
in radius is coaxial with the solid. Figure 8-8f
shows the coordinate system in which this
diagram was drawn.

Figure 8-8f

a.  Find the length of the segment of graph that
was rotated.

b.  Find the x-coordinate of the point of
inflection.

c.  Find the area of the doubly curved surface
of the solid.

d.  Find the volume of the solid.

C5.  Area by Planimeter Project: You have learned
how to calculate the area of a region
algebraically using the fundamental theorem
and also numerically. There is a mechanical
device called a planimeter (compensating polar
planimeter) that finds the area geometrically

from a drawing of the region. In this problem
you will borrow a planimeter and use it to find
the area of Brazil from a map.

a.  Make a copy of the map of Brazil in
Figure 8-8g. Be sure to include the scale
because some copy machines shrink the
picture.

Figure 8-8g

b.  Set up the planimeter with the tracer point
at a convenient starting point on the map.
Set the dial to zero. Then trace around the
boundary until you return to the starting
point.

c.  Read the final setting on the dial. The
planimeter may have a vernier scale for
reading tenths of a unit.

d.  Measure the scale on the map to find out
how many miles correspond to 1 cm. Be
clever! Then find out how many square
miles correspond to 1 cm2. Finally, calculate
the area of Brazil to as many significant
digits as the data justify.

e.  Find out from the planimeter’s instruction
manual the theoretical basis on which the
instrument works. Write a paragraph or two
describing what you learned.

f.  Check an almanac or encyclopedia to see
how accurate your measurement is.

C6.  Hole in the Cylinder Project: A cylinder of
uranium 10 cm in diameter has a hole 6 cm in
diameter drilled through it (Figure 8-8h). The
axis of the hole intersects the axis of the
cylinder at right angles. Find the volume of the
uranium drilled out. Find the value of the
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uranium drilled out assuming that uranium
costs $200 a gram. Be resourceful to find out
the density of uranium.

Figure 8-8h

C7.  Three-Hole Project: A cube 2 cm on each edge
has three mutually perpendicular holes drilled
through its faces (Figure 8-8i). Each hole has

diameter 2 cm and so extends to the edge of
the cube face to which it is parallel. Find the
volume of the solid remaining after the three
holes are drilled.

Figure 8-8i

Chapter
Test
PART 1: No calculators allowed (T1–T5)

T1.  Figure 8-8j shows critical values of (x) and
(x) for a continuous function f, as well as the

signs of the derivatives in the intervals
between these points. Sketch a possible graph
of f using the initial condition that f(0) = 3.

Figure 8-8j

T2.  Figure 8-8k shows the graph of y = (x), the
derivative of a continuous function. Sketch the
graph of y = f(x) if f(0) = 4. Put a dot at the
approximate location of each critical point and
each point of inflection.

Figure 8-8k

T3.  Figure 8-8l shows a rectangular field with one
side along a river. A fence of total length
1000 ft encloses the remaining three sides.
Find the values of x and y that give the field
maximum area. Show how you know that the
area is a maximum rather than a minimum.

Figure 8-8l
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T4.  Figure 8-8m shows the solid formed by
rotating about the y-axis the region in
Quadrant I bounded by the graphs of two
functions y1 and y2. Write an integral for the
volume of the solid if the region is sliced
 parallel to the axis of rotation.

Figure 8-8m

T5.  Write these differentials:
a.  Area, dA, in polar coordinates
b.  Arc length, dL, for a plane curve in polar

coordinates

c.  Arc length, dL, for a plane curve in Cartesian
coordinates in terms of dx and dy

d.  Area, dS, for a surface of revolution around
the line x = 1 in terms of x or y, and dL

PART 2: Graphing calculators allowed (T6–T15)

T6.  Figure 8-8n shows the graph of

 f(x) = x3 – 7.8x2 + 20.25x – 13

Ascertain whether the graph has a relative
maximum and a relative minimum, a
horizontal tangent at the point of inflection, or
simply a point of inflection with no horizontal
tangent. Justify your answer.

Figure 8-8n

Problems T7–T11 are concerned with the region R
shown in Figure 8-8o. Region R is bounded by the

graph of y = x3 from x = 0 to x = 2, the y-axis, and
the line y = 8.

Figure 8-8o

T7.  Write a definite integral to find the length of
the graph of y = x3 from x = 0 to x = 2.
Evaluate the integral to find the length.

T8.  Write a definite integral equal to the area of the
surface generated by rotating the segment of
graph in Problem T7 about the y-axis. Evaluate
the integral.

T9.  A rectangular region is inscribed in region R as
shown in Figure 8-8o. As R rotates about the
 y-axis, the rectangular region generates a
cylinder. Find exactly the maximum volume the
cylinder could have. Justify your answer.

T10.  Using slices of R parallel to the y-axis, write
an integral equal to the volume of the solid
formed by rotating R about the y-axis.
Evaluate the integral algebraically using the
fundamental theorem.

T11.  Suppose that a cylinder is circumscribed about
the solid in Problem T10. What fraction of the
volume of this cylinder is the volume of the solid?

T12.  For the ellipse with parametric functions

x = 5 cos t
 y = 2 sin t

a.  Plot the graph and sketch it.
b.  Find the length of the ellipse.
c.  Show that the volume of the ellipsoid

formed by rotating the ellipse about the
x-axis is

V =  (x-radius) (y-radius)2
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For Problems T13 and T14, use the spiral r = 5e0.1θ
shown in Figure 8-8p.

Figure 8-8p

T13.  Find the length of the part of the spiral shown.

T14.  Find the area of the region in Quadrant I that is
outside the second revolution of the spiral and
inside the third revolution.

T15.  What did you learn as a result of taking this
test that you did not know before?
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Algebraic Calculus
Techniques for the
Elementary Functions

The Gateway Arch in St. Louis is built in the form of a catenary, the
same shape a chain forms when it hangs under its own weight. In
this shape the stresses act along the length of the arch and cause
no bending. The equation of a catenary involves the hyperbolic
functions, which have properties similar to the circular functions
of trigonometry.



.

to find algebraic integrals for the inverse trigonometric functions.
by parts. With it I can integrate products of functions. I can also use it
The most fundamental method of integration seems to be integrationVerbally

Algebraically  u dv = uv –  v du, the integration by parts formula
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Mathematical Overview
In Chapter 9, you will learn ways to integrate each of the
elementary functions and their inverses. The elementary
functions are

• Algebraic

• Trigonometric

• Exponential

• Logarithmic

• Hyperbolic

You will do the integration in four ways.

Graphically The icon at the top of each
even-numbered page of this chapter
shows the graphical meaning of the
integration by parts formula, which is
used to integrate products.

Numerically x ln x  ln t dt

1 0 0
2 0.693... 0.386...

1.295...1.098...3
4 1.386... 2.545...
5 1.609... 4.047...

· · ·· ·. · ··



9-1   Introduction to the Integral of a Product

dV = 2 x · y · dx = 2 x cos x dx

Thus, the volume is

V = 2 x cos x dx

Figure 9-1a

The integrand, x cos x, involves a product of two functions. So far you have been
able to evaluate such integrals only by approximate numerical methods because
you usually could not find the antiderivative of a product.

In this chapter you will learn algebraic techniques for integrating the so-called
elementary functions. These are the algebraic functions, involving no operations
other than addition, subtraction, multiplication, division, and roots (rational
exponential powers); and the elementary transcendental functions, which are
the trigonometric and inverse trigonometric functions, logarithmic and
exponential functions, and hyperbolic functions. The hyperbolic functions are
defined in terms of exponential functions but have properties similar to those of
the trigonometric functions.

Some of the techniques you will learn were essential before the advent of the
computer made numerical integration easily available. They are now interesting
mostly for historical reasons and because they give you insight into how to
approach a problem. Your instructor will guide you to the techniques that are
important for your course. You will see how algebraically “brave” one had to be
to learn calculus in the days “BC” (“before calculators”). But for each technique
you learn, you will get the thrill of knowing, “I can do it on my own, without a
calculator!”
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of Two Functions

Suppose you are to find the volume of the solid formed by rotating the region
under y = cos x about the y-axis (Figure 9-1a). The value of dV, the differential
of volume, is



 

1.  Find the approximate volume of the solid in
Figure 9-1a by numerical integration.

2.  Let f(x) = x sin x. Use the derivative of a
product formula to find an equation for (x).
You should find that x cos x, the integrand in
Problem 1, is one of the terms.

3.  Multiply both sides of the equation for (x) in  
Problem 2 by dx. Then integrate both sides.
(That’s easy! You simply write an integral
sign ( ) in front of each term!)

4.  The integral  x cos x dx should be one term in
the equation of Problem 3. Use suitable algebra
to isolate this integral. Evaluate the integral on

the other side of the equation. Recall what
 (x) dx equals!

5.  Use the result of Problem 4 to find the exact
volume of the solid in Figure 9-1a.

6.  Find a decimal approximation for the exact
volume in Problem 5. How close did the
approximation in Problem 1 come to this
exact volume?

7.  The technique of this exercise is called
integration by parts. Why do you suppose
this name is used? How do you suppose
the function f(x) = x sin x was chosen in
Problem 2?

9-2   Integration by Parts—A Way to
Integrate Products

Figure 9-2a shows the solid formed by rotating about the y-axis the region
under the graph of y = cos x. The volume of this solid is given by

V = 2 x cos x dx

Figure 9-2a

In Section 9-1, you saw that you can integrate this product of functions
algebraically. In this section you will learn why the integration by parts
technique works.
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OBJECTIVE On your own or with your study group, find the indefinite integral x cos x dx,
and use the result to find the exact volume of the solid in Figure 9-1a using
the fundamental theorem.

Exploratory Problem Set 9-1



You can isolate either integral on the right side and write in terms of the
remaining quantities. For instance,

Because  dy = y (ignoring, for the time being, + C) and y = uv, you can write

For  x cos x dx, let u = x and let dv = cos x dx. Then the following holds.

= x sin x + Cx + cos x – Cx + C1

= x sin x + cos x + C1

You can always write the integral of a product of two functions as

  (one function)(differential of another function)

Associating the integrand into two factors leads to the name integration by
 parts. It succeeds if the new integral,  v du, is simpler to integrate than the
original integral,  u dv.
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OBJECTIVE Given an integral involving a product, evaluate it algebraically using
integration by parts.

To integrate a product of two functions, it helps to start with the formula for the
differential of a product. If y = uv, where u and v are differentiable functions
of x, then

dy = du · v + u · dv

Commuting the du and v in the right side of the equation and integrating both
sides gives

  dy =  v du +  u dv

  u dv =  dy  –  v du

  u dv = uv –  v du

du = dx and v =  cos x dx = sin x + C

  x cos x dx = x (sin x + C ) –  (sin x + C ) dx

TECHNIQUE:  Integration by Parts

A way to integrate a product is to write it in the form

  (one function)(differential of another function)

If u and v  are differentiable functions of x, then

  u dv = uv – v du

Differentiate u and
integrate dv.

Substitute for u, v, and
du in the equation
  u dv = uv –  v du.

A new constant of
integration comes from
the second integral.

The old constant of
integration cancels out!



Again, the original constant C in integrating  dv conveniently drops out. The C1

comes from the last integral. In Problem 46 of Problem Set 9-3, you will prove
that this is always the case. So you don’t need to worry about putting in the + C
until the last integral disappears. Example 2 shows that you may have to
integrate by parts more than once.

Integration by parts is successful in this example because, at both steps, the
second integral,  v du, is less complex than  u dv at the start of the step. You
could also have chosen the terms

u = cos 4x dv = x2 dx
du = –4 sin 4x dx v =  x3
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You should memorize the integration by parts formula, because you will use it
often. Example 1 shows a way to use this formula.

Evaluate the integral:  5xe3x dx

Write u and dv to the right, out of the way, as shown.

  EXAMPLE 1

Solution

Differentiate u and integrate
dv to find du and v.

Use the integration by parts
formula,  u dv = uv –  v du.

Evaluate the integral:  x2 cos 4x dx  EXAMPLE 2

Solution

Use  u dv = uv –  v du.
Note that the integral still
involves a product of two
functions.
Associate the dx with the sine
factor, as it was originally.

Use integration by
parts again.



Q1.  Differentiate:  y = x tan x

Q2.  Integrate: x10 dx

Q3.  Sketch:  y = e–x

Q4.  Integrate:  cos 3x dx

Q5.  Differentiate:  y = cos 5x sin 5x

Q6.  Sketch:  y = 2/x

Q7.  r(x) =  t(x) dx if and only if —?—.

Q8.  Definition: (x) = —?—

Q9.  If f(6.2) = 13, f(6.5) = 19, and f(6.8) = 24, then
(6.5)  —?—.

Q10.  If region R (Figure 9-2b) is rotated about the
line x = c, the volume of the solid is —?—.

Figure 9-2b

A.     [ f(x) – g(x)]2 dx

B.     [( f(x))2 – (g(x))2] dx

C.  2   [f(x) – g(x)](x – c) dx

D.  2   [f(x) – g(x)](c – x) dx

E.  2   x[f(x) – g(x)] dx

For Problems 1-10, integrate by parts.

1.   x sin x dx

2.   x cos 3x dx

3.   xe4x dx

4.   6x e–3x dx

5.   (x + 4)e–5x dx

6.   (x + 7)e2x dx

7.   x3 ln x dx

8.   x5 ln 3x dx

9.   x2 ex dx

10.   x2 sin x dx

11.  Integral of the Natural Logarithm Problem: You
can evaluate the integral  ln x dx by parts, but
you must be clever to make the choice of parts!
Find  ln x dx.
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However, the new integral, –  sin 4x dx, would have been more complicated
than the original integral. The techniques in this box will help you decide how to
split an integral of a product into appropriate parts.

TECHNIQUE:  Choosing the Parts in Integration by Parts

To evaluate  u dv, these two criteria should be met.

Primary criterion: dv must be something you can integrate.

Secondary criterion: u should, if possible, be something that gets simpler (or
at least not much more complicated) when it is differentiated.

Problem Set 9-2

Quick Review



9-3    Rapid Repeated Integration by Parts

Figure 9-3a

Here’s the way Example 2 of Section 9-2 was done.

u = x2 dv = cos 4x dx
du = 2x dx v =  sin 4x

u = 2x dv =  sin 4x dx

du = 2 dx v = –  cos 4x

Note that the function to be differentiated appears in the left column and the
function to be integrated appears in the right column. For instance, 2x appears
as part of du in the first step and again as u in the next step. If you head the left
column “u” and the right column “dv,” and leave out dx and other redundant
information, you can shorten the work this way:

  x2 cos 4x dx

=  x2 sin 4x +  x cos 4x –  sin 4x + C

The second diagonal arrow has a minus sign because the minus sign from the
first  v du carries over. The third diagonal arrow has a plus sign because
multiplying two negatives from the step before gives a positive. If you put in the
third step (fourth line), the last integral is  0 dx, which equals C, the constant of
integration.
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A pattern exists that can help you remember the integration by parts formula.
Write u and dv on one line. Below them write du and v. The pattern is “Multiply
diagonally down, then integrate across the bottom.” The arrows in Figure 9-3a
remind you of this pattern. The plus and minus signs on the arrows say to add
uv and subtract  v du.

This pattern is particularly useful when you must integrate by parts several
times.

OBJECTIVE Use the pattern of Figure 9-3a to simplify repeated integration by parts.



Examples 1–4 show some special cases and how to handle them.

Make the Original Integral Reappear

When you perform repeated integration by parts, the original integral may
reappear.

Evaluate the integral:  e6x cos 4x dx

Set up columns for u and dv.

e6x cos 4x dx

=  e6x sin 4x +  e6x cos 4x –  e6x cos 4x dx

The integral on the right is the same as the original one on the left but has a
different coefficient. Adding  e6x cos 4x dx to both sides of the equation gives

  e6x cos 4x dx =  e6x sin 4x +  e6x cos 4x + C

You must display the + C on the right side of the equation because no indefinite
integral remains there. Multiplying both sides by and simplifying gives

  e6x cos 4x dx =  e6x sin 4x +  e6x cos 4x + C1 C1=  C .

If you have doubts about the validity of what has been done, you can check the
answer by differentiation.

 y =  e6x sin 4x +  e6x cos 4x + C1

 =  e6x sin 4x +  e6x cos 4x +  e6x cos 4x –  e6x sin 4x

 = e6x cos 4x

Use Trigonometric Properties to Make the Original
Integral Reappear
In Example 1, you found that the original integral reappeared on the right side
of the equation. Sometimes you can use properties of the trigonometric
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TECHNIQUE:  Rapid Repeated Integration by Parts

•  Choose parts u and dv. Differentiate the u’s and integrate the dv’s.

•  Multiply down each diagonal.

•  Integrate once across the bottom.

•  Use alternating signs shown on the arrows.

If you get 0 in the u-column, the remaining integral will be  0 dx, which equals C.

The original integrand.

  EXAMPLE 1

Solution



 sin2 x dx

= –sin x cos x + cos2 x dx

= –sin x cos x + (1 – sin2 x) dx

= –sin x cos x + 1 dx – sin2 x dx

 2 sin2 x dx = –sin x cos x + x + C

 sin2 x dx = –  sin x cos x + x + C1

It would have been possible to make sin2 x dx reappear by carrying the
integration by parts one more step. Something unfortunate happens in this case,
however, as shown here.

 sin2 x dx

= –sin x cos x + cos x sin x + sin2 x dx

This time the original integral appears on the right side but with 1 as its
coefficient. When you subtract sin2 x dx from both sides and simplify, you
end up with

0 = 0

which is true, but not very helpful! Stopping one step earlier, as in Example 2,
avoids this difficulty.

Reassociate Factors Between Steps

The table form of repeated integration by parts relies on the fact that u and dv
stay separate at each step. Sometimes it is necessary to reassociate some of the
factors of u with dv, or vice versa, before taking the next step. You can still use
the table format. Example 3 shows you how.

Evaluate the integral: x3 ex2 dx

You can integrate the quantity x ex2 dx like this:

 x ex2 dx =  ex2 (2x dx) =  ex2 + C
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functions to make this happen. Example 2 shows you how. Note the clever choice
of u and dv!

  EXAMPLE 2 Evaluate the integral: sin2 x dx

Solution

  EXAMPLE 3

Solution

By the Pythagorean properties.

 sin2 x dx reappears!

Do the indicated algebra.



The technique is to make xex2 dx show up in the dv column.

Choose the parts this way.

Draw a dashed line.

Associate the x with the other factor.

 x3ex2 dx =  x2ex2 –  ex2 + C

The dashed line across the two columns indicates that the factors above the line
have been reassociated to the form shown below the line. The arrows indicate
which of the terms are actually multiplied to give the answer.

Integral of the Natural Logarithm Function

In Problem 11 of Problem Set 9-2, you were asked to integrate ln x. To do this,
you must be clever in selecting the parts. Example 4 shows you how.

Evaluate the integrals:  ln x dx

 ln x dx

= x ln x –   (x) dx
Let dv = l  dx

= x ln x – x + C
You can integrate (1/x)(x) = 1

In Problem Set 9-3, you will practice rapid repeated integration by parts. You will
justify that the + C can be left out in the integration of dv. You will also practice
integrating other familiar functions.

Q1.  Integrate: r5 dr

Q2.  Differentiate:  g(m)  =  m sin 2m

Q3.  Integrate:  sec2 x dx

Q4.  Integrate:  (x3 + 11)5(x2 dx)

Q5.  Integrate:  (x3 + 11) dx
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  EXAMPLE 4

Solution

Problem Set 9-
3
Quick Review

PROPERTY:  Integral of the Natural Logarithm Function

 ln x dx = x ln x – x + C



                                                                           

Figure 9-3b

Q9.  Sketch the paraboloid formed by rotating
 y = x2 from x = 0 to 2 about the y-axis.

Q10.  Differentiate: f(t) = tet

A.  et B.  tet + et C.  et + t
D.  t2et + t E.  et  +

1
For Problems 1–20, evaluate the integral.

1.
 

x3e2x dx

2. x5e–x dx

3.
 

x4 sin x dx

4. x2 cos x dx

5.
 

x5 cos 2x dx

6. x3 sin 5x dx

7.
 

ex sin x dx

8. ex cos x dx

9.
 

e3x cos 5x dx

10. e4x sin 2x dx

11.
 

x7 ln 3x dx

12. x5 ln 6x dx

13.
 

x4 ln 7 dx

14. e7x cos 5 dx

15.
 

sin5 x cos x dx

16. x (3 – x2)2/3 dx

17.
 

x3(x + 5)1/2 dx

18. x2  dx

19.
 

ln x5 dx

20. e ln  7x dx

For Problems 21–32, evaluate the integral. You may
reassociate factors between steps or use the
trigonometric functions or logarithm properties in
the integration by parts.

21.
 

x5ex2 dx

22. x5ex3 dx

23.
 

x (ln x)3 dx

24. x3 (ln x)2 dx

25.
 

x3 (x2 + 1)4 dx

26. x3  dx

27.
 

cos2 x dx

28. sin2 0.4x dx

29.
 

sec3 x dx

30. sec2 x tan x dx (Be clever!)

31.
 

log3 x dx

32. log10 x dx

For Problems 33–38, write the antiderivative.

33.
 

sin x dx

34. cos x dx

35.
 

csc x dx

36. sec x dx

37.
 

tan x dx

38. cot x dx
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Q6.  Find:  

Q7.  Find:  

Q8.  If region R (Figure 9-3b) is rotated about the
        x-axis, the volume of the solid is —?—.



41.  If you evaluate  ex sin x dx, the original integral
reappears after two integrations by parts. It
will also reappear after four integrations by
parts. Show why it would be unproductive to
evaluate the integral this way.

42.  You can integrate the integral cos2 x dx by
clever use of trigonometric properties, as well
as by parts. Substitute  (1 + cos 2x) for cos2 x
and integrate. Compare this answer with what
you obtain using integration by parts, and
show that the two answers are equivalent.

43.  Area Problem: Sketch the graph of y = xe–x
from x = 0 to x = 3. Where does the function
have its high point in the interval [0, 3]? Use
the fundamental theorem to find algebraically
the area of the region under the graph from
x = 0 to x = 3.

44.  Unbounded Region Area Problem: Figure 9-3c
shows the region under the graph of
 y = 12x2e–x from x = 0 to x = b. Find an
equation for this area in terms of b. Then find
the limit of the area as b approaches infinity.
Does the area approach a finite number, or
does it increase without bound as b increases?
Justify your answer.

Figure 9-3c

45.  Volume Problem: The region under the graph of
 y = ln x from x = 1 to x = 5 is rotated about the

x-axis to form a solid. Use the fundamental
theorem to find its volume exactly.

46.  Proof Problem: In setting up an integration by
parts problem, you select dv to equal
something useful and integrate to find v. Prove
that whatever number you pick for the
constant of integration at this point will cancel
out later in the integration by parts process.

47.  Areas and Integration by Parts: Figure 9-3d
shows the graph of function v plotted against
function u. As u goes from a to b, v goes from
c to d. Show that the integration by parts
formula can be interpreted in terms of areas on
this diagram. (This diagram is the same as the
icon at the top of each even-numbered page in
this chapter.)

Figure 9-3d

48.  Integral of ln Generalization Problem: Derive a
formula for ln ax dx, where a stands for a
nonzero constant.

49.  Introduction to Reduction Formulas Problem:
For sin7 x dx, integrate once by parts. Use the
Pythagorean properties in an appropriate
manner to write the remaining integral as two
integrals, one involving sin5 x and the other
involving sin7 x. Then use algebra to combine
the two integrals involving sin7 x, and thus
express sin7 x dx in terms of sin5 x dx. Use
the resulting pattern repeatedly to finish
evaluating sin7 x dx. The pattern leads to a
reduction formula, as you will learn in the next
section.

50.  Journal Problem: Update your journal with
techniques and concepts you’ve learned since
the last entry. In particular, describe integration
by parts, the kind of integral it is used for, and
the rapid way in which you can accomplish it.
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39.  Wanda evaluates x2 cos x dx, letting u = x2

       and dv = cos x dx. She gets

x2 sin x – 2x sin x dx

For the second integral, she lets u = sin x and
dv = 2x dx. Show Wanda why her second
choice of u and dv is inappropriate.

40.  Amos evaluates  x2 cos x dx by parts, letting
u = cos x and dv = x2 dx. Show Amos that
although he can integrate his choice for dv, it
is a mistake to choose the parts as he did.



9-4   Reduction Formulas and Computer

So you simply put the integral back together and hope for the best!

 sin6 x dx

= –sin5 x cos x + 5 sin4 x cos2 x dx

= –sin5 x cos x + 5 sin4 x (1 – sin2 x) dx

= –sin5 x cos x + 5 sin4 x dx – 5 sin6 x dx

The original integral appears on the right side with a coefficient of –5. Adding
5 sin6 x dx to the first and last members of the above equation (and using the
transitive property to ignore the two members in the middle) gives

6 sin6 x dx = –sin5 x cos x + 5 sin4 x dx
Dividing by 6 gives

 sin6 x dx = –  sin5 x cos x + sin4 x dx

The integral sin6 x dx has been replaced by an expression in terms of sin4 x dx.
The new integral has the same form as the original but is “reduced” in
complexity. By repeating this integration where n is the exponent instead of 6,
you can find an equation expressing the integral with any nonzero exponent in
terms of an integral with that exponent reduced by 2.
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Algebra Systems

In this section you will develop formulas that allow you to algebraically integrate
powers of the trigonometric functions. You can use repeated integration by
parts for integrals such as

 sin6 x dx

The choice for dv is sin x dx because you can integrate it and the result is not
more complicated. But the other part, u = sin5 x, gets more complex when you
differentiate it.

Use the Pythagorean property
to return to sines.

sinn x dx sin n–1 x cosx sinn–2 x dx



The formulas for integration of the six trigonometric functions (recall from
Section 6-6) are repeated here to refresh your memory.

The work at the beginning of this section shows that you can derive a reduction
formula by choosing a particular case, integrating, and looking for a pattern in
the answer. However, to be perfectly sure the result is correct, start with a
general integral of the type in question, using a letter such as n to stand for the
(constant) exponent. Example 1 shows you how to derive the integral of
secn x dx.
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An equation such as this one is called a reduction formula. You can use it again
on the new integral. For the previous example, the work would look like this.
(Note that you can use ditto marks, as shown, to avoid rewriting the first terms
so many times.)

DEFINITION:  Reduction Formula

A reduction formula is an equation expressing an integral of a particular kind
in terms of an integral of exactly the same type, but of reduced complexity.

OBJECTIVE Given an integral involving powers of functions, derive a reduction formula,
and given a reduction formula, use it to evaluate an indefinite integral either
by pencil and paper or by computer algebra systems (CAS).

PROPERTIES:  Integrals of the Trigonometric Functions

sin x dx  = –cos x + C

tan x dx  =  ln | sec x | + C
= –ln | cos x | + C

sec x dx  =  ln | sec x + tan x | + C
= –ln | sec x – tan x | + C

cos x dx  =  sin x + C

cot x dx  = –ln | csc x | + C
= ln | sin x | + C

csc x dx  = –ln | csc x + cot x| + C
= ln | csc x – cot x | + C

sin6 x dx

sin5 x cosx + sin4 x dx= –

= " +

= " –

= " – " +

= " – " –

= –

sin3 x cosx + sin2 x dx

sin3 x cosx + sin2 x dx

sin1 x cosx + sin0 x dx
sin x cosx +

sin5 x cosx – sin3 x cosx – sin x cosx + x + C



 

a.  The best choice for dv is sec2 x dx,
because you can integrate it easily
and its integral, tan x, is simpler
than the original integrand. The
work looks like this.

secn x dx

= secn–2 x tan x – (n – 2) secn–2 x tan2 x dx

= secn–2 x tan x – (n – 2) secn–2 x (sec2 x – 1) dx

= secn–2 x tan x – (n – 2) (secn x –  secn–2 x) dx

= secn–2 x tan x – (n – 2) secn x dx + (n – 2) secn–2 x dx

The desired integral now appears in the second term of the equation,
with –(n – 2) as its coefficient. Adding (n – 2) secn x dx to the first and
last members (and eliminating the middle members by transitivity) gives

(n – 1) secn x dx = secn–2 x tan x + (n – 2) secn–2 x dx
Dividing both members by (n – 1) produces the desired reduction formula.

b. 

c.  A symbol-manipulating CAS may present the answer in a slightly different
form. For instance, a popular handheld device presents the answer this way.

Sometimes you can derive a reduction formula without integrating by parts, as
Example 2 shows.
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  EXAMPLE 1

Solution

a.  Derive a reduction formula for secn x dx that can be used if n  2.

b.  Use the reduction formula to evaluate sec5 x dx.

c.  Check your answer to part b by CAS.



Use the Pythagorean properties to
transform to cosecant.

Integral of a power function.

The last expression has the integral of cotangent with an exponent 2 less than
the original integral and is thus a reduction formula.

Use the reduction formula in Example 2 to evaluate cot5 x dx.

You will derive these reduction formulas in Problem Set 9-4.

Don’t try to memorize the reduction formulas! You are almost bound to make a
mistake, and there is nothing quite as useless as a wrong formula. Fortunately
you will not have to make a career out of evaluating reduction formulas. Your
purpose here is to see how the computer comes up with an answer, as in
Example 1 when it integrates a power of a trigonometric function.
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Derive a reduction formula for cotn x dx that you can use if n  2.

cotn x dx
= cotn–2 x (cot2 x
dx)
= cotn–2 x (csc2 x – 1) dx

= cotn–2 x csc2 x dx – cotn–2 x dx

  EXAMPLE 2

Solution

  EXAMPLE 3

Solution

REDUCTION FORMULAS:  Integrals of Powers of Trigonometric Functions

(For reference only. Do not try to memorize these!)



                                   

Q7.  Sketch the graph of a function that is
continuous at point (3, 1), but not
differentiable there.

Q8.  Find: (d/dx)(tan–1 x)

Q9.  Integrate: sec x dx

Q10.  Integrate:  e2x dx
A.  2e4 B. e4 C. e6 – e2

D. (e6 –  e2) E. e4

For Problems 1–6, take the first step in integration
by parts or use appropriate trigonometry to write
the given integral in terms of an integral with a
reduced power of the same function.

1.
 

sin9 x dx

2. cos10 x dx

3.
 

cot12 x dx

4. tan20 x dx

5.
 

sec13 x dx

6. csc100 x dx

For Problems 7–12, derive the reduction formula in
the box on page 447 using n as the exponent rather
than using a particular constant, as in Problems 1–6.

7.
 

cosn x dx,   n  0

8. sinn x dx,   n  0

9.
 

tann x dx,   n  0

10. cotn x dx,   n  0

11.
 

cscn x dx,   n  0

12. secn x dx,   n  0

For Problems 13–18, integrate by

a.  Using pencil and paper and the appropriate
reduction formula.

13.
 

sin5 x dx

14. cos5 x dx

15.
 

cot6 x dx

16. tan7 x dx

17.
 

sec4 x dx

18. csc4 x dx

19.  Cosine Area Problem: Figure 9-4a shows the
graphs of

 y = cos x
 y = cos3 x
 y = cos5 x

Figure 9-4a

a.  Which graph goes with which function?
b.  By numerical integration, find the

approximate area of the region under each
graph from x = – /2 to /2.
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Problem Set 9-4

Quick Review

Q1.  In integration by parts, u dv = —?—.

Q2.  Sketch:  y = 3 cos x

Q3.  Sketch:  y = cos 2x

Q4.  Differentiate:  y = x ln 5x

Q5.  Integrate: sin5 x cos x dx

Q6.  Integrate: dx/x

b.  Using computer algebra systems.



20.  Integral of cos5 x Another Way: You can write
the integral cos5 x dx

 cos5 x dx = (cos4 x) cos x dx

You can convert the factor cos4 x to powers of
sine by appropriate use of the Pythagorean
properties of trigonometric functions. The
result will be three integrals that you will be
able to evaluate by the fundamental theorem.
Find the area of the region under the graph of
 y = cos5 x from x = – /2 to /2 using this

technique for integration. Compare your
answer with that in Problem 19, part c.

21.  Integral of Secant Cubed Problem: The integral
 sec3 x dx often appears in applied
mathematics, as you will see in the next few
sections. Use an appropriate technique to
evaluate the integral. Then see if you can figure
out a way to remember the answer.

22.  Reduction Formula for sinn ax dx: Derive a
reduction formula for

 sinn ax dx, n  2, a  0

Then use the reduction formula to evaluate

sin5 3x dx.
23.  Prove:

sin3 ax dx = –       (cos ax)(sin2 ax + 2) + C

(a  0)
24.  Prove:

cos3 ax dx =       (sin ax)(cos2 ax + 2) + C

(a  0)

9-5   Integrating Special Powers
of Trigonometric Functions

In Section 9-4, you found algebraically the indefinite integrals of any positive
integer power of any trigonometric function. In this section you will learn how to
integrate some special powers of these functions without having to resort to
reduction formulas.

Odd Powers of Sine and Cosine

Evaluate the integral: sin7 x dx
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c.  Find exactly each area in part b by the
     fundamental theorem. Use the reduction
     formulas.

d.  Based on the graphs, explain why the areas
     you calculated are reasonable.

e.  Plot the graph of y = cos100 x. Sketch the
     result.
f.  As the exponent n gets larger, the graph of
     y = cosn x gets “narrower.” Does the limit of
     the area as n approaches infinity seem to be
     zero? Explain.

OBJECTIVE Integrate odd powers of sine or cosine, even powers of secant or cosecant, and
squares of sine or cosine without having to use the reduction formulas.

  EXAMPLE 1



sin6 x (sin x dx)

= (sin2 x)3(sin x dx)

= (1 – cos2 x)3(sin x dx)

= (1 – 3 cos2 x + 3 cos4 x – cos6 x)(sin x dx)

= sin x dx – 3 cos2 x sin x dx + 3 cos4 x sin x dx – cos6 x sin x dx

= –cos x + cos3 x –  cos5 x +  cos7 x + C

Each integral in the next-to-last line of Example 1 has the form of the integral of
a power, un du. So you end up integrating power functions rather than
trigonometric functions. This technique will work for odd powers of sine or
cosine because associating one of the factors with dx leaves an even number of
sines or cosines to be transformed into the cofunction.

Squares of Sine and Cosine

Figure 9-5a

In Section 8-7, you found the area inside the
limaçon r = 5 + 4 cos  (Figure 9-5a) is

Expanding the binomial power gives

The last term in the integral has cos2 . The
integrals sin2 x dx and cos2 x dx occur
frequently enough to make it worthwhile to
learn an algebraic shortcut. The
double-argument property for cosine is

cos 2x = cos2 x – sin2 x

You can also write the right side either entirely in terms of cosine or entirely in
terms of sine.

cos 2x = 2 cos2 x – 1
cos 2x = 1 – 2 sin2 x

Performing algebra on these two equations gives the property at the top of the
next page.
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sin7 x dx

The key to the technique is associating one sin x factor with dx, then
transforming the remaining (even) number of sines into cosines using the
Pythagorean properties.

Solution

A =          (5 + 4cos  )2 d

A =           (25 + 40cos  + 16cos2 ) d

=



cos2 x dx =  (1 + cos 2x) dx =  x +  sin 2x + C

sin2 x dx =  (1 – cos 2x) dx =  x –  sin 2x + C

Evaluate the integral: sin2 8x dx

sin2 8x dx

=  (1 – cos 16x) dx

= x –   sin 16x + C

Even Powers of Secant and Cosecant

You can adapt the technique for integrating odd powers of sine and cosine to
even powers of secant and cosecant. Example 3 shows how.

Evaluate the integral: sec8 5x dx

sec8 5x dx

= sec6 5x (sec2 5x dx)

= (sec2 5x)3(sec2 5x dx)

= (tan2 5x + 1)3(sec2 5x dx)

= (tan6 5x + 3 tan4 5x + 3 tan2 5x + 1)(sec2 5x dx)

= tan6 5x sec2 5x dx + 3 tan4 5x sec2 5x dx + 3 tan2 5x sec2 5x dx

+ sec2 5x dx

The advantage of the techniques in Examples 2 and 3 is that you don’t have to
remember the reduction formulas. The disadvantages are that you must
remember certain trigonometric properties, the binomial formula for expanding
powers of binomials, and which powers of which functions you can integrate
this way. Problem Set 9-5 gives you some opportunities for practice. You will
also find the exact area of the limaçon in Figure 9-5a.
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PROPERTY:  Double-Argument Properties for Sine and Cosine, Transformed

cos2 x =  (1 + cos 2x)

sin2 x =  (1 – cos 2x)

These two equations allow you to transform sin2 x dx and cos2 x dx so that the
integrand is linear in cos 2x.

  EXAMPLE 2

Solution

  EXAMPLE 3

Solution

=



                   

Q6.  Solve:  x1/3  = 8

Q7.  Sketch the graph: (x/3)2  + ( y/5)2 = 1

Q9.  For Figure 9-5b, sketch the (continuous)
antiderivative, f(x), that contains point (2, 1).

Figure 9-5b

Q10.
 

[ f(x)]n dx = g(x) + [ f(x)]n–1 dx is called
a(n) —?— formula.

A.  Power expansion
B.  Double argument
C.  Integration by parts
D.  Power integration
E.  Reduction

For Problems 1–30, evaluate the integral.

1.
 

sin5 x dx

2. cos7 x dx

3.
 

cos7 9x dx

4. sin3 10x dx

5.
 

sin4 3x cos 3x dx

6. cos8 7x sin 7x dx

7.
 

cos6 8x sin3 8x dx

8. sin4 2x cos3 2x dx

9.
 

sin5 x cos2 x dx

10. cos3 x sin2 x dx

11. cos2 x dx

12. sin2 x dx

13. sin2 5x dx

14. cos2 6x dx

15. sec4 x dx

16. csc6 x dx

17. csc8 6x dx

18. sec4 100x dx

19. tan10 x sec2 x dx

20. cot8 x csc2 x dx

21. sec10 x tan x dx

22. csc8 x cot x dx

23. sec10 20 dx

24. csc8 12 dx

25. (cos2 x – sin2 x) dx

26. (cos2 x + sin2 x) dx

27. (sin x)–2 dx

28. (cos 3x)–2 dx

29. sec3 x dx

30. csc3 x dx
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Problem Set 9-5

Quick Review

Q1.  Find (1): f(x) = x3 – 7x

Q2.  Find (2): g(x) = ln x

Q3.  Find (3): h(x) = (2x – 7)6

Q4.  Find  (4): t(x) = sin  x

Q5.  Find (5): p(x) = xex

Q8.   u dv = uv –  v du is the —?— formula.



Figure 9-5c

a.  Using integration by parts, find the
indefinite integral  cos 5xsin 3x dx.

b.  Show that the region has just as much area
below the x-axis as it has above.

32.  Area Problem II: Let f(x) = sin3 x.
a.  Plot the graph from x = 0 to x = . Sketch

the result.

b.  Find the exact area of the region under the
graph of f from x = 0 to x = , using the
fundamental theorem and the integration
techniques of this section.

c.  Verify your answer to part b by integrating
numerically.

d.  Quick! Find the integral of f(x) from x = –
to x = . State what property allows you to
answer this question so quickly.

33.  Volume Problem I: One arch of the graph of
 y = sin x is rotated about the x-axis to form a
football-shaped solid (Figure 9-5d). Find its
volume. Use the fundamental theorem.

Figure 9-5d

34.  Volume Problem II: The region under the graph
of y = sec2 x from x = 0 to x = 1 is rotated
about the line y = –3 to form a solid.

a.  Find the exact volume of the solid.
b.  Find the exact volume of the solid if the

region is rotated about the line x = –3.

35.  Limaçon Area Problem: Figure 9-5e shows the
limaçon

 r = 5 + 4 cos  

Figure 9-5e

which appears at the beginning of this section.
By numerical integration the area of the region
from  = 0 to  = /4 is 29.101205... square
units. Find this area exactly, using the
fundamental theorem. Write the answer using
radicals and , if necessary. Show that this
exact answer, when evaluated, gives the same
answer as obtained numerically.

36.  Cardioid Area Problem: Figure 9-5f shows the
general cardioid

r = a(1 + cos )

Figure 9-5f
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31.  Area Problem I: Figure 9-5c shows the region
bounded by the graph of

 y = cos 5x sin 3x

from x = 0 to x = 2 .



•  The one most important thing you’ve
learned since your last journal entry

•  The basis behind integration by parts, and
what kind of function you can integrate
that way

•  The reason you might want to go to the
trouble of using the fundamental theorem
to integrate, rather that simply using a
Riemann sum or the trapezoidal rule

•  Any techniques or ideas about derivatives
that are still unclear to you

9-6   Integration by Trigonometric Substitution

Recall from geometry that the area of a circle is A = r2, where r is the radius.
You can derive this formula by calculus if you know how to integrate certain
square root functions.

Figure 9-6a

The circle in Figure 9-6a has equation

x2 + y2 = 25

Draw a vertical strip. Pick a sample point in the strip on the upper half of the
circle. The area of any one strip is 2y dx. The upper half of the circle has
equation

 y = 

So the area of the entire circle is

A = 2 

You cannot integrate the indefinite integral   dx as a power because dx
is not the differential of the inside function 25 – x2. But there is an algebraic
way to evaluate the integral.

Figure 9-6b

Your thought process might go something like this:

•  Hmm . . . This looks Pythagorean—like somebody was trying to find the
third side of a right triangle.

•  Draw a right triangle as in Figure 9-6b, placing the angle  in standard
position in a uv-coordinate system.

•  The radicand is 25 – x2. So the hypotenuse must be 5 and one leg must be x.

•  Label the vertical leg x (to avoid a minus sign in dx later) and the other
leg .
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where a is a constant. A circle of radius a is
inscribed in the cardioid. By the fundamental
theorem, find the exact area inside the cardioid
in terms of a. Explain how this area
corresponds to the area of the circle.

37.  Journal Problem: Update your journal with
what you’ve learned. You should include such
things as



Multiplying by 2 from the original integral and evaluating from x = –5 to
x = 5 gives

which agrees with the answer from the area formula, A =  · 52.

The substitution rationalizes the integrand by taking advantage of the
Pythagorean properties of trigonometric functions. The technique works for
square roots of quadratics. Your success in using this trigonometric
substitution depends on drawing the triangle, then deciding what to call the
legs and hypotenuse. After the substitution has been made, you must also be
able to integrate the trigonometric functions that appear.

In the preceding work, the radical contained (constant)2 – x2. The situation is
different if the radical contains x2 – (constant)2. Example 1 shows you what
happens.
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Use trigonometric ratios.

Use trigonometric ratios.

Use trigonometric
substitution.

Double-argument properties.

Use reverse substitution. See
triangle in Figure 9-6b.

Answer.

Evaluate the integral.

Double-argument properties.

OBJECTIVE Rationalize an integrand containing the square root of a quadratic binomial by
using trigonometric substitution, then perform the integration.

= = =

= =

=

=

=

=

=

=

=

= =

=

= =



Figure 9-6c
Substitute.

Use reverse substitution.

Log of a quotient.

ln 3 is constant.

Example 2 shows what to do if the sign in the quadratic is a plus instead of a
minus. It also shows that you can use trigonometric substitution even if there is
no radical and if the constant is not a square.

Evaluate the integral: 

Draw a triangle (Figure 9-6d). The sign between terms is a plus sign, so both x
and  are legs. By putting x on the vertical leg, you can use tan  instead of
cot . The hypotenuse is .

Figure 9-6d
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Evaluate the integral:  EXAMPLE 1

Solution Draw the triangle. This time x is the hypotenuse and 3 is a leg. Putting 3 on the
horizontal leg allows you to use secant instead of cosecant (Figure 9-6c), thus
avoiding a minus sign when you find dx.

  EXAMPLE 2

Solution

                     

= = =

= =

=

=

=

=

=

=

= = =

= =

=

= =

= = , =



Definite Integrals by Trigonometric Substitution

Figure 9-6e

Find the area of the zone of the circle

x2 + y2 = 25

between x = –2 and x = 3 (Figure 9-6e).

This problem is similar to the problem at the
beginning of this section except that the limits
of integration are different. The area is

A = 2 

Let x = 5 sin . Then dx = 5 cos  d ,

 = 5 cos  , and  = sin–1  .

If x = 3, then 

Substitute  limits.

See the problem at the beginning
of this section.

= 47.5406002...

By numerical integration, A  47.5406... , which is close to 47.5406002... .

In Problem 35 of Problem Set 9-6, you will see what happens in trigonometric
substitution if x is negative, and thus  is not in Quadrant I.

Q1.  Integrate: cos 3x dx

Q2.  Integrate: sin 4x dx

Q3.  Integrate: tan 5x dx

Q4.  Integrate: cot 6x dx

Q5.  Integrate: sec 7x dx

Q6.  Find: (d/dx)(tan 5x)

Q7.  Find  : y = sin 4x
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The reverse substitution in Examples 1 and 2 is done to revert to x, as in the
original integral. For a definite integral, you can avoid the reverse substitution
if you change the limits of integration to  instead of x. Example 3 shows you
this can be done with the integral for the area of the circle at the beginning of
this section.

  EXAMPLE 3

Solution

Problem Set 9-6

Quick Review



   

Q8.  For Figure 9-6f, the maximum acceleration on

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Some integrals that you can do by trigonometric
substitution you can also do other ways. For
problems 17 and 18,

a.  Evaluate the integral by trigonometric
substitution.

b.  Evaluate the integral again as a power. Show
that the two answers are equivalent.

17.
 

18.

You can evaluate integrals such as in Problems 19
and 20 by trigonometric substitution. For instance,
in Problem 19, the hypotenuse would be 3 and one
leg would be (x – 5). Evaluate the integral.

19.

20.

You can transform integrals such as in Problems 21
and 22 into ones like Problems 19 and 20 by first
completing the square. In Problem 21,
x2 + 8x – 20 = (x2 + 8x + 16) – 36, which equals
(x + 4)2 – 36. Evaluate the integral.

21.

22.

For Problems 23 and 24, evaluate the integral
exactly using the fundamental theorem. Compare
the answer with the one you get by numerical
integration.

23.

24.

25.  Arc Length of a Parabola Problem: Use the
fundamental theorem to find the exact length
of the parabola y = 3x2 from x = 0 to x = 5.
Find a decimal approximation for the answer.
Compare the decimal approximation with the
answer by numerical integration.

26.  Area of an Ellipse Problem:
a.  Use the fundamental theorem to find the

exact area of the region bounded by the
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Q9.  State the fundamental theorem of calculus.

Q10.  Write the definition of indefinite integral.

For Problems 1–16, evaluate the integral.

1.

Figure 9-6f

interval [a, b] is at time t = —?—.



Figure 9-6g

b. Find the exact area of the entire ellipse. How
is this area related to the 5 and 3, which are
the x- and y-radii of the ellipse?

27.  Circle Area Formula Problem: Derive by
calculus the area formula, A = r2, for
the circle

x2 + y2 = r2

28.  Ellipse Area Formula Problem: Derive by
calculus the area formula for an ellipse. You
may start with the general equation for an
ellipse with x- and y-radii a and b,

(Figure 9-6h). Show that the formula reduces to
the area of a circle if a = b.

29.  Ellipsoid Problem: The ellipse in Problem 28 is
rotated about the y-axis to form an ellipsoid.
Find the volume inside the ellipsoid in terms of
the constants a and b. What difference would
there be in the answer if the ellipse had been
rotated about the x-axis?

30.  Hyperbola Area Problem: Use the fundamental
theorem to find the exact area of the region

bounded above and below by the hyperbola

x2 – y2 = 9

from x = 3 to x = 5 (Figure 9-6i). Find an
approximation for this answer, and compare it
with the answer obtained by integrating
numerically.

Figure 9-6i

31.  Hyperboloid Problem: The region in Problem 30
is rotated about the y-axis to form a hollow
solid. (The inside surface of the solid is a
hyperboloid of one sheet.) Find the volume of
the solid.

32.  Average Radius Problem: You may define the
average radius of a solid of rotation to be the
distance  for which

Volume = 2  · A

where a is the area of the region being rotated.
Find the average radius of the hyperboloidal
solid in Problem 31. Is the average radius more
than, less than, or exactly halfway through the
region in the x direction as you progress
outward from the y-axis?

33.  Area of an Ellipse, Parametrically: The ellipse in
Figure 9-6h has parametric equations

x = a cos t
 y = b sin t

Find the area of the ellipse directly from the
parametric equations. Show that the answer is
the same as in Problem 28. How does the
integration technique used in this case
compare with the trigonometric substitution
method used in Problem 28?
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ellipse 9x2 + 25y2 = 225 between x = –3
and x = 4 (Figure 9-6g). Compare a decimal
approximation of this answer with the
answer by numerical integration.

Figure 9-6h



Figure 9-6j

The spiral is shown in Figure 9-6j. Now that
you know how to integrate by trigonometric

substitution, you can find the exact length. Use
the fundamental theorem to find the length of
the part of the spiral shown. Compare this
answer with the value you get by numerical
integration.

35.  Trigonometric Substitution for Negative Values
of x: In trigonometric substitutions you let x/a
equal sin , tan , or sec . Thus,

 = sin–1  ,        = tan–1  , or  = sec–1 

If x is negative, then  is not in Quadrant I.
If you restrict  to the other quadrant in the
range of the inverse trigonometric function,
you find the same indefinite integral as if you
naively assumed that  is always in Quadrant I.
Show that this is the case for each of these
three trigonometric substitutions.

9-7   Integration of Rational Functions
by Partial Fractions

In unrestrained population growth, the rate of change of a population is
proportional to the number of people in that population. This happens because
the more people there are, the more babies are born each year. In restrained
population growth, there is a maximum population a region can sustain. So, the
rate of population growth is also proportional to how close the number of
people is to that maximum. For instance, if a region can sustain 10.5 million
people, then a differential equation for population growth could be

where P is population in millions and 0.038 is the proportionality constant.
You may already have seen this differential equation in connection with the
logistic equation in Problem 11 of Section 7-4. Separating the variables and
integrating gives

The integral on the left side contains a rational algebraic function of P. That is,
the integrand can be written as (polynomial)/(polynomial). In this section you
will learn an algebraic method to find the antiderivative on the left side of the
equation. The method involves breaking the rational expression into a sum of
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34.  Length of a Spiral in Polar Coordinates: In
Problem 15 of Problem Set 8-7, you found the
length of the spiral with polar equation

r = 0.5 



(Heaviside method) Evaluate the indefinite integral:  dx

The first step is factoring the denominator. The rational expression thus
becomes

Your thought process might go something like this: “Hmmm . . . It looks like
someone has been adding fractions, where (x + 5)(x – 2) is the common
denominator!” So you write

A clever way to isolate the constant A is to multiply both sides of the equation
by (x + 5).

Substituting –5 for x in the transformed equation gives

Similarly, multiplying both sides by (x – 2) isolates the constant B.

Substituting 2 for x eliminates the A term and gives
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relatively simple partial fractions, each of which is easy to integrate. In theory,
at least, you can write many ratios of polynomials that have a numerator of
degree lower than the denominator degree as

OBJECTIVE Find the integral of a rational algebraic function by first resolving the
integrand into partial fractions.

  EXAMPLE 1

Solution



(Heaviside shortcut) Integrate by resolving into partial

fractions: 

Thought process:
Write the integral and the denominators of the partial fractions.

Tell yourself, “If x is 5, then (x – 5) equals zero.” Cover up the (x – 5) with your
finger, and substitute 5 into what is left.

Simplify: 

The answer, 3/4, is the numerator for (x – 5). To find the numerator for (x – 1),
repeat the process, but cover up the (x – 1) and substitute 1, the number that
makes (x – 1) zero.

Simplify: 

Fill in 3/4 and 1/4 where they belong. The entire process is just one step,
like this:

In Problem Set 9-7, you will practice integrating by partial fractions. You will also
find out what to do if the denominator has

•  Unfactorable quadratic factors

•  Repeated linear factors
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Substituting –3 for A and 7 for B and putting the integral back together gives

  EXAMPLE 2

Solution

The act of resolving into partial fractions, as shown in Example 1, is called the
Heaviside method after Oliver Heaviside (1850–1925). You can shorten the
method enough to do it in one step in your head! Here’s how.



   

Q10.  For the data in the table, using Simpson’s
rule, g(x) dx = —?—.

x      g(x)

1 10
3 15
5 16
7 14
9 13

A. 136 B. 114 C. 113
D. 110 E. 134

For Problems 1–10, integrate by first resolving the
integrand into partial fractions.

1.
 

2.

3.

4.

5.

6.

7.
 

8.

9.

10.

Improper Algebraic Fractions:

If the numerator is of higher degree than the
denominator, long division will reduce the integrand
to a polynomial plus a fraction. For instance,

For Problems 11 and 12, evaluate the integral by
first dividing.

11.

12.

Unfactorable Quadratics:

Heaviside’s method does not work for integrals
such as

that have an unfactorable quadratic in the
denominator (unless you are willing to use
imaginary numbers!). However, the quadratic term
can have a linear numerator. In this case you
can write
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Problem Set 9-7

Quick Review

Q1.  Factor: x2 – 25

Q2.  Multiply: (x – 3)(x + 5)

Q3.  Factor: x2 – 4x – 12

Q4.  Multiply: (x + 7)2

Q5.  Factor: x2 + 8x + 16

Q6.  Multiply: (x – 8)(x + 8)

Q7.  If f(x) = ln x, then f –1(x) = —?—.

Q8.  Show that you cannot factor x2 + 50x + 1000
using real numbers only.

Q9.  Show that you cannot factor x2 + 36 using real
numbers only.

 dx

 dx

 dx

 dx

 dx

 dx

 dx

 dx

 dx

=

=

=

=



   

For Problems 13 and 14, integrate by first resolving
into partial fractions.

13
. 

14.

Repeated Linear Factors:

If a power of a linear factor appears in the
denominator, the fraction could have come from
adding partial fractions with that power or any
lower power. For instance, the integral

can be written

However, the numerator of the original fraction has
only three coefficients, and the right side of the
equation has four unknown constants. So one of the
constants is arbitrary and can take on any value you
decide. The smart move is to let D = 0 so that there
will be three partial fractions that are as easy to
integrate as possible.

For Problems 15 and 16, integrate by resolving the
integrand into partial fractions.

15.

16.

“Old Problem” New Problems: Sometimes a problem
that seems to fit the pattern of a new problem

actually reduces to an old problem. For Problems 17
and 18, evaluate the integral with this idea in mind.

17.
 

18.

19.  Rumor Problem: There are 1000 students
attending Lowe High. One day 10 students
arrive at school bearing the rumor that final
exams will be canceled! On average, each
student talks to other students at a rate of two
students per hour, passing on the rumor to
students, some of whom have already heard it
and some of whom have not. Thus, the rate at
which students hear the rumor for the first
time is 2 times the number who have already
heard it times the fraction of the students who
have not yet heard it. If y is the number of
students who have heard the rumor at time t,
in hours since school started, then

a.  Solve this differential equation algebraically,
subject to the initial condition that y = 10
when school started at t = 0.

b.  How many students had heard the rumor
after the first hour? At lunchtime (t = 4)? At
the end of the school day (t = 8)?

c.  How many students had heard the rumor at
the time it was spreading the fastest? At
what time was this?

d.  Figure 9-7a shows the slope field for the
differential equation. Plot the solution in
part a on a copy of the figure. How does the
curve relate to the slope field?

Figure 9-7a
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So Ax2 + Cx2 = 7x2,  –2Ax + Bx =
–4x,
and –2B + C = 0. Solving the system

A + C =   7
–2A + B = –4
–2B + C =   0

gives A = 3, B = 2, and C = 4. Therefore,

 dx

 dx

 dx

 dx

 dx

 dx

 dx

=



a.  Suppose that each person contacts an
average of three people per day. In terms of
P and N, how many contacts will there be
between infected and uninfected people
per day?

b.  Suppose that the probability of passing on
the disease to an uninfected person is only
10% at each contact. Explain why

c.  Solve the differential equation in part b for
P in terms of t. Use the initial condition that
P = P0 at time t = 0.

d.  If 1000 people live in Scorpion Gulch and
10 people are infected at time t = 0, how
many will be infected after 1 week?

e.  For the conditions in part d, how long will it
be until 99% of the population is infected?

21.  Area Problem: Find an equation for the area of
the region under the graph of

from x = 2 to x = b, where b is a constant
greater than 2 (Figure 9-7b). Let b = 7 and

Figure 9-7b

check your answer by numerical integration.
Does the area approach a finite limit as b
approaches infinity? Justify your answer.

22.  Volume Problem: The region in Problem 21 is
rotated about the y-axis to form a solid. Find
an equation in terms of the constant b for the
volume of the solid. Check your answer by
numerical integration using b = 7. Does the
volume approach a finite limit as b approaches
infinity? Justify your answer.

23.  Equivalent Answers Problem: Evaluate this
integral three ways.

a.  First resolve into partial fractions.
b.  Complete the square, then follow with

trigonometric substitution.

c.  Evaluate directly, as the integral of the
reciprocal function.

d.  Show that the three answers are equivalent.

24.  Logistic Curve Problem, Algebraically: For
unrestrained population growth, the rate of
change of population is directly proportional
to the population. That is, dp/dt = kp, where
 p is population, t is time, and k is a constant.
One assumption for restrained growth is that
there is a certain maximum size, m, for the
population, and the rate goes to zero as the
population approaches that size. Use this
information to answer these questions.

a.  Show that the differential equation
dp/dt = kp(m – p) has the properties
mentioned.

b.  At what value of p is the growth rate the
greatest?

c.  Separate the variables, then solve the
equation by integrating. If you have worked
correctly, you can evaluate the integral on
one side of the equation by partial fractions.

d.  Transform your answer so that p is explicitly
in terms of t. Show that you can express it in
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20.  Epidemic Problem: A new disease arrives at the
town of Scorpion Gulch. When a person with
the disease comes into contact with a person
who has not yet had the disease, the uninfected
person may or may not catch the disease. The
disease is not fatal, but it persists with the
infected person forever after. Of the N people
who live there, let P be the number of them
who have the disease after time t, in days.

 dx



e.  Census figures for the United States are

1960: 179.3 million
1970: 203.2 million
1980: 226.5 million
1990: 248.7 million

Let t be time, in years, that has elapsed since
1960. Use these data as initial conditions to
evaluate p0, b, and k. Write the particular
solution.

f.  Predict the outcome of the 2000 census.
How close does your answer come to the
actual 2000 population, 281.4 million?

g.  Based on the logistic model, what will be the
ultimate U.S. population?

h.  Is this mathematical model very sensitive to
the initial conditions? For instance, suppose
that the 1970 population had really been
204.2 million instead of 203.2 million. How
much would this affect the predicted
ultimate population?

Stanton and Irene Katchatag of Unalakeet,
Alaska, were the first two people counted for the
2000 U.S. census.

9-8    Integrals of the Inverse
Trigonometric Functions

The beginning of this chapter mentioned that there are three types of functions
that, along with their inverses, come under the category elementary
transcendental functions. They are

Trigonometric Inverse trigonometric

Logarithmic Inverse logarithmic (exponential)

Hyperbolic Inverse hyperbolic

The name transcendental implies that the operations needed to calculate values
of the functions “transcend,” or go beyond, the operations of algebra (addition,
subtraction, multiplication, division, and root extraction). You have already
learned algebraic calculus techniques for the first four types of functions, except
for integrating the inverse trigonometric functions. In this section you will learn
to integrate the inverse trigonometric functions algebraically. In Section 9-9, you
will explore the hyperbolic functions, which are related to both exponential and
trigonometric functions.

466 © 2005 Key Curriculum Press Chapter 9:   Algebraic Calculus Techniques for the Elementary Functions

the form of the logistic equation,

 

OBJECTIVE Integrate (antidifferentiate) each of the six inverse trigonometric functions.

where p0 is the population at time t = 0 and
b is a constant.



   

Background: Definition and Derivatives

Integrals
The technique for integrating inverse trigonometric functions is (surprisingly!)
integration by parts. Example 1 shows you how this is done.

Integrate:   tan–1 x dx

 tan–1 x dx
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of the Inverse Trigonometric Functions

In Section 4-5, you learned definitions of the inverse trigonometric functions
and how to find algebraic formulas for their derivatives. These definitions and
derivative formulas are repeated here for easy reference.

DEFINITIONS:  Inverse Trigonometric Functions (Principal Branches)

 y = cos–1 x  if and only if cos y = x  and   y   

 y = tan–1 x  if and only if tan y = x   and    

 y = cot–1 x  if and only if cot y = x   and  y   
 y = sec–1 x  if and only if sec y = x  and  y  ,    

 y = csc–1 x  if and only if csc y = x  and  y  , 

PROPERTIES:  Derivatives of the Six Inverse Trigonometric Functions

Note: Your grapher must be in the radian mode.

Memory Aid: The derivative of each co-inverse function is the opposite of the
derivative of the corresponding inverse function because each co-inverse
function is decreasing as x starts increasing from zero.

  EXAMPLE 1

Solution

 y = sin–1 x  if and only if sin y = x    and   y 



 

Q1.  To integrate a product, use —?—.

Q2.  To integrate a rational function, use —?—.

Q3.  To integrate   dx, use the —?—
trigonometric substitution.

Q4.  To integrate   dx, use the —?—
trigonometric substitution.

Q5.  To integrate   dx, use the —?—
trigonometric substitution.

Q6.  Integrate:  (x2 + 1)7(x dx)

Q7.  If f(x) = 3 + |x – 5|, then the maximum of f(x)
on [1, 6] is —?—.

Q8.  If f(x) = 3 + |x – 5|, then the minimum of f(x)
on [1, 6] is —?—.

Q9.  If f(x) = 3 + |x – 5|, then (5) is —?—.

Q10.  If h(x) = x3  + x, then the graph of h has a point
of inflection at x = —?—.

A.  B. 0 C.  1 + 

D.  E.  – 

For Problems 1–6, find the indefinite integral. Check
your answer against those in the preceding box.

1.
 

tan–1 x dx

2. cot–1 x dx

3. cos–1 x dx
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You can transform the last integral to the integral of the reciprocal function.
The absolute value in the argument of ln is optional because x2 + 1 is always
positive.

In Problem Set 9-8, you will derive algebraic formulas for the integrals of the
other five inverse trigonometric functions. These formulas are listed in the box.
They were more important in the first 300 years of calculus, before such
technology as your grapher made numerical integration quick and easily
accessible. Like climbing Mount Everest, these formulas are interesting more
from the standpoint that they can be done rather than because they are of great
practical use.

PROPERTIES:  Algebraic Integrals of the Inverse Trigonometric Functions

sin–1 x dx = x sin–1 x + + C

cos–1 x dx = x cos–1 x – + C

tan–1 x dx = x tan–1 x –  ln |x2 + 1| + C = x tan–1 x – ln  + C

cot–1 x dx = x cot–1 x +  ln |x2 + 1| + C = x cot–1 x + ln  + C

sec–1 x dx = x sec–1 x – sgn x ln |x + | + C

csc–1 x dx = x csc–1 x + sgn x ln |x + | + C

Problem Set 9-8

Quick Review



7.  Answer Verification Problem: Evaluate the
integral  tan–1 x dx algebraically. Find a
decimal approximation for the answer. Then
evaluate the integral numerically. How close
does the numerical answer come to the exact
algebraic answer?

8.  Simpson’s Rule Review Problem: Plot the graph
of y = sec–1 x from x = 1 to x = 3. You may do
this in parametric mode, with x = 1/cos t and
 y = t. Sketch the graph. Use Simpson’s rule
with n = 10 increments to find a numerical
approximation for the area of the region under
this graph from x = 1 to x = 3. Then find the
exact area by integrating algebraically. How
close does the answer using Simpson’s rule
come to the exact answer?

9.  Area Problem: Figure 9-8a shows the region
above the graph of y = sin–1 x, below y = /2,
and to the right of the y-axis. Find the area of
this region by using vertical slices. Find the
area again, this time by using horizontal slices.
Show that the two answers are equivalent.

Figure 9-8a

10.  Volume Problem: Figure 9-8b shows the region
under the graph of y = tan–1 x from x = 0 to
x = 1, rotated about the y-axis to form a solid.
Use the fundamental theorem to find the exact
volume of the solid. Show that your answer is
reasonable by numerical integration and by
comparing it with a suitable geometric figure.

Figure 9-8b

9-9   Calculus of the Hyperbolic and Inverse
Hyperbolic Functions

Figure 9-9a

Figure 9-9a shows what a chain might look like
suspended between two nails driven into the
frame of a chalkboard. Although the shape
resembles a parabola, it is actually a catenary
from the Latin catena, meaning “chain.” Its
graph is the hyperbolic cosine function,

 y = a + b cosh cx

(pronounced “kosh,” with a short “o”). As
shown in Figure 9-9b, a parabola is more
sharply curved at the vertex than a catenary is.

Figure 9-9b Cosh and the related hyperbolic sine and tangent are important enough to be on
most graphers. In this section you will see that the hyperbolic functions are
related both to the natural exponential function and to the circular sine and
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4.  sin–1 x dx

5.  sec–1 x dx

6.  csc–1 x dx



The u-graph is identical to y = cosh x, as you could see by plotting y = u and
 y = cosh x on the same screen (Figure 9-9c, left). The v-graph is identical to
 y = sinh x (pronounced “sinch of x,” although the letter “c” does not appear in
writing). The right diagram in Figure 9-9c shows y = sinh x and y = v. The
dashed graphs are y = 0.5ex and y =  0.5e–x.

Figure 9-9c

The reason these functions are called “hyperbolic” becomes apparent if you
eliminate x and get an equation with u and v alone. Squaring u and v, then
subtracting, gives

u2 = (e2x + 2 + e–2x) Think about why 2 is the middle term.

v2 = (e2x – 2 + e–2x)

u2 – v2 = 1 A unit equilateral hyperbola in the

uv-coordinate system.

This is the equation of a hyperbola in a uv-coordinate system. Function u is the
horizontal coordinate of a point on the hyperbola, and function v is the vertical
coordinate. These coordinates have the same relationship to the unit equilateral
hyperbola u2 – v2 = 1 as the “circular” functions cosine and sine have to the
unit circle, u2 + v2 = 1 (Figure 9-9d).

Figure 9-9d
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cosine functions. You will see why a chain hangs in the shape of a hyperbolic
cosine and why the functions are called hyperbolic.

Definitions of the Six Hyperbolic Functions

Let two functions, u and v, be defined as

u =  (ex + e–x) and v =  (ex – e–x)



From the fact that u2 – v2 = 1 and the previous definitions, the Pythagorean
properties follow.

Derivatives of the Hyperbolic Functions

The derivatives of cosh and sinh have an interesting relationship.

and

This “cyclical” property of the derivatives is similar to that of the circular sine
and cosine.

 x = cos x and  x = –sin x

You can find the derivatives of the other four hyperbolic functions by first
transforming to sinh x and cosh x. Example 1 shows you how.

Find the derivative: y = coth x
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The other four hyperbolic functions are defined in the same way as the other
four circular (trigonometric) functions, namely, as reciprocals and quotients
of the first two. The symbols come from adding an “h” to the corresponding
circular function symbol. There are no widely accepted pronunciations for
symbols such as tanh x and csch x other than “hyperbolic tangent of x,”
and so on.

DEFINITIONS:  The Hyperbolic Functions

Pythagorean Properties of the Hyperbolic
Functions

cosh2 x – sinh2 x = 1

1 – tanh2 x = sech2 x

coth2 x – 1 = csch2 x

OBJECTIVE Differentiate and integrate any of the six hyperbolic functions and their
inverses, and use the hyperbolic cosine function as a mathematical model.

 cosh x = (ex – e–x) = sinh x  sinh x =  (ex + e–x) = cosh x

  EXAMPLE 1

sinh x =  (ex – e–x) cosh x =  (ex + e–x)

cosh x =

sech x =

coth x =

csch x =



By the Pythagorean properties.

The derivatives of the hyperbolic functions are summarized in this box. In
Problems 37 and 38 of Problem Set 9-9, you will be asked to derive some of
these derivatives.

Integrals of Hyperbolic Functions

The integrals of cosh and sinh come directly from the derivative formulas. You
find the integrals of tanh and coth in much the same way you integrate tan and
cot. Example 2 shows how to integrate coth. The integrals of sech and csch
require clever substitutions you have not yet learned. In Problems C1 and C2 of
Problem Set 9–13, you will see how to do this.

Integrate: coth x dx

The technique is to use the definition of coth. The resulting quotient has a
numerator that is the derivative of the denominator. You wind up integrating the
reciprocal function.

coth x dx
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Solution By definition of coth,

PROPERTIES:  Derivatives of Hyperbolic Functions

 x = cosh x

 x = sech2 x

 x = –sech x tanh x

 x = sinh x

 x = –csch2 x

 x = –csch x coth x

  EXAMPLE 2

Solution

 y =

 =

=

=

 = –csch2x

dx

cosh x dx

= 1n | sinh x | + C

=

=

Applying the derivative of a quotient property gives



Inverse Hyperbolic Functions

Recall that the inverse of a function is the relation you obtain by interchanging
the two variables. For instance, if y = sinh x, then the inverse relation has the
equation

x = sinh y

Figure 9-9e

The dependent variable y is called the inverse
hyperbolic sine of x. The symbol often used is
similar to that for inverse circular functions,

 y = sinh–1 x

This is read, “inverse hyperbolic sine of x,” or
simply “sinch inverse of x.” The term
 y = argsinh x is also used, because y is the
“argument whose sinh is x.”

Figure 9-9e shows the graphs of y = sinh x and
 y = sinh–1 x. As is true with any function and
its inverse, the two graphs are reflections of
each other in the line y = x.

Derivatives of the Inverse Hyperbolic Functions

To differentiate an inverse hyperbolic function, simply use the definition to
transform back to the natural function. Then differentiate implicitly.

Find the derivative: y = cosh–1 x, for x  1

 y = cosh–1 x
cosh y = x

dy/dx comes from the chain rule.

Divide each member by sinh y.
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The integrals of the six hyperbolic functions are listed in this box. In Problem
Set 9-9, you will be asked to derive some of these integrals.

PROPERTIES:  Integrals of the Hyperbolic Functions

sinh x dx = cosh x + C

tanh x dx = ln (cosh x) + C

  EXAMPLE 3

Solution

sech x dx = sin–1 (tanh x) + C

cosh x dx = sinh x + C

coth x dx = ln | sinh x| + C

csch x dx = ln | tanh (x/2)| + C

sinh y =

=



You can derive differentiation formulas for the other five inverse hyperbolic
functions in a similar way, as you will do in Problem 38 of Problem Set 9-9. The
six derivatives are summarized in this box.

Integrals of Inverse Hyperbolic Functions

You can find the integrals of the inverse hyperbolic functions by straightforward
integration by parts. Example 4 shows you how.

Integrate: sinh–1 x dx

The indefinite integrals of the inverse hyperbolic functions are listed in the box
on page 475. You should understand that these properties exist, and you should
know how to derive them if you are called upon to do so. However, unless you
plan to make a career out of integrating inverse hyperbolic functions, there is no
need to memorize them!
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PROPERTIES:  Inverse Hyperbolic Function Derivatives

cosh2 y – sinh2 y = 1, so sinh2 y = cosh2 y – 1.

cosh y = x.

  EXAMPLE 4

Solution

Give a reason.

=

=

(sinh–1 x ) =

(tanh–1 x) =

(sech–1 x) = x in (0,
1)

(cosh–1 x) =

(coth–1 x) =

(csch–1 x) =

sinh–1 x dx

= x sinh–1 x – x dx

(2x dx)= x sinh –1 x –

= x sinh–1 x –

= x sinh–1 x –

+ C

+ C



Hyperbolic Cosine as a Mathematical Model

A chain hangs in the shape of the catenary

 y = k cosh x + C

where k and C stand for constants. In Problem 25 of Problem Set 9-9, you will
learn why this is true. Example 5 shows you how to derive the particular
equation.

A chain hangs from above a chalkboard (Figure 9-9f). Its ends are at
point ( 90, 120), and its vertex is at point (0, 20), where x and y  are in
centimeters along and above the chalk tray, respectively.

a.  Find the particular equation of the catenary.

b.  How high is the chain above the chalk tray when x = 50?

c.  At what values of x is the chain 110 cm above the chalk tray?

Figure 9-9f
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PROPERTIES:  Inverse Hyperbolic Function Integrals

sinh–1 x dx = x sinh–1 x – (x2 + 1)1/2 + C

cosh–1 x dx = x cosh–1 x – (x2 – 1)1/2 + C,   x  1

tanh–1 x dx = x tanh–1 x +  ln |1 – x2| + C,   |x|  1

coth–1 x dx = x coth–1 x +  ln |1 – x2| + C,   |x|  1

sech–1 x dx = x sech–1 x + sin–1 x + C,   x in (0, 1)

csch–1 x dx = x csch–1 x + sgn x sinh–1 x + C,   x  0

  EXAMPLE 5



0 = k cosh  – k – 100  k = 51.780122...    Use your grapher’s solver

20 = 51.78... + C  C = –31.78...
 y = 51.78...cosh  x – 31.78...

b.  Using the equation found in part a,

 y = 51.78... cosh  – 31.78... = 46.0755...

The chain is about 46.1 cm above the chalk tray when x = 50.

c. 110 = 51.78... cosh  x – 31.78

cosh  x = 2.7381...

 x =  cosh–1 2.7381... = 1.66526...
x = 86.2278...

The chain is about 110 cm above the chalk tray when x  86.2 cm.

Q1.  What trigonometric substitution should be
used for  (x2 + 5)3/2 dx?

Q2.  Integrate:  xex dx

Q3.  Integrate:  sec2 3x dx

Q4.  Integrate:  x–1/2 dx

Q5.  Integrate:  x–1 dx

 sinn–2 x dx is called a(n) —?—.

Q7.  True or false: sec′x = ln | sec x + tan x | + C

Q8.  Write the formula for  dL, the differential of
arc length.

Q9.  If  f(x) = sin–1 x, then (x) = —?—.

Q10.  The appropriate integration method for
 (x + 5)/[(x – 3)(x + 2)] dx is —?—.

A.  Integration by parts
B.  Trigonometric substitution
C.  Partial fractions
D.  Reduction
E.  Rational integration

1.  Hyperbolic Function Graphing Problem: Sketch
the graphs of each of the six hyperbolic
functions. Plot these on your grapher first to
see what they look like. You may plot the
graphs of coth, sech, and csch by taking
advantage of their definitions to write their
equations in terms of functions that appear on
your grapher.
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a.  First write the general equation of the catenary.Solution

 y = k cosh x + C

20 = k cosh  (0) + C = k + C

120 = k cosh  (90) + C

100 = k cosh  – k

Substitute (0, 20); cosh 0 = 1.

Substitute (90, 120).

Eliminate C by subtracting
equations.

feature.

Problem Set 9-9

Quick Review

Q6.  



       

3.  f(x) = tanh3 x

4.  f(x) = 5 sech 3x

5.
 

cosh5 x sinh x dx

6. (sinh x)–3 cosh x dx

7.  g(x) = csch x sin x

8.  g(x) = tan x tanh x

9. sech2 4x dx

10. sech 7x tanh 7x dx

11.  h(x) = x3 coth x

12.  h(x) = x2.5 csch 4x

13. tanh x dx

14. sinh x dx

15.  q(x) = 

16.  r(x) = 

17. x sinh x dx

18. x2 cosh x dx

19.  y = 3 sinh–1 4x

20.  y = 5 tanh–1 (x3)

21. tanh–1 5x dx

22. 4 cosh–1 6x dx

Hyperbolic Substitution Problems: For Problems 23
and 24, integrate by hyperbolic substitution, using

the fact that cosh2 t = sinh2 t + 1 and
sinh2 t = cosh2 t – 1.

23.
 
24.

25.  Hanging Chain or Cable Problem: If a chain (or
a flexible cable that doesn’t stretch) is hung
between two supports, it takes the shape of a
hyperbolic cosine curve,

where x and y are horizontal and vertical
distances to a point on the chain, h is the
horizontal tensile force exerted on the chain,
and w  is the weight of the chain per unit
length. In this problem you will show why this
is true. Figure 9-9g shows the graph of the
chain in an xy-coordinate system. Any point on
the chain experiences horizontal and vertical
forces of h and v, respectively. Force h is
constant and depends on how tightly the chain
is pulled at its ends. Force v varies and equals
the weight of the part of the chain below
point (x, y). The resultant tension vector points
along the graph.

Figure 9-9g

a.  Explain why the slope,  = dy/dx, of the
graph at point (x, y) is equal to v/h.

b.  The weight of the chain from 0 to x equals
the length, s, times the weight per unit
length, w. Explain why this equation is true.
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Sketch the graphs of the inverses of the six
hyperbolic functions. You can do this most
easily in parametric mode on your grapher,
letting x = cosh t and y = t, for example. For
each inverse that is not a function, darken
what you think would be the principal branch
(just one value of y for each value of x), and
write an inequality that restricts the range to
specify this branch.

2.  Inverse Hyperbolic Function Graphing Problem:

For Problems 3–22, evaluate the integral or
differentiate.



d.  Separating the variables in the equation in
part c and integrating gives

Perform a hyperbolic substitution on the left
side, letting y′ = sinh t, and integrate to find

e.  Use the fact that y′ = 0 at the vertex, x = 0,
to evaluate the constant of integration, C.

f.  Based on the above work, show that

g.  From part f, show that the equation of the
hanging chain is as shown in this box.

26.  Can You Duplicate This Graph? Figure 9-9h
shows the graph of a hyperbolic cosine
function with general equation

a.  Find the particular equation. Check your
equation by showing that its graph agrees
with points in the figure.

b.  Calculate y if x is 20.
c.  Calculate x if y is 4. On a copy of

Figure 9-9h, show that your answer is
consistent with the graph.

Figure 9-9h

d.  Find the slope of the graph if x is 3. Show
that a line of this slope through the point on
the graph where x = 3 is tangent to the
graph.

e.  Find the area of the region under the graph
from x = –1 to x = 3.

f.  Find the length of the graph from x = – 1
to x = 3.

27.  Power Line Problem: An electrical power line is
to be suspended between pylons 300 ft apart
(Figure 9-9i). The cable weighs 0.8 lb/ft and
will be connected to the pylons 110 ft above
ground.

Figure 9-9i

a.  Contractors plan to use a horizontal tensile
force of h = 400 lb to hold the cable. Find
the particular equation of the resulting
catenary. Use the equation to calculate how
close to the ground the cable will come.

b. How long will the cable in part a be? How
much will it weigh?
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c.  If you differentiate both sides of the equation
in part b, you get the differential equation

Using what you know about arc length, show
that you can write this differential equation as

on chain (in units consistent
with w),

x  is the distance from the axis
of symmetry to point (x, y) on
the chain,

 y is the vertical distance from
the x-axis to point (x, y), and

C is a vertical distance determined
by the position of the chain.

where w is the weight of chain per unit
length,

or Cable
Property: Equation of Hanging Chain

h is the horizontal tensile force

d(  ) =

d(  ) =

sinh–1  =

 = sinh

 y =



28.  Hanging Chain Experiment: Suspend a chain,
about 6 to 10 feet in length between two
convenient suspension points, such as nails
driven into the upper frame of a chalkboard.
Let the chain hang down fairly far, as shown in
Figure 9-9f (page 475). Set up a coordinate
system with the y-axis halfway between the
two suspension points. The x-axis can be some
convenient horizontal line, such as a chalk tray.
In this experiment you are to derive an
equation for the vertical distance from the
x-axis to the chain and to check it by actual
measurement.
a.  Measure, in centimeters, the x- and

 y-coordinates of the two suspension points
and the vertex.

b.  Find the particular equation of the particular
catenary that fits the three data points.

c.  Make a table of values of y  versus x for each
10 cm, going both ways from x = 0 and
ending at the two suspension points.

d.  Mark the chain links at the suspension
points, then take down the chain. Plot the
points you calculated in part c on the
chalkboard. Find some way to make sure the
 y-distances are truly vertical. Then rehang
the chain to see how well it fits the catenary.

e.  Find the particular equation of the parabola
(quadratic function) that fits the three
measured data points. Plot this function and
the catenary from part b on the same screen.
Sketch the result, showing the difference
between a catenary and a parabola.

f.  Use your equation from part b to calculate
the length of the chain between the two
suspension points. Then stretch out the
chain on the floor and measure it. How close
does the calculated value come to the
measured value?

29.  Bowl Problem: The graph of y = sinh x from
x = 0 to x = 1 is rotated about the y-axis to
form a bowl (Figure 9-9j). Assume that x and
 y are in feet.

Figure 9-9j

a.  Find the surface area of the bowl.
b.  The bowl is to be silver-plated inside and

out. The cost of plating is $57 per square
foot. How much will plating cost?

c.  How much liquid could be held inside the
bowl if it were filled to within a half-inch of
the top?

30.  Gateway Arch Problem: The Gateway to the
West Arch in St. Louis, Missouri, is built in the
shape of an inverted catenary (Figure 9-9k, on
the next page). This shape was used because
compression forces act tangentially to the
structure, as do the tensile forces on a chain,
thus avoiding bending of the stainless steel
from which the arch is constructed. The
outside of the arch is 630 ft wide at the base
and 630 ft high. The inside of the arch is 520 ft
wide and 612 ft high.
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c.  For the cable in part a, where will the
maximum total tensile force be, at the
middle or at the ends? What will this
maximum tension be equal to?

d.  The power company decides that the cable
must come no closer to the ground than
100 ft. How strong a horizontal force would
be needed to achieve this clearance if the
cables are still connected on 110-ft pylons?



plotting them on your grapher.
c.  The stress created by wind blowing against

the arch depends on the area of the region
between the two graphs. Find this area.

d.  A spider starts at the point where the left
end of the outside of the arch meets the
ground. It crawls all the way up, then down
the other side to the ground. As it crawls, it
leaves one strand of web. How long is the
strand it leaves?

e.  How steeply must the spider climb when it
first begins?

f.  José Vasquez wants to fly a plane
underneath the arch. The plane has a (total)
wingspan of 120 ft. Below what altitude, y,
can José fly to ensure that each wing misses
the inside of the arch by at least 50 ft
horizontally?

31.  Derivative Verification Problem: For
H(x) = csch x,

a.  Find  (1) exactly, using the differentiation
formula.

b.  Find  (1) approximately, using the
symmetric difference quotient with

x = 0.01. By what percentage does the
approximate answer differ from the exact
answer?

32.  Integral Verification Problem: Evaluate
sech x dx by the fundamental theorem, using

the antiderivative formula for the hyperbolic

secant. Then evaluate the integral
approximately using numerical integration.
How does the numerical answer compare with
the exact answer?

33.  Integration by Parts Problem: Evaluate
 ex sinh 2x dx by parts. Then integrate again by
first using the definition of sinh to transform
to exponential form. Show that the two answers
are equivalent. Which technique is easier?

34.  Integration Surprise Problem: Try to integrate
by parts.

ex sinh x dx

What causes integration by parts to fail in this
case? Recalling the definition of sinh, find
another way to evaluate the integrals, and do it.

35.  Derivations of the Pythagorean Properties of
Hyperbolic Functions:
a.  Starting with the definition of cosh x and

sinh x, prove that cosh2 x – sinh2 x = 1.

b.  Divide both members of the equation in
part a by cosh2 x, and thus derive the
property 1 – tanh2 x = sech2 x.

c.  Derive the property coth2 x – 1 = csch2 x.

36.  Double-Argument Properties of Hyperbolic
Functions:

a.  Explain why sinh 2x =  (e2x – e–2x).
b.  Derive the double-argument property

sinh 2x = 2 sinh x cosh x.
c.  Derive the double-argument property

cosh 2x = cosh2 x + sinh2 x.
d.  Derive the other form of the double-

argument property, cosh 2x = 1 + 2 sinh2 x.

e.  Derive the property sinh2 x =  (cosh 2x – 1).

37.  Hyperbolic Radian Problem: In trigonometry
you learn that the argument x, in radians, for
the circular functions sin x or cos x equals an
arc length on the unit circle (Figure 9-9l, left).
In this problem you will show that the same is
not true for x, in hyperbolic radians, for sinh x
and cosh x. You will show that the arguments
in both circular and hyperbolic radians equal
the area of a sector of the circular or
hyperbolic region shown in Figure 9-9l.
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a.  Find particular equations of the inner and
outer catenaries.

b.  Verify that your equations are correct by

Figure 9-9k



 

Figure 9-9l

a.  Show that the unit circle, u2 + v2 = 1,
between u = cos 2 and u = 1 is 2 units long,
but the hyperbola, u2 – v2 = 1, between
u = 1 and u = cosh 2 is greater than 2 units
long.

b.  Show that 2 is the area of the hyperbolic
sector in Figure 9-9l with the point
(cosh 2, sinh 2) as its upper boundary and
(cosh 2, –sinh 2) as its lower boundary.

c.  Show that x is the area of the circular sector
with the point (cos x, sin x) as its upper
boundary and (cos x, –sin x) as its lower
boundary.

d.  Show in general that x is the area of the
hyperbolic sector with the point
(cosh x, sinh x) as its upper boundary and
(cosh x, –sinh x) as its lower boundary.

38.  Algebraic Derivatives of the Other Five Inverse
Hyperbolic Functions: Derive the differential
formulas given in this section for these
expressions.

a.  (sinh–1 x)

b.  (tanh–1 x)

c.  (coth–1 x)

d.  (sech–1 x)

e.  (csch–1 x)

9-10    Improper Integrals

Suppose you are driving along the highway at 80 ft/s (about 55 mi/h). At
time t = 0 s, you take your foot off the accelerator and let the car start slowing
down. Assume that your velocity is given by

v(t) = 80e–0.1t

where v(t) is in feet per second. According to this mathematical model, the
velocity approaches zero as time increases but is never equal to zero. So you are
never quite stopped. Would the distance you go approach a limiting value, or
would it increase without bound? In this section you will learn how to answer
such questions by evaluating improper integrals.
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OBJECTIVE Given an improper integral, determine whether it converges (that is,
approaches a finite number as a limit). If it does, find the number to which it
converges.



= –800e–0.1t  

= –800e–0.1b + 800

If b = 10 s, the distance is 505.6... ft. As b approaches infinity, the –800e–0.2b
term approaches zero. Thus, the distance approaches 800 ft. The mathematical
model shows you that the car never passes a point 800 ft from where you
started slowing. The integral

is called an improper integral because one of its limits of integration is not
finite. The integral converges to 800 because the integral from 0 to b approaches
800 as b approaches infinity. Suppose the velocity function had been
v(t) = 320(t + 4)–1. The graph (Figure 9-10b) looks almost the same. The
velocity still approaches zero as time increases. So,

Figure 9-10a Figure 9-10b

As b approaches infinity, so does ln |b + 4|. The integral diverges. Unlike the
first mathematical model, this one shows that the car would go arbitrarily far
from the starting point if you waited long enough!

A definite integral is improper if one of these holds true.

•  The upper or lower limit of integration is infinite.

•  The integrand is discontinuous for at least one value of x in the closed
interval determined by the limits of integration.
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Figure 9-10a shows the velocity function previously mentioned. The distance the
car goes between t = 0 and t = b is equal to the area of the region under the
graph. So,

Distance = 

Distance

80e–0.1t dt



Note: An improper integral with an infinite limit of integration always diverges if
the integrand has a limit other than zero as the variable of integration
approaches infinity.

For the improper integral  x2e–x dx
a.  Graph the integrand and explain whether the integral might converge.

b.  If the integral might converge, find out whether or not it does, and if so, to
what limit it converges.

a.  Figure 9-10c shows that the integral might converge because the integrand
seems to approach zero as x gets very large.

b.  Replace  with b and let b approach infinity.

Figure 9-10c

Integrating by parts twice gives

The limit of b2e–b can be found by two applications of l’Hospital’s rule.

Write the expression as a quotient.

Use l’Hospital’s rule. (Take the derivative of
numerator and denominator.)

Use l’Hospital’s rule again.

Limit of the form (finite/infinite) is zero.

Similarly, the second and third terms in the limit each go to zero.
Therefore,  (–b2e–b – 2be–b – 2e–b + 0 + 0 + 2) = 2.
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DEFINITION:  Improper Integrals

  EXAMPLE 1

Solution

An improper integral converges to a certain number if each applicable limit
shown is finite. Otherwise, the integral diverges.

 f is discontinuous



Figure 9-10d

a.  The graph in Figure 9-10d indicates that the
integral does not converge. The limit of the
integrand, x0.2, is not 0 as x approaches
infinity, so the integral diverges.

b.  Nothing remains to be done because the
integral diverges.

For the improper integral 

a.  Graph the integrand and explain whether the integral might converge.

b.  If the integral might converge, find out whether or not it does, and if so,
to what limit it converges.

a.  Figure 9-10e shows the graph of the function. There is a discontinuity
at x = 0, so you must evaluate two integrals, one from –2 to b and the
other from a to 2. You write

Figure 9-10e

At first glance, you might think that the integral converges to zero. If a and
b are the same distance from the origin, then there is as much “negative”
area below the x-axis as there is area above. For the integral to converge,
however, both of the integrals shown must converge. Checking the
first one,

Because ln 0 is infinite, this integral diverges. Thus, the original integral
also diverges.

b.  There is nothing to be done for part b because the integral diverges.

Q1.  Sketch:  y =  e–x

cosh x dx = —?—

Q3.  y = cosh x   = —?—

Q4.  y = cos x   = —?—

cos x dx = —?—
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  EXAMPLE 2 For the improper integral 

a.  Graph the integrand and explain whether the integral might converge.

b.  If the integral might converge, find out whether or not it does, and if so,
to what limit it converges.

Solution

  EXAMPLE 3

Solution

Problem Set 9-10

Quick Review

Q2. Q5. 



      

Q6.  What function has a graph like Figure 9-10f?

B.  5 C.  7
D.  0 E.  82

For Problems 1–20,

a.  Explain from the graph of the integrand
whether the integral might converge.

b.  If the integral might converge, find out
whether or not it does, and if so, the limit to
which it converges.

1.
 

2. 

3. 4.

5. 6.

7. 8.

9.
 

10. 

11.
 

12.

13. 14.

15. 16.

17. 18.

19. 20.

21.  Divergence by Oscillation Problem: The
improper integrals in Problems 19 and 20 are
said to diverge by oscillation. Explain why
these words make sense. A graph may help.

22.  p-Integral Problem: An integral of the form

where p stands for a constant, is called a
 p-integral. For some values of the exponent p,
the integral converges and for others it doesn’t.

Figure 9-10j shows an example for which the
two graphs look practically identical but only
one of the integrals converges. In this problem
your objective is to find the values of p for
which the p-integral converges and those for
which it diverges.

Figure 9-10j

a.  Show that Ip converges if p = 1.001 but not
if p = 0.999.

b.  Does Ip converge if p = 1? Justify your answer.
c.  Complete the statement “Ip converges

if p —?— and diverges if p —?—.”
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Q7.  What function has a graph like Figure 9-10g?

Q8.  What function has a graph like Figure 9-10h?

Q9.  What function has a graph like Figure 9-10i?

Q10.  The maximum value of y if y = –x2 + 10x + 7
is —?—.

A.  32

Figure 9-10f Figure 9-10g

Figure 9-10h Figure 9-10i



c.  The region is rotated about the y-axis to
form a different solid. Does this volume
approach a finite limit as b  ? If so, what
is the limit? If not, explain why.

d.  True or false: “If a region has infinite area,
then the solid formed by rotating that
region about an axis has infinite volume.”

24.  Infinite Paint Bucket Problem: The graph of
 y = –1/x from x = 0 to x = 1 is rotated about
the y-axis to form an infinitely deep paint
bucket (Figure 9-10l).

Figure 9-10l

Explain why a vertical cross section along the
 y-axis will have an infinite area and thus why
the surface area of the bucket itself is infinite.

Figure 9-10k

Then show that the bucket could be completely
filled with a finite volume of paint, thus
coating the infinite surface area. Surprising?

25.  The Gamma Function and Factorial Function: In
this problem you will explore

where x is a constant with respect to the
integration. Figure 9-10m shows the integrand
for x = 1, x = 2, and x = 3.

Figure 9-10m

a.  Find f(1), f(2), and f(3) by evaluating the
improper integral. Along the way you will
have to show, for instance, that

b.  From the pattern you see in the answers to
part a, make a conjecture about what f(4),
 f(5), and f(6) are equal to.

c.  Integrate by parts once and thus show that
 f(x) = x · f(x – 1)

Use the answer to confirm your conjecture
in part b.

d.  The result of the work in parts a-c forms a
basis for the definition of the factorial
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23.  Volume of an Unbounded Solid Problem: Figure
9-10k (bottom of the page) shows the region
under the graph of y = 1/x from x = 1 to x = b.

a.  Does the region’s area approach a finite
limit as b approaches infinity? Explain.

b.  The region is rotated about the x-axis to
form a solid. Does the volume of the solid
approach a finite limit as b  ? If so, what
is the limit? If not, explain why.



a.  Confirm that the integral for 3! approaches
6 by integrating numerically from t = 0
to t = b for some fairly large value of b. How
large a value of b makes the integral come
within 0.000001 of 6?

b.  You can use the improper integral to define
factorials for non-integer values of x. Write
an integral equal to 0.5!. Evaluate it
numerically, using the value of b from
part e. How can you tell from the graphs in
Figure 9-10m that your answer will be closer
than 0.000,001 to the correct answer? How
does your answer compare with the value in
the National Bureau of Standards Handbook
of Mathematical Functions, namely,
0.5! = 0.8862269255?

c.  Quick! Without further integration, calculate
1.5!, 2.5!, and 3.5!. (Remember part c.)

d.  Show that 0! = 1, as you probably learned in
algebra.

e.  Show that (–1)!, (–2)!, (–3)!, ... , are infinite
but (–0.5)!, (–1.5)!, and (–2.5)! are finite.

f.  Show that the value of 0.5! in part f can be
expressed, rather simply, in terms of .

26.  Spaceship Work Problem: A 1000-lb spaceship
is to be sent to a distant location. The work
required to get the spaceship away from Earth’s
gravity equals the force times the distance the
spaceship is moved. But the force, F, which is
1000 lb at Earth’s surface, decreases with the
square of the distance from Earth’s center,

where r is the number of earth-radii. There is
always some force no matter how far you travel
from Earth, so additional work is always being

done. Does the amount of work increase
without bound as r goes to infinity? Show how
you arrive at your answer.

The Space Shuttle Endeavor (STS-47) blasting off
on September 12, 1992

27.  Piecewise Continuity Problem: Figure 9-10n
shows the graph of

Figure 9-10n

Suppose that you are to evaluate

Although the integrand is discontinuous on the
closed interval [1, 3], there is only a step
discontinuity at x = 2. The integrand is
continuous everywhere else in [1, 3]. Such a
function is said to be piecewise-continuous on
the given interval. In this problem you will
show that a piecewise-continuous function is
integrable on the given interval.
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function. Explain why this definition is
consistent with the definition

x! = (x)(x – 1)(x – 2) ... (2)(1)

Definition: The Factorial Function (and
the Gamma Function)

The factorial function.
The gamma function.
(  is the uppercase
Greek letter gamma.)

 y = 2x – 

 dx



a.  Write the integral as the sum of two
integrals, one from x = 1 to x = 2 and the
other from x = 2 to x = 3.

b.  Both integrals in part a are improper. Write
each one using the correct limit terminology.

c.  Show that both integrals in part b converge.
Observe that the expression |x – 2|/(x – 2)
equals one constant to the left of x = 2 and a
different constant to the right. Find the value
to which the original integral converges.

d.  Explain why this property is true.

e.  True or false: “A function is integrable on
the interval [a, b] if and only if it is
continuous on [a, b].” Justify your answer.

28.  Journal Problem: Update your journal with
what you’ve learned. You should include such
things as

•  The one most important thing you’ve
learned since the last journal entry

•  The big integration technique that allows
you to integrate a product of two functions

•  Other integration techniques that involve
substitutions and algebraic transformations

•  Hyperbolic functions
•  Improper integrals
•  Why the fundamental theorem, not

numerical integration, is needed for
improper integrals

•  Any techniques or ideas about the calculus
of transcendental functions that are still
unclear to you

9-11   Miscellaneous Integrals and Derivatives

By the time you finish this section you will have seen all of the classical algebraic
techniques for performing calculus. These techniques were the only way you
could do calculus before the advent of the computer made numerical methods
easily implementable.
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Definition: Piecewise Continuity

Function f is piecewise-continuous on the
interval [a, b] if and only if there is a finite
number of values of x in [a, b] at which f(x)
is discontinuous, the discontinuities are
either removable or step discontinuities, and
 f is continuous elsewhere on [a, b].

Property: Integrability of
Piecewise-Continuous Functions

If function f is piecewise-continuous on
the interval [a, b], then f is integrable on
[a, b].

OBJECTIVE Algebraically integrate or differentiate expressions containing the elementary
functions.
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TECHNIQUES:    Differentiation

•  Sum: 

•  Product: 

•  Quotient: /v2

•  Composite: 

•  Implicit: f(y) = g(x) 

•  Power function: (xn  = nxn–1

•  Exponential function: (nx  = (nx) ln n

•  Logarithmic function: (logb x  = (1/x)(1/ln b)

•  Logarithmic differentiation technique:

 y = f(x)  ln y = ln f(x)  (1/y)  = [ln f(x)    = y[ln f(x)
•  Trigonometric function:

•  Inverse trigonometric function: Differentiate implicitly.

•  Hyperbolic function: 

•  Inverse hyperbolic function: Differentiate implicitly.

Or use the logarithmic differentiation
technique.

technique.

Chain rule.

Use the chain rule, where y is the
inside function.

Use the logarithmic differentiation

For tan x, cot x, sec x, and csc x, write as
sines and cosines and use the quotient rule.

TECHNIQUES:  Indefinite  Integration

•  Known derivative: (x) dx = f(x) + C

•  Sum:  (u + v) dx =  u dx +   v dx

•  Product:  u dv = uv –  v du

•  Reciprocal function:  u–1 du = ln |u| + C

•  Power function:  un du = un+1/(n + 1) + C, n  –1

•  Power of a function:  f n (x) dx

•  Square root of a quadratic: Integrate by trigonometric substitution;
complete the square first, if necessary.

•  Rational algebraic function: Convert to a sum by long division and by
resolving into partial fractions.

•  Inverse function [exponential (logarithmic), trigonometric, or hyperbolic]:
Integrate by parts.

Integrate by parts.

“u–substitution” method.

Use a reduction formula.

technique.

Or use the logarithmic differentiation



     

8. (5 – 2x)–1 dx

9.  t(x) = tan5 4x

10.  h(x) = sech3 7x

11.
 

sin2 x dx

12. cos2 x dx

13.  y = 

14.  y = 

15.

16.

17.  f(t) = 

18.  g(t) = 

19.

20.

21.  y = x3ex

22.  y = x4e–x

23. x3ex dx

24. x4e–x dx

25.  f(x) = sin–1 x

26.  g(x) = tan–1 x

27.
 

sin–1 x dx

28. tan–1 x dx

29.

30.

31.

32.

33.  f(x) = tanh x

34.  f(x) = coth x

35. tanh x dx

36. coth x dx

37.  y = e2x cos 3x

38.  y = e–3x cos 4x

39. e2x cos 3x dx

40. e–3x cos 4x dx

41.  g(x) = x3 ln 5x

42.  h(x) = x2 ln 8x

43. x3 ln 5x dx

44. x2 ln 8x dx

45.  y =

46.  y =

47.

48.

49.  y = cos3 x sin x

50.  y = sin5 x cos x

51. cos3 x sin x dx
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Problem Set 9-
11
For Problems 1–100, differentiate the given
function, or evaluate the given integral.

1.  y = sec 3x tan 3x

2.  y = sinh 5x tanh 5x

3.  x cosh 4x dx

4.  x cos x dx

5.  f(x) = (3x + 5)–1

6.  f(x) = (5 – 2x)–1

7.  (3x + 5)–1 dx

 dx

 dx

 dx

 dx

 dx

 dx

 dx

 dx



   

52. 

57.  g(x) = (x4 + 3)3

58.  f(x) = (x3 – 1)4

59. (x4 + 3)3 dx

60. (x3 – 1)4 dx

61. (x4 + 3)3x3 dx

62. (x3 – 1)4x2 dx

63. (x4 + 3)dx

64. (x3 – 1)dx

65.  f(x) =  dt

66.  h(x) =  dt

67.

68.

69.  r(x) = xex

70.  s(x) = xe–x

71.  q(x) = 

72.  r(x) = 

73.

74.

75.  f(x) = ex2

76.  f(x) = ex3

77. xex2 dx

78. x2ex3 dx

79.
 

x3ex2 dx

80. x5ex3 dx

In Problems 81–100, a, b, c, d, and n stand for
constants.

81. eax cos bx dx

82. eax sin bx dx

83. sin2 cx dx

84. cos2 cx dx

85.  f(x) = 

86.  f(x) = (ax + b)n

87.

88. (ax + b)n dx

89. (x2 + a2)–1/2x dx

90. (a2 – x2)–1/2x dx

91. (x2 + a2)–1/2 dx

92. (a2 – x2)–1/2 dx

93.  f(x) = x2 sin ax

94.  f(x) = x2 cos ax

95. x2 sin ax dx

96. x2 cos ax dx

97. sinh ax dx

98. cosh ax dx

99. cos–1 ax dx

100. sin–1 ax dx

Historical Topic 1—Rationalizing
Algebraic Substitutions

Before calculators and computers were readily
available to perform numerical integration, it was
important to be able to find algebraic formulas for
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 dx

 dx

 dx

sin5 x cos x dx

cos3 x dx53.

sin5 x dx54.

cos4 x dx55.

sin6 x dx56.



 

For Problems 101–106, evaluate the integrals by
algebraic substitution.

101.
 

102.

103.

104.

105.

106.

Historical Topic 2—Rational Functions of sin x and
cos x by u = tan (x/2)

107.  From trigonometry, recall the double-argument
properties for cosine and sine,

cos 2t = 2 cos2 t – 1  and   sin 2t = 2 sin t cos t

a.  Explain how these properties justify these
equations.

b.  Show that the equations in part a can be
transformed to

c.  Let u = tan (x/2). Show that x = 2 tan–1 u,
and thus that these properties are true.

Property: u = tan (x/2) Substitution

d.  Let u = tan (x/2). Use the results of part c to
show that this integral reduces to du.

e.  Perform the integration in part d and then
do the reverse substitution to show that the
integral equals tan (x/2) + C.

108.  Another Indefinite Integral of Secant:
a.  Transform the integral

sec x dx

using the substitution u = tan (x/2) from
Problem 107 to get

b.  Perform the integration in part a. Show that
the result is

c.  Recall from trigonometry

i.  tan (A + B) = 

ii.  tan  = 1
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as many integrals as possible. Users of mathematics
spent much time searching for clever integration
techniques as did students of mathematics in
learning these techniques. Two such techniques are
shown here and in Problem 107. You can transform
integrals such as

 dx

 dx

 dx

 dx

 dx

 dx

 dx

 du

that have a radical in the denominator to a rational
integrand by substituting a variable either for the
radical or for the entire denominator. Here’s how
you would go about it. Let u = 1 +  Then
(u – 1)3 = x, from which dx = 3(u – 1)2 du.
Substituting u for the denominator and 3(u – 1)2 du
for dx gives

dx=

=

=

=

du = du

C

C

and

and

and



 

Use this information to show that

i.  Using the result of part c
ii.  Using the more familiar integral formula
Show that the answers are equivalent.

For Problems 109–111, use the substitution
u = tan (x/2) to evaluate the integral.

109. 

110.

111.

9-12    Integrals in Journal

In this chapter you have learned algebraic techniques by which you can integrate
and differentiate the elementary transcendental functions. The integration
techniques include

•  Recognition of the integrand as the derivative of a familiar function

•  Integral of the power function, un du, n  –1

•  Integral of the reciprocal function,  u–1 du

•  Integration by parts

•  Reduction formulas

•  Trigonometric substitution

•  Partial fractions

•  Other substitutions

These techniques let you find the equation of a function whose derivative is
given. They also allow you to use the fundamental theorem to find the exact
value of a definite integral.

Although differentiating a function is relatively easy, the reverse process,
integrating, can be like unscrambling eggs! Integrals that look almost the same,
such as

(x2 + 1)10x dx and (x2 + 1)10 dx

may require completely different techniques. An integrand, such as e–x2  in

e–x2 dx

may be an elementary function but not the derivative of any other elementary
function. [This integral gives the area under the bell curve in statistics
(Figure 9-12a).]

Figure 9-12a

In this section you will record a short table of integrals in your journal.
Constructing the table will bring together the various techniques of integration.
The end product will give you a reference that you can use to recall various
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d.  Evaluate  sec x dx two ways:  dx

 dx

 dx

 C



•  Power and reciprocal
•  Exponential and logarithmic

•  Circular and reverse circular
•  Hyperbolic and inverse hyperbolic

You should include examples of other
frequently occurring forms, such as rational
function, square root of a quadratic, and power
of a trigonometric function (especially
sin2 x dx, sec3 x dx, and so on). For each
entry, state or show how the formula is
derived.

9-13    Chapter Review and Test

In this chapter you have learned to do algebraically the calculus of elementary
transcendental functions—exponential and logarithmic, circular (trigonometric),
hyperbolic, and their inverses.

R0.  Update your journal with what you’ve learned
since the last entry. You should include such
things as
•  The one most important thing you have

learned in studying Chapter 9
•  Which boxes you have been working on in

the “define, understand, do, apply” table
•  Any techniques or ideas about calculus that

are still unclear to you

R1.  Let f(x) = x cos x. Find f ′(x), observing the
derivative of a product property. From the
results, find an equation for the indefinite
integral x sin x dx. Check your work by using
the equation to evaluate the definite integral

 x sin x dx

and comparing it with the approximate answer
you get by numerical integration.

R2.  Integrate: 5x sin 2x dx

R3.  a.  Integrate: x3 cos 2x dx
b.  Integrate: e4x sin 3x dx
c.  Integrate: x (ln x)2 dx
d.  The region under the graph of y = x ln x

from x = 1 to x = 2 is rotated about the
 y-axis to form a solid. Find the volume of
the solid.

R4.  a.  Integrate by parts once to express
cos30 x dx in terms of an integral of a

reduced power of cos x.
b.  Use the appropriate reduction formula to

evaluate  sec6 x dx.
c.  Derive the reduction formula for tann x dx.
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integrals and how you derived them. As a result, you will better be able to use
publications, such as Chemical Rubber Company (CRC) tables, and to
understand the output from symbol-manipulating computers.

1.  Table of Integrals Problem: Record a short table
of integrals in your journal. Arrange the table
by the nature of the integrand, rather than by
the technique used. Include integrals of the
algebraic functions and each one of the
elementary transcendental functions:

Problem Set 9-12

Review Problems



 

e.  Integrate without reduction formula:
tan9 32 dx

f.  Find the exact area of the region inside the
limaçon with polar equation r = 9 + 8 sin  
from  = 0 to  = /4.

R6.  a.  Integrate:  dx
b.  Integrate:  dx
c.  Integrate:  dx
d.  Using the fundamental theorem, find the

exact area of the zone of a circle of radius 5
between the lines 3 units and 4 units from
the center (Figure 9-13a).

Figure 9-13a

R7.  For parts a–d, integrate:

a.
 

b.

c.

d.

e.  Differential Equation Problem: Figure 9-13b
shows the slope field for the differential
equation

Solve this differential equation subject to
the initial condition that y = 7 when x = 0.
On a copy of the slope field, plot the graph
of your solution, thus showing that it is
reasonable.

Figure 9-13b

R8.  a.  Sketch the graph: y = cos–1 x
b.  Differentiate: f(x) = sec–1 3x
c.  Integrate: tan–1 5x dx
d.  Find the area of the region in Quadrant I

bounded by the graph of y = cos–1 x.

R9.  a.  Sketch the graph: f(x) = sinh x

b.  Sketch the graph: g(x) = cosh–1 x
c.  Differentiate: h(x) = x2 sech x

d.  Differentiate: f(x) = sinh–1 5x
e.  Integrate: tanh 3x dx
f.  Integrate: cosh–1 7x dx
g.  Using the definitions of cosh x and sinh x,

prove that cosh2 x – sinh2 x = 1.

h.  Find a particular equation of the catenary
with vertex (0, 5) and point (3, 7). Use the
equation to predict the value of y if x = 10.
Find the values of x if y = 20.

R10.  a.  Evaluate:  (x – 2)–1.2 dx

b.  Evaluate:  tan x dx

c.  Evaluate:  x–2/3 dx
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R5.  a.  Integrate without reduction formula:
cos5 x dx

b.  Integrate without reduction formula:
sec6 x dx

c.  Integrate without reduction formula:
sin2 7x dx

d.  Integrate without reduction formula:
sec3 x dx

 dx

 dx

 dx

 = 0.1(y – 3)(y – 8)



R11.  a.  Differentiate: f(x) = x sin–1 x
b.  Integrate: x sin–1 x dx
c.  Differentiate: tanh (ex)

d.  Integrate: (x3 – x)–1 dx
e.  Differentiate: f(x) = (1 – x2)1/2

f.  Integrate: (1 – x2)1/2 dx
g.  Differentiate: g(x) = (ln x)2

h.  Integrate: x ln x dx

R12.  Explain why (9 – x2)–1/2 dx has an inverse sine
in the answer but (9 – x2)–1/2x dx does not.

C1.  Integral of sech x Problem: Derive the formula

sech x dx = sin–1(tanh x) + C

You can transform the integrand to a square
root involving tanh x by using the Pythagorean
property relating sech x and tanh x. Then you
can use a very clever trigonometric
substitution to rationalize the radical. Confirm
that the formula works by evaluating the
integral on the interval [0, 1], then checking by
numerical integration.

C2.  Integral of csch x Problem: Derive the formula

You can transform the integrand to functions
of tanh (x/2) by first observing that

sinh 2A = 2 sinh A cosh A

from which

Clever algebra, followed by an application of
the Pythagorean properties, produces the
desired result. Then substitute u for tanh (x/2).
You will have to be clever again to figure out
what to substitute for dx in terms of du. The
resulting integral is remarkably simple!
Confirm that the formula works by evaluating
the integral on the interval [1, 2], then checking
by numerical integration.

C3.  Another Integral of csc x: Derive the formula

Confirm that the formula works by evaluating
the integral on the interval [0.5, 1], then
checking by numerical integration.

C4.  Another Definition of  Problem: Figure 9-13c
shows the region under the graph of
 y = (x2 + 1)–1, extending to infinity in both
directions. Show that the area of this infinitely
long region is exactly equal to . This fact is
remarkable because the integrand has nothing
to do with circles, yet the answer is the most
fundamental number concerned with circles!

Figure 9-13c

C5.  Upper Bound Problem: Figure 9-13d shows the
graphs of f(x) = ln x and g(x) = tan–1 x. As x gets
larger, both graphs increase but are concave
down. The inverse tangent graph approaches

/2. Prove that the graph of f(x) = ln x is
unbounded above. You can do this by assuming
that it is bounded above by some number M,
then finding a contradiction by finding a value
of x in terms of M for which ln x  M.

Figure 9-13d
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d.  Evaluate: 

Concept Problems

e.  For what values of p does the p-integral
 x–p dx converge?

csch x dx = 1n  C

csch x = 

 C

dx



 

T3. cos-1 x dx

T4. sec3 x dx

T5. e2x cos 5x dx
T6. ln 3x dx

For Problems T7 and T8, differentiate.

T7.  f(x) = sech3 (e5x)

T8.  g(x) = sin–1 x

T9.  Given f(x) = tanh–1 x, find a formula for (x)
in terms of x by appropriate implicit
differentiation. Demonstrate that the formula
is correct by approximating (0.6) using
numerical differentiation.

T10.  Find the particular equation of the form
 y = k cosh (1/k) x + C for the catenary
containing vertex (0, 1) and point (5, 3).

T11.  a.  Integrate dx three ways:

i.  By trigonometric substitution, after
completing the square

ii.  By partial fractions
iii.  As the integral of the reciprocal function

b.  Show that all three answers are equivalent.
T12.  Evaluate cos2 x dx by appropriate use of the

double-argument properties.

T13.  a.  Evaluate cos5 x dx two ways:

i.  By transforming four of the cosines to
sines, and integrating as powers of sine.

ii.  By using the reduction formula,

b.  Show that the two answers are equivalent.

T14.  Evaluate the improper integral:  xe–0.1x dx
T15.  What did you learn as a result of taking this

test that you did not know before?
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Chapter Test

No calculators allowed (T1–T8)

Graphing calculators allowed (T9–T15)

For Problems T1–T6, evaluate the indefinite integral.

T1. sin5 x cos x dx

T2. x3 sinh 6x dx



The Calculus of
Motion—Averages,
Extremes, and Vectors

The distance a spaceship travels equals velocity multiplied by time.
But the velocity varies. Displacement is the integral of velocity, and
velocity is the integral of acceleration. By measuring acceleration
of the spaceship at frequent time intervals, you can calculate the
displacement by numerical calculus methods.
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Mathematical Overview

•  Linear versus planar motion

You will do this in four ways.

Graphically The icon at the top of each
even-numbered page of this chapter
shows the position vector, velocity
vector, and acceleration vector for an
object moving in a curved, planar path.

Numerically Time     Acceleration     Velocity

0 1.3 20.0
2 1.7 23.0
4 2.2 26.9
6 2.1 31.2
8 1.5 34.8
...

...
...

Algebraically Distance = Displacement =

Verbally Now I know the precise definition of the average value of a function.
It is the integral of the function between two limits divided by the
difference between those limits.

500 © 2005 Key Curriculum Press Chapter 10:   The Calculus of Motion—Averages, Extremes, and Vectors

•  Distance versus displacement

•  Maximum versus minimum

Chapter 10 extends your study of objects in motion. You
will

•  Acceleration versus velocity

distinguish between concepts such as



10-1   Introduction to Distance and Displacement

(how fast and in which direction). Once you have made these distinctions for
motion in one dimension (along a line), you will use vectors to analyze motion in
two dimensions (in a plane). Along the way you will find maximum, minimum,
and average values of velocity and position functions.

Suppose that you drive 100 mi and then return 70 of those miles (Figure 10-1a).
Although you have gone a distance of 170 mi, your displacement, which is
measured from the starting point, is only 30 mi. Problem Set 10-1 will clarify the
distinction between these two quantities. You may work on your own or with
your study group.

Figure 10-1a

Exploratory Problem Set 10-1
Calvin’s Swimming Problem: Calvin enters an
endurance swimming contest. The objective is to
swim upstream in a river for a period of 10 min. The
river flows at 30 ft/min. Calvin jumps in and starts
swimming upstream at 100 ft/min. Phoebe
ascertains that as Calvin tires, his speed through
the water decreases exponentially with time
according to the equation vc = 100(0.8)t.

Thus, Calvin’s net velocity (Figure 10-1b) is only

v = 100(0.8)t –30

Figure 10-1b
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OBJECTIVE Given an equation for the velocity of a moving object, find the distance

time interval.
traveled and the displacement from the starting point for a specified

for Motion Along a Line

You have learned that velocity is the rate of change of position with respect to
time. In this chapter you will concentrate on the distinction between distance
(how far) and displacement (how far and in which direction). You will sharpen
your understanding of the difference between speed (how fast) and velocity



1.  At what time will Calvin’s velocity become
     negative?

3.  What will Calvin’s displacement from the
     starting point be at the end of the 10 min? Will
     he be upstream or downstream of his starting
     point?

4.  Write a definite integral that you can use to
find the displacement after 10 min in one
computation. Check it by evaluating the
integral and comparing with Problem 3.

5.  Write one definite integral that represents the
total distance Calvin travels in the 10 min.
A clever application of absolute value will help.
Integrate numerically.

10-2   Distance, Displacement, and Acceleration
for Linear Motion
Most real objects, such as cars and birds, travel in two or three dimensions. In
Section 10-6, you will learn how to use vectors to analyze such motion. For the
time being, consider only objects moving in a straight line. In Section 10-1, you
saw the distinction between the distance a moving object travels and its
displacement from the starting point. If the velocity is positive, the displacement
is positive. If the velocity is negative, then the displacement is negative. In the
latter case the distance traveled is the opposite of the displacement. You can
combine the two ideas with the aid of the absolute value function.

A moving object has velocity v(t) = t2 – 7t + 10, in feet per second, in the time
interval [1, 4].

a.  Find the time subintervals in which the velocity is positive and the
subintervals in which it is negative.

b.  Find the distance the object travels in each of these subintervals.
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EXAMPLE 1

OBJECTIVE Given velocity or acceleration as a function of time for an object in linear
motion, find the displacement at a given time and the distance traveled in a
given time interval.

  
  
  
  
  
  

Displacement =

PROPERTY:  Distance and Displacement

Distance =

(velocity) dt

|velocity | dt

2.  How far will Calvin travel upstream—that is,
     while his velocity is positive? How far will he
     travel back downstream (while his velocity is
     negative) until t = 10? What is the total distance
     Calvin will have traveled in the 10 min?
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by solving

 t2 – 7t + 10 = 0  t = 2 or t = 5

Positive velocity: [1, 2)
Negative velocity: (2, 4]

Figure 10-2a b.  For the time interval [1, 2],

displacement  = (t2 – 7t + 10) dt = 1.8333... = Numerically, or
by fundamental
theorem.

 distance  =       ft

For the time interval [2, 4],

displacement  = (t2 – 7t + 10) dt = –3.3333... = –3

 distance  = 3  ft

c.  For the time interval [1, 4],

displacement = (t2 – 7t + 10) dt = –1.5

distance = |t2 – 7t + 10| dt Use the absolute value
function on your grapher.

= 5.1666... =      ft Use numerical integration
(see note).

d.  For displacement, 

For distance, 

Note: If you want to evaluate the integral in part c algebraically using the
fundamental theorem, divide the interval [1, 4] as in part b. The integrand
has a cusp at t = 2 (Figure 10-2b) at which the absolute value function changes
from +(t2 – 7t + 10) to – (t2 – 7t + 10). (Recall from algebra that the absolute
value of a negative number is the opposite of that number.) The final answer
is still the sum,

Figure 10-2b Figure 10-2b also shows that the integrand for distance is always positive
(or zero), meaning that the distance traveled is positive. This is true even though
the object in Example 1 is displaced a negative amount from its starting point.

c.  Use a single integral to find the displacement in the time interval [1, 4], and
another single integral to find the distance traveled in this interval.

d.  Show how you can find the answers to part c from the answers to parts a
and b.

a.  The graph of v versus t (Figure 10-2a) shows that the velocity changes
from positive to negative at t = 2. You can confirm this fact algebraically

Solution



2.2
9 2.1

12 1.5
15 0.3
18 –0.4
21 –1.1
24 –1.4

a.  Plot the graph of acceleration versus time.
b.  At time t = 0, the car was going 20 mi/h. Predict its velocity at each 3-s

instant from 0 through 24.
c.  Plot the graph of velocity versus time.

d.  Approximately how far did the car go in this 24-s interval?

Solution a.  Figure 10-2c shows the graph of acceleration versus time.

b.  Acceleration is the derivative of velocity with respect to time, so the
velocity is the integral of acceleration.

You can estimate the average acceleration for each 3-s interval. For
interval 1,

Average acceleration = (1.3 + 1.7) = 1.50

So, the change in velocity is (1.50)(3) = 4.50. The initial velocity is given to
be 20, so the velocity at the end of the interval is about 20 + 4.50 = 24.50.

Figure 10-2c The process is equivalent to integrating by the trapezoidal rule. You can do
the calculations by extending the given table using a computer spreadsheet
or the LIST feature on your grapher.

Average
Time      Acceleration           Acceleration v Velocity

(s) [(mi/h)/s] [(mi/h)/s] (mi/h) (mi/h)

0 1.3 — — 20 (given)
3 1.7 1.50 4.50 24.5
6 2.2 1.95 5.85 30.35
9 2.1 2.15 6.45 36.8

12 1.5 1.80 5.40 42.2
15 0.3 0.90 2.70 44.9
18 –0.4 –0.05 –0.15 44.75
21 –1.1 –0.75 –2.25 42.5
24 –1.4 –1.25 –3.75 38.75
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EXAMPLE 2 A car accelerates for 24 s. Its acceleration in (mi/h)/s is measured every 3 s and
is listed in the table.

Time    Acceleration
(s) [(mi/h)/s]

0 1.3
3
6

1.7



c.  Figure 10-2d shows the graph of velocity versus time.

Figure 10-2d

Average Average
Time    Acceleration        Acceleration v Velocity     Velocity     Displacement

(s) [(mi/h)/s] [(mi/h)/s] (mi/h)     (mi/h) (mi/h) (mi)

0 1.3 — — 20 — 0.000
3 1.7 1.50 4.50 24.5 22.25 0.018...
6 2.2 1.95 5.85 30.35 27.425 0.041...
9 2.1 2.15 6.45 36.8 33.575 0.069...

12 1.5 1.80 5.40 42.2 39.5 0.102...
15 0.3 0.90 2.70 44.9 43.55 0.138...
18 –0.4 –0.05 –0.15 44.75 44.825 0.175...
21 –1.1 –0.75 –2.25 42.5 43.625 0.212...
24 –1.4 –1.25 –3.75 38.75 40.625 0.246...

The last column shows the total displacement from t = 0 to the end of the
time interval. For the 24 s, the total displacement was about 0.246 mi, or
about 1300 ft.

Problem Set 10-2

Q1.   You traveled 30 mi/h for 4 h. How far did
you go?

Q2.   You traveled 75 mi in 3 h. How fast did you go?

Q3.   You traveled 50 mi at 40 mi/h. How long did
it take?

Q4.   Differentiate:  f(x) = ln x

Q5.   Integrate: ln x dx

Q6.   Differentiate:  f(t) = tan t

Q7.   Differentiate:  g(t) = tanh t

Q8.   Integrate: x2 dx

Q9.   Integrate: 2x dx

Q10.   Differentiate:  h(x) = 2x

For Problems 1–4, an object moving in a straight
line has velocity v(t) in the given time interval.

a.  Find the time subintervals in which the
velocity is positive and those in which it is
negative.

b.  Find the distance the object travels in each
of these subintervals.

c.  Use a single integral to find the displacement
in the given time interval, and use a single
integral to find the distance traveled in this
interval.

d.  Show how you can find the answers to part c
from the answers to parts a and b.

e.  Find the acceleration of the object at the
midpoint of the time interval.

1.  v(t) = t2 – 10t + 16 ft/s, from t = 0 to t = 6 s
2.  v(t) = tan 0.2t  cm/s, from t = 10 s to t = 20 s
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Quick Review

d.  You can find the displacement at the end of each 3-s interval the same way
you found the velocity. Find an average velocity for the interval, multiply by

t, and add the result to the displacement at the beginning of the interval.
The displacement at t = 0 is zero because you are finding the displacement
from the starting point. The only catch is that you must use 3/3600 h for

t because v is in miles per hour. The calculations can be done by
extending the table from part b and putting appropriate instructions into
the spreadsheet.



3.  v(t) = sec – 2 km/h, from t = 1 s to t = 11 h

to t = 16 s

6.  a(t) = t–1 (cm/s)/s, v(1) = 0 cm/s, from
t = 0.4 s to t = 1.6 s

7.  a(t) = 6 sin t (km/h)/h, v(0) = –9 km/h, from
t = 0 to t =  h

8.  a(t) = sinh t (mi/h)/h, v(0) = –2 mi/h, from
t = 0 to t = 5 h

9.  Meg’s Velocity Problem: Meg accelerates her car,
giving it a velocity of v = t1/2 – 2, in feet per
second, at time t, in seconds after she started
accelerating.
a.  Find the time(s) at which v = 0.
b.  Find her net displacement for the time

interval [1, 9].

c.  Find the total distance she travels for the
time interval [1, 9].

10.  Periodic Motion Problem: The velocity of a
moving object is given by v = sin 2t, in
centimeters per second.

a.  Find the distance the object travels from the
time it starts (t = 0) to the first time it stops.

b.  Find the displacement of the object from its
starting point and the total distance it
travels from t = 0 to t = 4.5 . Be clever!

11.  Car on the Hill Problem: Faye Ling’s car runs
out of gas as she drives up a long hill. She lets
the car roll without putting on the brakes. As it
slows down, stops, and starts rolling backward,
the car’s velocity up the hill is given by

v = 60 – 2t
where v  is in feet per second and t is the
number of seconds since the car ran out of gas.

a.  What is the car’s net displacement between
t = 10 and t = 40?

b.  What is the total distance the car rolls
between t = 10 and t = 40?

12.  Rocket Problem: If a rocket is fired straight up
from Earth, it experiences acceleration from
two sources:

•  Upward, au, in (meters per second) per
second, due to the rocket engine

•  Downward, ad, in (meters per second) per
second, due to gravity

The net acceleration is a = au + ad. However,
the upward acceleration has a discontinuity
at the time the rocket engine stops. Suppose
that the accelerations are given by

ad = –9.8, for all t

a.  Plot graphs of a and v versus t for the
first 300 s.

b.  At what value of t does a become negative?
At what value of t does v become negative?

c.  Find the displacement of the rocket at time
t = 300 and the distance the rocket traveled
between t = 0 and t = 300. What does the
relationship between these two numbers tell
you about what is happening in the real
world at t = 100?

d.  How fast and in what direction is the rocket
traveling at t = 300?

13.  Subway Problem: A train accelerates as it leaves
one subway station, then decelerates as it
approaches the next one. Three calculus
students take an accelerometer aboard the
train. They measure the accelerations, a, given
in the table in (miles per hour) per second, at
the given values of t, in seconds.

a.  Calculate the velocity and displacement at
the end of each time interval. Assume that
the velocity was zero at time zero. You may
use a computer spreadsheet.

b.  Show that the train has stopped at t = 60.
c.  How can the velocity be zero at t = 0 but the

acceleration be positive at that time?

506 © 2005 Key Curriculum Press Chapter 10:   The Calculus of Motion—Averages ,  Extremes,  and Vectors

4.  v(t) = t3 – 5t2 + 8t – 6 mi/min, from t = 0
to t = 5 min

For Problems 5–8, first find an equation for the
velocity of a moving object from the equation for
acceleration. Recall that acceleration is the
derivative of velocity. Then find the displacement
and distance traveled by the moving object in the
given time interval.

5.  a(t) = t1/2 (ft/s)/s, v(0) = –18 ft/s, from t = 0



Time    Acceleration

0.6
20 0
25 0
30 0
35 0
40 –0.4
45 –1.4
50 –3.8
55 –3.2
60 0

d.  How can acceleration be zero from t = 20 to
t = 35, while the velocity is not zero?

e.  How far is it between the two stations?

14.  Spaceship Problem: A spaceship is to be sent
into orbit around Earth. You must determine
whether the proposed design of the last-stage
booster rocket will get the spaceship going fast
enough and far enough so that it can orbit.
Based on the way the fuel burns, the
acceleration of the spaceship is predicted to
be as shown in the table, where time is in
seconds and acceleration is in miles per hour
per second.
a.  Initially the spaceship is 400 mi from the

launchpad, going 6000 mi/h. Calculate the
velocity and acceleration at the end of each
time interval. You may use a spreadsheet.

Time        Acceleration
(s) [(mi/h)/s]

0 3
10 14
20 30
30 36
40 43
50 42
60 64
70 78
80 89
90 6

100 0 (Rocket burns out.)

b.  Consulting the specifications, you find that
when the last stage finishes firing (100 s, in
this case) the spaceship must

•  Be at least 1,000 mi from the launchpad
•  Be moving at least 17,500 mi/h

Based on your work, conclude whether each
of these specifications will be

•  Definitely met
•  Definitely not met
•  Too close to say without more

information

15.  Physics Formula Problem: Elementary physics
courses usually deal only with motion under a
constant acceleration, such as motion under
the influence of gravity. Under this condition,
certain formulas relate acceleration, velocity,
and displacement. These formulas are easily
derived by calculus. Let a be the acceleration
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(s) [(mi/h)/s]

0
5

10
15

1.2
4.7
2.9



  

(a constant). Let v0 be the initial velocity (when

a.
b.

going up, you feel a jerk until it gets up to
speed. This is because the acceleration changes
almost instantly from zero to some positive
value. In this problem you will explore another
way for an elevator’s acceleration to be
arranged such that the jerk is minimized.

a.  Suppose an elevator starts from rest (v = 0)
at the bottom floor (s = 0 ft) and is given a
constant acceleration of 2 ft/s2 for 6 s.
Thereafter, the elevator rises with constant
velocity. Find the velocity and displacement
of the elevator as functions of time. Sketch
three graphs—acceleration, velocity,
displacement—for times t = 0 to t = 10 s.

b.  How does the acceleration graph show that
passengers on the elevator get a jerk at t = 0
and another jerk at t = 6?

c.  If the acceleration increases gradually to a
maximum value, then decreases gradually to

zero, the jerks will be eliminated. Show that
if the acceleration is given by

a = 2 – 2 cos ( /3) t

for the first 6 s, then the elevator’s
acceleration has this property.

d.  Using the acceleration function in part c,
find the velocity as a function of time.

e.  Sketch the graph of velocity as a function of
time, if, as the elevator goes up, the velocity
remains at the value it had at t = 6 s. How
does this velocity graph differ from that in
part a?

f.  How far does the elevator go while it is
getting up to top speed?

g.  The elevator is to be slowed down the same
way it was sped up, over a 6-s time period. If
the elevator is to go all the way to the 50th
story, 600 ft above the bottom floor, where
should it start slowing down?

h.  How long does it take for the elevator to
make the complete trip?

i.  If the elevator were to go up just one floor
(12 ft), would the new acceleration and
deceleration functions in parts c and f still
provide a smooth ride? If so, how can you
tell? If not, what functions could you use to
smooth out the ride?

10-3   Average Value Problems in Motion
and Elsewhere

Suppose that the velocity of a moving object is given by

v(t) = 12t – t2

where t  is in seconds and v(t) is in feet per second. What would be meant by the
average velocity in a time interval such as from t = 2 to t = 11? The equation
distance = (rate)(time) is the basis for the answer. Dividing both sides by time
gives rate = (distance) / (time). This concept is extended to velocity by using
displacement instead of distance.

Average velocity 
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time t = 0). Let s0 be the initial displacement
(again, when time t = 0). Derive the following
formulas.

16.  Elevator Project: When a normal elevator starts



Figure 10-3a

integra l of the velocity from 2 to 11.

The time to travel the 261 ft is (11 – 2), or 9 s. So, the average velocity is

Plotting the average velocity on the v(t)-graph (Figure 10-3b) reveals several
conclusions.

•  The area of the rectangle with height equal to vav and base 9 is also equal
to the total displacement. So, the area of the rectangle equals the area
under the v(t)-graph.

•  Because the area of the rectangle equals the area of the region, there is just
as much of the rectangular region above the vav line as there is empty space
below the line but above the rectangle. If you could move the region above
the line into the spaces below the line, it would just fit (Figure 10-3c).

•  The average velocity, vav, is not equal to the average of the initial and final
velocities. From the equation, v(2) = 20 and v(11) = 11. The average, 29
(which equals (displacement)/(time)), is higher than either one and is thus
not equal to their average.

•  Another object, starting at the same time and place but moving with a
constant velocity equal to the average velocity, would finish at the same
time and place as the first object.

Figure 10-3b

The facts that average velocity equals (displacement)/(time) and that
displacement is found by integrating the velocity lead to this general definition
of average velocity.Figure 10-3c

The reasoning used to define average velocity can be extended to define average
value for any function. The definition of the average value of a function is shown
at the top of the next page.
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DEFINITION:    Average Velocity

If v(t) is the velocity of a moving object as a function of time, then the average
velocity from time t = a to t = b is

That is, average velocity = 

Figure 10-3a shows the graph of v(t). The total displacement s, in feet, is the



Example 1 shows you how to find a value of x for which y equals the average
value of the function.

For the function v(t) = 12t – t2, graphed in Figure 10-3b (on the previous page),
find a value t = c for which v(c) equals the average velocity, 29 ft/s.

Solution 29 = 12c – c2

c2 – 12c + 29 = 0
c = 3.3542... or 8.6457...

At about 3.6 s and 8.6 s, the object is going 29 ft/s.

Example 1 illustrates the mean value theorem for definite integrals, which
states that for a continuous function, there will be at least one point at which
the exact value of a function equals the average value of that function over a
given interval.

The mean value theorem you learned in Chapter 5 is sometimes called the
mean value theorem for derivatives to distinguish it from this new theorem.
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DEFINITION:  Average Value of a Function

EXAMPLE 1

OBJECTIVE

PROPERTY:  Mean Value Theorem for Integrals

If y = f(x) is continuous on the closed interval [a, b], then there is at least one
point x = c in [a, b] for which

or, equivalently,

 f(c) = yav

 f(c)

If function  f  is integrable on the interval [a, b], then the average value of
 y = f(x) on the interval x = a to x = b is

Calculate the average value of a function given its equation.



Problem Set 10-3

Q5.   y = ex  has a local maximum at what value of x?

Q6.   y = x2 – 3x + 11 has a local minimum
at x = —?—.

Q7.  For  f(x) = (x – 5)2, the global maximum
for x  [1, 3] is —?—.

Q8.  If  f(x) = x0.8, then (0) = —?—.
Q9.  Name the theorem that states that under suitable

conditions, a function’s graph has a tangent line
parallel to a given secant line.

Q10.  The graph of = 1 is a(n) —?—.

A. Circle B. Hyperbola C. Line
D. Ellipse E. Parabola

For Problems 1–6,
a.  Find the average value of the function on the

given interval.

b.  Sketch a graph showing the graphical
interpretation of the average value.

c.  Find a point c in the given interval for which
the conclusion of the mean value theorem
for definite integrals is true.

1.  f(x) = x3 – x + 5, x  [1, 5]

2.  f(x) = x1/2 – x + 7, x  [1,9]
3.  g(x) = 3 sin 0.2x, x  [1, 7]

4.  h(x) = tan x, x  [0.5, 1.5]

5.  v(t) = , t  [1, 9]

6.  v(t) = 100(1– e–t), t  [0, 3]

For Problems 7–10, find a formula in terms of k for
the average value of the given function on the
interval [0, k], where k is a positive constant
(a stands for a constant).

7.  f(x) = ax2

8.  f(x) = ax3

9.  f(x) = aex

10.  f(x) = tan x, k

11.  Average Velocity from Acceleration Problem:
Suppose you are driving 60 ft/s (about
40 mi/h) behind a truck. When you get the
opportunity to pass, you step on the
accelerator, giving the car an acceleration
a = 6/ , where a is in (feet per second) per
second and t is in seconds. How fast are you
going 25 s later when you have passed the
truck? How far did you travel in that time?
What was your average velocity for the
25-s interval?

12.  Ida’s Speeding Ticket Problem: Ida Livermore is
rushing to take pizzas to her customers when
she is stopped for speeding. Her ticket states
that she was clocked at speeds up to 50 mi/h
during a 4-min period, and that her fine will be
$140 ($7 for each mile per hour over the
30-mi/h speed limit). Ida is good at calculus.
She figures that her speed was a quadratic
function of time over the 4-min period—
30 mi/h at the beginning and end, and peaking
at 50 mi/h (Figure 10-3d). She argues she
should be charged only for her average speed
above 30 mi/h. How much less will her fine be
if she wins her appeal?

Figure 10-3d
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Quick Review

Q1.  What is your average speed if you go 40 mi
in 0.8 h?

Q2.  How far do you go in 3 min if your average speed
is 600 mi/h?

Q3.  How long does it take to go 10 mi at an
average speed of 30 mi/h?

Q4.  The first positive value of  x at which y = cos x
has a local maximum is —?—.
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13.  Average Velocity for Constant Acceleration

Problem: Show by counterexample that if the
acceleration of an object varies over a time
interval, then the average velocity over that
interval might not equal the average of the
velocities at the beginning and end of the
interval.

15.  Average Cost of Inventory Problem: Merchants
like to keep plenty of merchandise on hand to
meet the needs of customers. But there is an
expense associated with storing and stocking
merchandise. Suppose that it costs a merchant
$0.50 per month for each $100 worth of
merchandise kept in inventory. Figure 10-3e
shows the value of the inventory for a
particular 30-day month.

Figure 10-3e

a.  Find the average value of the inventory, and
use the answer to find the inventory cost for
that month.

b.  The function is discontinuous at x = 12 days.
What do you suppose happened that day to
cause the discontinuity? Is there a day x = c
at which the conclusion of the mean value
theorem for integrals is true, even though
the hypothesis of the theorem is not met for
this piecewise function? Illustrate your
answer on a copy of Figure 10-3e.

16.  Swimming Pool Average Depth Problem:
Figure 10-3f shows a vertical cross section
along the length of a swimming pool. On a
copy of the figure, draw a horizontal line at
your estimate of the average depth of the
water. Show on the graph that your answer is
reasonable. How could you use this average
depth to estimate the number of gallons of
water the pool will hold?

Figure 10-3f

17.  Average Temperature Problem: Figure 10-3g
shows the temperature recorded by a weather
bureau station at various times on a day when
a cold front arrived in the city at 11:00 a.m. Use
the trapezoidal rule in an appropriate way to
calculate the average temperature for that day.
Compare this average temperature with the
temperature found by averaging the high and
low temperatures for the day. Give an
advantage for each method of averaging.

Figure 10-3g

18.  Average Vitamin C Amount Problem: Calvin
takes a 200-mg vitamin C tablet at 8:00 a.m.
and another at 11:00 a.m. The quantity, y, in
milligrams, of vitamin C remaining in his body
after time x, in hours after 8:00 a.m., is given by
the piecewise function shown in Figure 10-3h.

a.  Between 8:00 and 11:00, y  = 200e–0.3x. How
much vitamin C remains in Calvin’s body at
11:00 a.m., before he takes the second pill?
What was the average number of milligrams
over that 3-h period?

Problem: Prove that if an object moves with
constant acceleration a, such as it does in ideal
free fall, then its average velocity over a time
interval is the average of the velocities at the
beginning and end of the interval. (This result
leads to one of the physics formulas you may
have learned and that may have led you to a
false conclusion about average velocity when
the acceleration is not constant.)

14.  Average Velocity for Other Accelerations



Figure 10-3h

b.  At 11:00 a.m., when Calvin takes the next
200 mg of vitamin C, the value of y jumps
immediately to 200 + k, where k is the
amount of the first dose remaining at 11:00.
Between 11:00 a.m. and 2:00 p.m.,
 y = (200 + k)e–0.3(x–3). Find the average
number of milligrams over the 6-h period
from 8:00 a.m. to 2:00 p.m.

c.  The mean value theorem for integrals does
not apply to y on the interval [0, 6] because
the function is discontinuous at x = 3. Is the
conclusion of the theorem true in spite of
the discontinuity? Give numbers to support
your conclusion.

19.  Average Voltage Problem: For the normal
alternating current supplied to houses, the
voltage varies sinusoidally with time
(Figure 10-3i), making 60 complete cycles each
second. So,

v = A sin 120 t

where v is in volts, t is in seconds, and A is the
maximum voltage during a cycle. The average
of the absolute value of the voltage is 110 volts.
Use the fundamental theorem to find the
average value of y = |A sin 120 t| from t = 0
to t = 1/60. Use the result to calculate the
maximum voltage A if the average is 110 v.
Show how you can find this number more
easily using y = sin x and an appropriate
interval of integration.

Figure 10-3i

20.  Root Mean Square Deviation Problem: To
measure how hilly a landscape is or how rough
a machined surface is, people ask the question
“On average, how far do points on the surface
deviate from the mean level?” If you simply
average the deviations, you will get zero. As
Figure 10-3j shows, there is just as much area
above the mean as there is below. One way to
overcome this difficulty is to

•  Square the deviations.
•  Find the average of the squares.
•  Take the square root of the average to get an

answer with the same dimensions as the
original deviations.

Figure 10-3j

The result is called the root mean square
deviation. For instance, the roughness of a
machined surface might be reported as
“0.1 microinch, rms,” where rms stands
for root mean square and a microinch is
one-millionth of an inch.

a.  Suppose that the deviations from average
are sinusoidal, as in Figure 10-3j. That is,
d = k sin x, where d is deviation, x is
displacement along the surface, and k is a
constant amplitude. Find the average of d2

for one complete cycle. Use the result to
calculate the rms deviation.

b.  Plot the graph of y = sin2 x. Sketch the
result. Show that the resulting graph is itself
a sinusoid, and find its equation.

c.  Show that you can determine the answer to
part a graphically from part b, without
having to use calculus.

d.  Suppose a surface is lumpy, as in Figure
10-3k, and has the shape of the graph
 y = |sin x|. Find yav, the average value of y.
Then find the rms deviation, using the
fact that

Deviation = y – yav
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Based on your answer, would this surface be

Figure 10-3k

10-4   Minimal Path Problems
Suppose you are swimming in the ocean. When you finish, you could swim
straight to the place on the shoreline where you left your towel, or you could
swim straight to the shoreline, then walk to the towel (Figure 10-4a). Swimming
straight to the towel minimizes the distance you must go, but you swim slower
than you walk, so this might increase your time. Heading for the closest point on
the shoreline minimizes your time in the water, but increases your total
distance. A third alternative, which might reduce your total time, is to swim to
some point between the towel and the closest point on the shoreline, shortening
the walk while increasing the swim by just a little.

Figure 10-4a

Your objective in this section will be to analyze such problems to find the
minimal path, in the case, the path which takes the least total time.

Suppose you are 200 yd from the beach and, in the minimum possible time, you
want to get to the place where you left your towel. You can walk on the beach at
110 yd/min but can swim only 70 yd/min. Let x be the distance from the closest
point on the beach to the point where you will make landfall (Figure 10-4b).
What value of x minimizes your total time if your towel is

a.  600 yd from the closest point

b.  100 yd from the closest point
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EXAMPLE 1

OBJECTIVE

time or cost.
two different media at different rates, find the path that minimizes a total
Given a situation in which something goes from one place to another through

rougher or smoother than a sinusoidal
surface with the same maximum distance
between high points and low points, as in
Figure 10-3k?



Figure 10-4b

Solution a.  Swim distance is
Walk distance is (600 – x), where x 600.

 total time will be

To find the minimum total time, find the distance, x, at which t stops
decreasing and starts increasing. You can do this graphically by plotting t
as a function of x and tracing (Figure 10-4c). The minimum is somewhere
between x = 160 and x = 170.

You can find the exact value algebraically by finding the value of x that
makes the derivative of t equal to zero.

Figure 10-4c

Take the reciprocal of both sides,
then multiply by x.

+164.9... is in the desired range, thus
confirming the graphical solution.

Head for a point about 165 yd from the closest point on the beach.

b.  If the towel is only 100 yd from the closest point on the beach, the domain
of x is [0, 100], and the equation for t is

Figure 10-4d

Figure 10-4d shows the graph of this equation. Surprisingly, the minimum
is at the same value, x  165, as in part a. The 600 or 100 disappears when
you differentiate, so the zero of the derivative is not affected by this
number. However, 165 is out of the domain. It is beyond the towel! By
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70(x2 + 2002)1/2 = 110x

4900(x2 + 2002 ) = 12100x2

4900(2002 ) = 7200x2

if and only if

x =  164.9915...



the graph you can see that the minimum time comes at the endpoint,

time to do the calculations!)
In Problem Set 10-4, you will work more minimal path problems. Then you will
show that there is a remarkably simple way to find the minimal path if you do
calculus algebraically on the general case instead of “brute-force” plotting on a
particular case.

Problem Set 10-4

Quick Review

Q1.  Solve: 

Q2.  Differentiate: 

Q3.  Integrate:

Q4.  Differentiate: y = sin– 1 3x

Q5.  Integrate:

Q6.  Differentiate: y = tanh x

Q7.  Going 60 cm at 40 cm/h takes —?— h.

For Problems Q8–Q10, use the velocity-time
function in Figure 10-4e:

Figure 10-4e

Q8.  At what time(s) is the moving object at rest?

Q9.  At what time(s) does the moving object change
directions?

Q10.  The acceleration function has a local maximum
at time(s) —?—.

A.  t = 2 B.  t = 0 and t = 3 C.  t = 3
D.  t = 4 E.  t = 0

1.  Swim-and-Run Problem: In a swim-and-run
biathlon, Ann Athlete must get to a point on
the other side of a 50-m-wide river, 100 m
downstream from her starting point
(Figure 10-4f). Ann can swim 2 m/s and run
5 m/s. Toward what point on the opposite
side of the river should Ann swim to minimize
her total time?

Figure 10-4f

2.  Scuba Diver Problem: A scuba diver heads for a
point on the ocean floor that is 30 m below the
surface and 100 m horizontally from the point
where she entered the water. She can move
13 m/min on the surface but only 12 m/min as
she descends. How far from her entry point
should she start descending to reach her
destination in minimum time?
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x = 100.

Head straight for the towel.

These problems are sometimes called “drowning swimmer” problems, because
they are often phrased in such a way that a person on the beach must rescue a
drowning swimmer and wants to take the path that reaches the swimmer in a
minimum length of time. (The swimmer might drown if one were to take all that



3.  Pipeline Problem: Earl owns an oil lease. A new
     well in a field 300 m from a road is to be
     connected to storage tanks 1000 m down that
     same road (Figure 10-4g). Building pipeline
     across the field costs $50 per meter, whereas
     building it along the road costs only $40 per
     meter. How should the pipeline be laid out to
     minimize its total cost?

Figure 10-4g

4.  Elevated Walkway Problem: Suppose you are
building a walkway from the corner of one
building to the corner of another building
across the street and 400 ft down the block. It
is 120 ft across the street (Figure 10-4h).
Engineering studies show that the walkway will
weigh 3000 lb/ft where it parallels the street
and 4000 lb/ft where it crosses the street. How
should you lay out the walkway to minimize its
total weight?

Figure 10-4h

5.  Minimal Path Discovery Problem: In this
problem you will explore a relationship
between the minimal path and the two speeds
or costs per meter.

a.  In the Swim-and-Run Problem, let  be the
(acute) angle between the slant path and a
perpendicular to the river (Figure 10-4i, top).
Show that the sine of this angle equals the
ratio of the two speeds. That is, show
that sin  = 2/5.

b.  In the Pipeline Problem, let  be the acute
angle between the slant path and a

perpendicular to the road (Figure 10-4i,
bottom). Show that the sine of this angle
equals the ratio of the two costs per meter.
That is, show that sin   = 40/50.

Figure 10-4i

6.  Minimal Path Generalization Problem:
A swimmer is at a distance p, in feet, from
the beach. His towel is at the water’s edge, at
a distance k, in feet, along the beach
(Figure 10-4j). He swims at an angle  to a line
perpendicular to the beach and reaches land at
a distance x, in feet, from the point on the
beach that was originally closest to him. He can
swim at velocity s, in feet per minute, and walk
at velocity w, in feet per minute, where s < w.
Prove that his total time is a minimum if the
sine of the angle the slant path makes with the
perpendicular equals the ratio of the two
speeds. That is, prove this property:

Figure 10-4j
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Property: Minimal Path

For the path shown in Figure 10-4j, if
sin   = s/w, then the total time taken is a
minimum.



7.  Scuba Diver Problem Revisited: Work Problem 2
     again, using the minimal path property of
     Problem 6. Which way to work the problem is
     easier? Give one reason why mathematicians
     find general solutions to typical problems.

to adapt the property appropriately. Which way
to work the problem is easier? Give one reason
why mathematicians find general solutions to
typical problems.

9.  Pipeline Problem, Near Miss: Suppose you
present your boss with a solution to the
Pipeline Problem, but to save some trees, the
value of x must be a few meters from the
optimum value. Will this fact make much
difference in the total cost of the pipeline?
Explain how you reach your conclusion.

10. Calvin and Phoebe’s Commuting Problem:
Calvin lives at the corner of Alamo and Heights
Streets (Figure 10-4k). Phoebe lives on High
Street, 500 ft from its intersection with Heights
Street. Since they started dating, Calvin has
found that he is spending a lot of time walking
between the two houses. He seeks to minimize
the time by cutting across the field to a
point that is distance x, in feet, from the
Heights-High intersection. He finds that he can
walk 5 ft/s along the streets but only 3 ft/s
across the rough, grassy field. What value of x
minimizes Calvin's time getting to Phoebe's?

Figure 10-4k

11.  Robinson Crusoe Problem: Robinson Crusoe is
shipwrecked on a desert island. He builds a
hut 70 yd from the shore. His wrecked ship is
120 yd from the shore, 300 yd down from the
hut (Figure 10-4l). Crusoe makes many trips
between the hut and the ship and wants to
minimize the time each trip takes. He can walk
130 yd/min and pole his raft 50 yd/min. Where
on the shoreline should he moor his raft so
that he can make the trips in minimum time?

Figure 10-4l

12.  Robinson Crusoe Follow-Up Problem: Let 1 and
2 be the angles between the two paths and a

line perpendicular to the beach (Figure 10-4m)
in the Robinson Crusoe Problem. Use the
answer to the problem to calculate the
measures of these angles. Then show that the
ratio of the sines of the angles equals the ratio
of the two speeds. That is, show

Figure 10-4m

13.  Robinson Crusoe Generalization Problem:
Figure 10-4n shows the general case of the
Robinson Crusoe Problem, where the wreck, A,
and the hut, B, are a and b units from the
shore, respectively, and k units apart parallel to
the shore. The velocities through the water and
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8.  Elevated Walkway Problem Revisited: Work
     Problem 4 again, using the minimal path
     property of Problem 6. Weight equals distance
     multiplied by cost per foot (rather than
     distance divided by velocity), so you will have



Figure 10-4n

on land are v1 and v2, respectively. Prove that
the minimum time from wreck to hut is where

14.  Snell’s Law of Refraction Problem: About
350 years ago the Dutch physicist Willebrord
Snell observed that when light passes from one
substance into another, such as from air
to water, the rays bend at the interface
(Figure 10-4o). He found that the angles 1 and

2, which the incoming and outgoing rays
make with a perpendicular to the interface,
obey the rule

where v1 and v2 are the speeds of light in the
two substances.

Figure 10-4o

a.  In what ways does this real-world situation
correspond to the Robinson Crusoe
Problems?

b.  What can you conclude about the time that
light takes to travel from one point to

another when it passes through different
substances?

c.  When you are above the surface of the water
in a swimming pool, objects on the bottom
always appear closer to the surface than
they actually are. Explain how this can be
true and what this fact tells you about the
relative speeds of light in air and in water.

15.  Journal Problem: Update your journal with
what you’ve learned. You should include such
things as

•  The one most important thing you’ve
learned since your last journal entry

•  The big difference between displacement
and distance

•  The meaning of average value of a function
•  The main idea behind minimal path

problems

•  Any techniques or ideas about objects in
motion that are still unclear
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10-5   Maximum and Minimum Problems

The technique is similar to that in the previous section and in the analysis of
plane and solid figures from Section 8-3. Therefore, no specific examples are
given in this section.

Problem Set 10-5

Q1.  If  f(x) = x sin x, find (x).

Q2.  If  g(x) = x ln x, find (x).

Q3.  If  h(x) = xex, find  h(x) dx.

Q4.  The minimal path problems of Section 10-4
are equivalent to what law from physics?

Q5.  ln (exp x) = —?—

Q6.  Sketch a paraboloid.

Q7.  Sketch:  y = x1/3

Q8. |velocity|d(time) = total distance or net
displacement?

Q9.  Who is credited with inventing calculus?

Q10.  The sum of 1 + 2 + 3 + · · · + 98 + 99 + 100
is —?—.

A. 303 B. 5,000 C. 5,050
D. 5,151 E. 10,000

1.  Rocket Problem: Jeff is out Sunday driving in
his spaceship. As he approaches Mars, he fires
his retro rockets. Starting 30 s later, his

distance from Mars is given by

where D is in thousands of miles and t is in
minutes. Plot the graphs of D and D' versus t.
Sketch them on your paper. What are his
maximum and minimum distances from Mars
in the time interval [0.5, 3]? Justify your
answers.

2.  Truck Problem: Miles Moore owns a truck. His
driver, Ouida Liver, regularly makes the 100-mi
trip between Tedium and Ennui. Miles must pay
Ouida $20 per hour to drive the truck, so it is
to his advantage for her to make the trip as
quickly as possible. However, the cost of fuel
varies directly with the square of the speed
and is $0.18 per mile at a speed of 30 mi/h.
The truck can go as fast as 85 mi/h. Plot cost
and derivative of cost versus speed. Sketch the
graphs. What speed gives the minimum total
cost for the 100-mi trip? (Ignore the cost of
tickets, and so on, for going over the speed
limit.) Justify your answer.

3.  Number Problem I: Find the number that
exceeds its square by the greatest amount. That
is, find x if x – x2 is to be as large as possible.
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Given a situation in the real or mathematical world where a function is to be
maximized or minimized, write an equation for the function and find the
maximum or minimum values.

in Motion and Elsewhere
In Section 10-4, you found minimal paths, whereby one could travel between
points in the least time or build structures between points for the least cost. In
this section you will find maximum and minimum values in other phenomena.

OBJECTIVE

Quick Review



4.  Number Problem II: Find the number greater

if she studies for time t, in hours. She also
realizes that the longer she studies, the more
fatigued she will become. So, her actual score
will be less than the potential score. Her
“fatigue factor” is

This is the number she must multiply by the
potential score to find her actual grade, G. That
is, G = S · F.

a.  Sketch the graphs of S, F, and G versus
time, t.

b.  What is the optimal number of hours for
Fran to study? That is, how long should she
study to maximize her estimated grade, G?

c.  How many points less than the optimum
will Fran expect to make if she studies
i. 1 hour more than the optimum
ii. 1 hour less than the optimum

6.  Motor Oil Viscosity Problem: The viscosity
(resistance to flow) of normal motor oil
decreases as temperature goes up.
All-temperature oils have roughly the same
viscosity throughout their range of operating
temperatures. Suppose that 10W-30 motor oil
has viscosity

 µ = 130 – 12T + 15T2 – 4T3

where µ (Greek letter “mu”) is the viscosity in
centipoise, T  is the temperature in hundreds of
degrees Celsius, and the equation applies for
temperatures from 0°C through 300°C.

a.  Find the temperature in the domain at which
the maximum viscosity occurs.

b.  Find the minimum viscosity in the domain.

c.  Suppose that the oil heats in such a way that
T = where t is time in minutes. At what
rate is the viscosity changing when the
temperature is 100°C?

7.  Cylinder-in-the-Cone Problem I: A right circular
cone has height 6 in. and base radius 10 in.
A right circular cylinder is inscribed in the
cone, coaxial with it.

a.  Plot the graphs of volume and total surface
area of the cylinder as a function of its
radius. Sketch the graphs.

b.  What radius and height of the cylinder give
it the maximum volume? The maximum
total surface area? Do the two maxima occur
at the same radius?

8.  Cylinder-in-the-Cone Problem II: A cone of
radius 6 in. and height 18 in. has a cylinder
inscribed in it. The cylinder’s height starts at
0 in. and increases at 2 in./min.

a.  When the altitude of the cylinder is 12 in.,
will its volume be increasing or decreasing?
At what rate?

b.  What will be the maximum volume of the
cylinder in the time interval [0, 9]? Justify
your answer.

c.  What will be the maximum volume of the
cylinder in the time interval [4, 6]?

9.  Quartic Parabola Tank Problem: A water
storage tank has the shape of the surface
formed by rotating about the y-axis the graph
of y = x4 + 5, where x and y are in meters
(Figure 10-5a). At what rate is the depth of the
water changing when the water is 3 m deep in
the tank and draining at 0.7 m3/min?

Figure 10-5a
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than or equal to 2 that exceeds its square by
the greatest amount.

5.  Fran’s Optimal Study Time Problem: Fran forgot
to study for her calculus test until late Sunday
night. She knows she will score zero if she
doesn’t study at all and that her potential score
will be



10.  Cylinder in Paraboloid Problem: A paraboloid is

Figure 10-5b

a.  If the radius of the cylinder is 1.5 units and
is increasing at 0.3 units per second, is the
volume of the cylinder increasing or
decreasing? At what rate?

b.  What is the maximum volume the cylinder
could have? Justify your answer.

11.  Pig Sale Problem: Ann’s pig weighs 1000 lb and
is gaining 15 lb/day. She could sell it for $900
at today’s price of $0.90/lb, or she could wait
until it gains some more weight and hope to
get more than $900. Unfortunately, the price
per pound is dropping at $0.01/lb each day. So,
she must decide when is the best time to sell.
a.  Write functions for weight and for price per

pound in terms of the days after today. Then
write a function for the total amount Ann
will get for the pig.

b.  Find the time when the derivative of total
amount will be zero. Convince Ann that at
this time the total amount is a maximum,
not a minimum.

c.  If Ann sells at the time in part b, how much
will she get for the pig?

12.  Bridge Problem: Suppose that you work for a
construction company that has a contract to
build a new bridge across Scorpion Gulch,
downstream from the present bridge (Figure
10-5c). You collect information from various
sources to decide exactly where to build the
bridge. From the surveyors, you find that the
width, in ft, of the gulch is

Width = 10(x2 – 8x + 22)

where x is the number of miles downstream
from the old bridge. The depth, in ft, of the
water is

Depth = 20x + 10 ft

Figure 10-5c

a.  Structural engineers specify that you can
build the bridge in water as deep as 130 ft,
but that it can be no more than 310 ft long.
The city traffic department specifies that
the bridge must be at least 1 mi downstream
from the present bridge. What is the domain
of x?

b.  What are the shortest and longest lengths
the bridge could be?

c.  The cost of building the bridge is
proportional to the product of the length of
the bridge and the depth of the water. Where
should the bridge be built to minimize the
cost? Justify your answer.

d.  Is the shortest bridge also the cheapest
bridge? Explain.

10-6   Vector Functions for Motion in a Plane
Until now you have considered velocity and acceleration of an object moving
back and forth in a line. The displacement, x, from some fixed point depends on
time, t. In this section you will consider objects moving along a path in a plane.
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formed by rotating the graph of y = 4 – x2

about the y-axis. A cylinder is inscribed in the
paraboloid (Figure 10-5b).



                            

Both x and y will depend on t. For such motion the velocity and acceleration

changes both the object’s speed and direction, thus pulling it into a curved path.
You can represent the position of the object by a position vector, which tells the
direction and distance from the origin to the object at any given time, t.

Figure 10-6a

You can use parametric equations to write the position vector as a function of
time. You can differentiate the resulting vector function to find velocity and
acceleration vectors.

Background: Vectors

A vector quantity is a quantity that has both magnitude and direction.
Quantities that have only magnitude are called scalar quantities. Volume, mass,
time, distance (not displacement!), and money are scalar quantities. You can
represent them by points on a scale such as a number line. (The word scalar
comes from the Latin scalaris, meaning “like a ladder.”)

You can represent vector quantities mathematically by directed line segments,
called simply vectors. An overhead arrow such as  denotes a variable used for
a vector (Figure 10-6b). The length of the line segment represents the magnitude
of the vector quantity, also called its absolute value or its norm. The direction
the segment points represents the direction in which the vector quantity acts.

Figure 10-6b
Two vectors are equal if and only if they have the same magnitude and the same
direction (Figure 10-6c, left). You are free to move vectors around from place to
place, as long as you keep them pointing the same direction and don’t change
their lengths. The opposite of a vector, written – , is a vector of the same
magnitude as  but pointing in the opposite direction (Figure 10-6c, middle). The
zero vector is a vector of magnitude zero. It can be pointing in any direction!

Figure 10-6c
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OBJECTIVE Given the equation of a vector function for the position of a moving object,
find the first and second derivatives of position with respect to time, and
interpret the way these vectors influence the motion of the object.

may act at an angle to each other. Therefore, it is convenient to use vectors to
represent the object’s position, velocity, and acceleration.

Figure 10-6a shows the path a moving object might take in a plane. Its velocity
vector points in the direction of motion and has magnitude (length) equal to
the speed of the object. Its acceleration vector, acting at an angle to the path,



              

You add vectors by moving one of them so that its tail is at the head of the other

Figure 10-6d

Figure 10-6e

Vectors are most easily worked with in a
coordinate system (Figure 10-6e). Any
vector  is a sum of a vector in the x-direction
and one in the y-direction (called
components of the vector). If  and  are
unit vectors in the x- and y- directions,
respectively, then

Other symbols are sometimes used
for vectors because they are easier to type
or easier to write. Some of these are shown
in the box.

The dot product (or inner product or scalar product) of two vectors is the
number you get by placing the vectors tail-to-tail (Figure 10-6f), then multiplying
their magnitudes and the cosine of the angle between the vectors; that is,
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TERMINOLOGY:  Other Symbols for Vectors

Vector  may be written in these formats:
(x,
y)(x, y )

v = x + y

Bracket format
Ordered-pair format, easy if used in vector context but
may be confused with coordinates of a point
Boldface format, easy to typeset but difficult to write

The kite surfer moves in a
direction dictated by the
 force of the wind and the
 force of the current.

Figure 10-6f

(Figure 10-6d). The sum is the vector from the beginning of the first vector to
the end of the second. You subtract vectors by adding the opposite of the
second vector to the first one.



In Problem 18 of Problem Set 10-6, you will show that the dot product is also

Figure 10-6g

The vector projection, , of  on  is a vector in the direction of  , with
magnitude p. That is,  where  is a unit vector in the direction of  , onto
which  is projected.

Figure 10-6h

Derivatives of a Position Vector Function—Velocity
and Acceleration

The derivative of a scalar-valued function is the limit of   as 
approaches zero. Similarly the derivative of a vector function, , is

Figure 10-6h shows vector  to the position of a moving object at time t.
Vector  is the vector from this position to a new position at time t + .
You can resolve vector  into horizontal and vertical components, 
and   So,

 distributes and can be associated with
 and .

The limit of a sum property applies
to vectors.

Definition of derivative. (The unit vectors
are constant.)

Thus, if the components of a position vector are specified by functions of t, you
can find  simply by differentiating each function and multiplying the
answers by  and . As you will see in Example 1, the resulting vector is tangent
to the path of the moving object. By the Pythagorean theorem, its length is
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equal to

where  and  The dot product is useful for finding
the length of a “shadow” that one vector would cast on another. This scalar
projection, p, of  on  is given by

as shown in Figure 10-6g. Multiplying by a clever form of 1 makes a dot product
appear on the right side of the equation.



But dL/dt is the speed of the object along its curved path. Thus,  is the

Given the vector equation

for the position, l (t), of a moving object, where distances are in feet and time t
is in seconds,

a.  Plot the path of the object. Sketch the result. Then show the position
vectors  (0), (0.5), (1), (1.5), and (2). Interpret the location of (2).

b.  Calculate the difference vector  = (1) – (0.5) by subtracting the
respective components. Sketch  with its tail at the head of  (0.5). Where
is the head of ?

c.  The average velocity vector of the object for interval [0.5, t ] is the
difference quotient

Find the average velocities for the time intervals [0.5, 1] and [0.5, 0.6].
Sketch these vectors starting at the head of the position vector (0.5).

d.  Find the (instantaneous) velocity vector (0.5). Plot it starting at the end of
(0.5), thus showing that it is tangent to the path. How do the average

velocity vectors in part c relate to (0.5)?

e.  Find the speed of the object at time t = 0.5.

Solution a.  With your grapher in parametric mode, plot

x = 5 sin t
 y = 5 cos2 t
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EXAMPLE 1

 
 
 
 
 
 
 
 

The speed of the moving object equals 
is the acceleration vector, which lies on the concave side of the path.
of the object, in the direction of motion, and 

 is the velocity vector, which is tangent to the path

velocity vector for the moving object. You can find the acceleration vector by
differentiating the velocity vector’s components, the same way you can find the
velocity from the displacement.

PROPERTIES:   Velocity and Acceleration Vectors

If is the position vector for a moving object, then



If you use the grid-on format, it will be easier to sketch the graph on dot

The heads of the vectors lie on the path. (That's why they are called
position vectors.) They progress clockwise from the vertical. At time t = 2,
the object has started back in the counterclockwise direction, as you can
see by tracing.

b.

Figure 10-6j shows this difference vector. If you start this vector at the head
of  (0.5), then ends at the head of  (1), as you can see by counting
spaces on the dot paper.

Figure 10-6i Figure 10-6j

c.
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paper (Figure 10-6i). The position vectors are



 

Figure 10-6k shows these average vectors plotted on Figure 10-6j. You plot

Figure 10-6k Figure 10-6l

d.

Figure 10-6l shows that   is tangent to the path at the position (0.5). The
average velocity vectors approach  as a limit as  approaches zero.

e. Speed =

=    6.079...

Thus, the object is traveling at about 6.1 ft/s.

Example 2 shows how to find the acceleration vector and how it helps interpret
the motion.

For parts a–f, use the vector equation

for the position of a moving object, as in Example 1.

a.  Find vector equations for the velocity vector,  (t), and the acceleration
vector, (t).

b.  On a graph of the path of the object, sketch the position vector  (4) at
time t = 4. From the head of  (4), sketch the vectors (4) and (4)

c.  How fast is the object going at time t = 4?

d.  Compute  (4), the tangential component of the acceleration (parallel to
the path).

e.  Is the object speeding up or slowing down at t = 4? How can you tell? At
what rate is it speeding up or slowing down?

f.  Compute
path). Toward which side of the path does (4) point? What effect does
this component have on the motion of the object?

(4), the normal component of acceleration (perpendicular to the
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EXAMPLE 2

=  

them by counting spaces on the dot paper.



 

Solution

2 sin t cos t = sin 2t.

b.  Substituting 4 for t  gives

Figure 10-6m shows (4) and (4) drawn on a graph plotted as in
Example 1. The vectors are drawn by counting spaces on the dot paper.
Note that although (4) is tangent to the path, the acceleration is at an
angle to the path.

Figure 10-6m

c.  Speed is equal to the absolute value of the velocity.

Speed

Thus, the object is going about 5.93 ft/s.

d.  The tangential acceleration,  (4), parallel to the path, is the vector
projection of (4) on  (4) (Figure 10-6n). First find the scalar projection, p.

Figure 10-6n To find a vector in the direction of (4) with length 3.2998... , pointed the
other way, multiply the scalar projection, –3.2998... , by a unit vector in the
direction of (4).
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a.  You can find the velocity as you did in Example 1. You can find the
acceleration by differentiating the velocity vector.

From trigonometry,



object is slowing down when t = 4. Both the obtuse angle between (4) and
(4) (Figure 10-6n) and the negative value of p, the scalar projection of (4)

on  (4), reveal this fact. The rate at which the object is slowing equals the
magnitude of (4), namely, |p|, or 3.2998... . So the object is slowing down
at about 3.3 (ft/s)/s when t = 4.

f.  As Figure 10-6n shows, the normal acceleration, (4), perpendicular to the
path, equals the vector that gives (4) when added to  (4). Therefore,

The normal component of acceleration will always point toward the
concave side of the graph, as Figure 10-6n shows. It is responsible for
pulling the object out of a straight-line path and into a curved path.

From Example 2, you can reach these conclusions about acceleration vectors.

In Example 3, you will find the distance traveled by an object moving in a
curved path.
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PROPERTY:  Components of the Acceleration Vector

• The acceleration points toward the concave side of the path of the object.

• The scalar projection, p, of  on  is given by

• The tangential component, , of the acceleration is the vector projection
of  on  . It is a vector in the direction of   with magnitude |p|. It changes
the speed of the object. The tangential component is given by

where  is a unit vector in the direction of  .
• | | = |p| is the rate of change of speed of the object.

• If  p > 0, the angle between  and   is acute and the object is speeding up.
If  p < 0, the angle between  and   is obtuse and the object is slowing
down.

• The normal component of acceleration, , changes the direction of
motion. Because  the normal component can be found by

e.  The tangential acceleration points in the direction opposite to  (4), so the



EXAMPLE 3

By numerical integration.

Check: A circle of radius 5 approximates the curve. A 4-radian arc of the circle
has length (4/2 )(2  · 5) = 20, which compares well with 19.72.

Problem Set 10-6

Q1.  Integrate: 

Q2.  Differentiate: x2e3x

Q3.  Integrate: 

Q4.  Evaluate: 

Q5.  Find if the integral equals 11 when x = 2.

Q6.  Find dy/dx if x = e3t  and y = tan 6t.

Q7.  The function in Problem Q6 is called a(n) —?—
function.

Q8.  Integrate:  ln x dx

Q9.  Simplify: e2 ln x

Q10.  In polar coordinates, the graph of  r = 
is a(n) —?—.

A. Ray B. Circle C. Parabola
D. Line E. Spiral

1.  Figure 10-6o shows the path of an object
moving counterclockwise. On a copy of the
figure, sketch the position vector to the point
shown on the path. Sketch a velocity vector and
an acceleration vector, with tails at the head of
the position vector if the object is slowing
down.

Figure 10-6o

2.  Repeat Problem 1 if the object is speeding up.

3.  A particle moves with position vector
 where x and y  are

distances in centimeters and t is time in
seconds.

a.  Find the particle’s velocity vector at time
t = 1. At this time, is its x-coordinate
increasing or decreasing? How fast is the
particle going?

b.  How far did the particle travel between t = 0
and t = 1? How far is the particle from the
origin at that time?

c.  Find the acceleration vector at time t = 1.
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Quick Review

dL

L

19.7246...      19.72 ft

For the object in Example 1, (t)= (5 sin t)  + (5 cos2 t) . Find the distance
traveled by the object in the time interval [0, 4].

Recognize that a vector equation is the same as two parametric equations. The
distance the object travels thus equals the arc length of a parametric curve
(Section 8-5).

Solution



 

4.  Figure 10-6p shows the paths of two moving

Figure 10-6p

a.  Find the velocity and acceleration of each
particle at time t = 1. How fast is each going
at that time?

b.  How far does Particle 1 go along its curved
path between t =1 and t = 4?

c.  The paths of the particles cross each other
at two points in the figure. Do the particles
collide at either of these points? How can
you tell?

5.  Parabolic Path Problem I: An object moves
along the parabolic path (Figure 10-6q)

where distance is in feet and time is in seconds.

Figure 10-6q

a.  Find equations for  (t) and (t).
b.  Calculate (0.5), (0.5), and (0.5). On a

copy of Figure 10-6q, plot   as a position

vector, and plot  and  with their tails at
the head of  . Explain why the three vectors
are reasonable.

c.  Based on the graphs of the vectors in part b,
does the object seem to be speeding up or
slowing down at time t = 0.5 s? How can
you tell?

d.  Verify your answer to part c by finding the
tangential and normal components of

(0.5). Sketch these components on your
sketch from part b, starting at the tail of

.e.  At what rate is the object speeding up or
slowing down at t = 0.5?

f.  Calculate  (7),  (7), and (7). Sketch these
vectors on your sketch from part b. At time
t = 7, does the object seem to be speeding
up or slowing down?

g.  Show that at time t = 0 the acceleration
vector is perpendicular to the path. How do
you interpret this fact in terms of motion of
the object at t = 0?

6.  Parabolic Path Problem II: An object moves
along the parabolic path (Figure 10-6r)

where distance is in feet and time is in seconds.

Figure 10-6r

a.  Find equations for (t) and (t).

b.  Calculate  (1),  (1), and (1). On a copy of
Figure 10-6r, plot  as a position vector, and
plot   and  with their tails at the head of  .
Explain why the three vectors are reasonable.
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particles. For times t  0 min, their position
vectors (distances in meters) are given by

Particle 1: 
Particle 2: 



c.  Based on the graphs of the vectors in part b,

e.  At what rate is the object speeding up or
slowing down at t = 1?

f.  Calculate (10.5), (10.5), and (10.5).
Sketch these vectors on your sketch from
part b. At time t = 10.5, does the object
seem to be speeding up or slowing down?

g.  What is the first positive value of t at which
the object is stopped? What is the
acceleration vector at that time? Plot this
vector on your sketch from part b. Surprising?

7.  Elliptical Path Problem: An object moves along
the elliptical path (Figure 10-6s)

where time is in seconds and distances are
in feet.

Figure 10-6s

a.  On your grapher, plot the path followed by
the heads of the velocity vectors if their tails
are placed at the heads of the respective
position vectors. You can use parametric
mode to plot  + . Sketch the result on a
copy of Figure 10-6s.

b.  Sketch the velocity vectors for each integer
value of t from 0 through 12. You may find
their beginnings by tracing the  vector and
their ends by tracing   + .

c.  Prove that the heads of the velocity vectors
in part b lie along an ellipse.

d.  On your grapher, plot the path followed by
the heads of the acceleration vectors when
their tails are placed at the heads of the
respective position vectors. Sketch the result
on the copy of Figure 10-6s from part a.

e.  Sketch the acceleration vectors as you did
for the velocity vectors in part b. What
seems to be true about the direction of each
of these acceleration vectors?

8.  Spiral Path Problem: An object moves on the
spiral path (Figure 10-6t)

where distance is in miles and time is in hours.

Figure 10-6t

a.  Find vector equations for (t) and
(t).b.  Find the position, velocity, and acceleration

at t = 8.5 and t = 12. On a copy of
Figure 10-6t, plot (8.5) and (12), thus
showing that these vectors really do
terminate on the path.

c.  Plot (8.5) and (8.5), starting at the head
of (8.5). Do the same for (12) and (12).
Explain why these velocity vectors have the
proper relationships to the path.

d.  At t = 8.5 and t = 12, is the object speeding
up or slowing down? How can you tell?

e.  Find the tangential and normal components
of the acceleration vector at t = 12. Show
these components on the copy of
Figure 10-6t from part b.
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does the object seem to be speeding up or
slowing down at time t = 1? How can you tell?

d.  Verify your answer to part c by finding the
tangential and normal components of  (1).
Sketch these components on your sketch
from part b, starting at the tail of .



along the parabola y = x2. At various times, t,
the object is at various points, (x, y), where x
and y are in centimeters and t is in seconds.
a.  Write the position vector (x) as a function

of x alone (and the two unit vectors  and  ,
of course!). Then find the velocity vector

(x) as a function of x and dx/dt.

b.  Assume that the object moves in such a
way that x decreases at a constant rate
of 3 cm/s. Find (2). How fast is the object
moving when x = 2?

c.  Sketch the graph of the parabola and draw
(2) and (2) at the point (2, 4). Explain why

the graph of (2) is reasonable.

d.  Find the acceleration vector, (x), and
evaluate (2). Sketch (2) on your graph.

e.  Find the tangential and normal components
of acceleration at x = 2. Show these
components on your graph. Based on the
graphs, why are your answers reasonable?

f.  When x = 2, is the object speeding up or
slowing down? Justify your answer.

g.  The object changes its motion and goes in
such a way that its speed along its curved
path is 5 cm/min. Write an expression in
terms of x for dL, the differential of arc
length along the curve. Find dx/dt
when x = 2.

10.  Velocity Vector Limit Problem: An object
moves along one petal of a four-leafed rose
(Figure 10-6u),

On a copy of this figure, plot (1). From the
end of (1), plot the average velocity difference
quotient vectors,

for t = 2, t = 1.5, and t = 1.1. Then plot the
velocity vector,  (1). How does the velocity
vector relate to the path of the object and to
the average velocity vectors?

Figure 10-6u

11.  Find the distance traveled by the object in
Problem 5 from time t = 0 to t = 2.

12.  Find the distance traveled by the object in
Problem 7 in one complete cycle.

13.  Baseball Problem: Saul Teen pitches a baseball.
As it leaves his hand, it moves horizontally
toward home plate at 130 ft/s (about 90 mi/h),
so its velocity vector at time t = 0 s is

The minus sign is used because the distance
from the plate is decreasing. As the ball moves,
it drops vertically due to the acceleration of
gravity. The vertical acceleration is 32 (ft/s)/s.
Assuming that there is no loss of speed due to
air resistance, its acceleration vector is

a.  Write an equation for (t), the velocity as a
function of time.

b.  When Saul releases the ball at time t = 0, it
is at y = 8 ft above the playing field and
x = 60.5 ft from the plate. Write the position
vector, (t) = x(t)  + y(t) .

c.  Saul’s sister, Phyllis, stands at the plate
ready to hit the ball. How long does it take
the ball to reach the plate at x = 0? As it
passes over the plate, will it be in Phyllis’s
strike zone, between y = 1.5 ft and
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f.  How fast is the object going at t = 12? At
what rate is the speed changing then?

g.  On your grapher, plot the path followed by
the heads of the acceleration vectors when
they are placed with their tails at the heads
of the respective position vectors. What
graphical figure does the path appear to be?
Prove algebraically that your conjecture
is correct.

9.  Parabolic Path Problem III: An object moves



 y = 4.5 ft above the plate? Show how you
 reach your conclusion.

d.  Saul pitches another time. Phyllis hits the
     ball, making it leave a point 3 ft above the
     plate at an angle of 15 deg to the horizontal,
     going at a speed of 200 ft/s. What are the
     initial horizontal and vertical velocities?
     Assuming that the horizontal velocity stays
     constant and the vertical velocity is affected

by gravity, write the position vector (t) as a
function of the number of seconds since she
hit the ball.

e.  Will Phyllis make a home run with the hit in
part d? The fence for which the ball is
heading is 400 ft from the plate and 10 ft
high. You may do this algebraically or by
plotting the position graph in parametric
mode and seeing where the ball is when
x = 400.

14.  Sinusoidal Path Problem: An object moves along
the graph of y = sin x (Figure 10-6v), where x
and y are in meters and t is in minutes. Its
x-acceleration is 3 m/min2, a constant. At time
t = 0, the object is at the point (0, 0) and has
velocity equal to the zero vector.

Figure 10-6v

a.  Find (t), the position vector as a function
of time.

b.  How fast is the object moving when it is at
the point (6, sin 6)?

15.  Figure Skating Problem: One figure that roller
skaters do in competition has a large loop and
a small loop (Figure 10-6w). Specifications by
the Roller Skating Rink Operations Association
of America require the outer loop to be 240 cm
from the origin where the loops cross and the
inner loop to be 60 cm from the origin. The
figure closely resembles a lima on, with
polar equation

d = a + b cos t

where d is the directed distance from the
origin at angle t, in radians, and a and b
are constants.

Figure 10-6w

a.  At t = 0, d = 240. At t = , d = –60 so that
the point is on the positive x-axis. Find the
particular equation of this lima on.

b.  Suppose that Annie skates with an angular
velocity of 1 rad/s (radians per second). So,
t is also her time in seconds, and her
position vector is

where d is given by the equation in part a.
Find Annie’s velocity vector at time t = 1.
How fast is she going at that time?

c.  Find Annie’s acceleration vector at t = 1.
Find the tangential and normal components
of the acceleration. Is she speeding up or
slowing down at this time? At what rate?
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16.  River Bend Problem: A river meanders slowly
       across the plains (Figure 10-6x). A log floating
       on the river has position vector

Figure 10-6x

a.  When t = 14, what are the log’s velocity and
acceleration vectors? How fast is it going?
What are its tangential and normal
acceleration vectors? Is it speeding up or
slowing down? At what rate?

b.  How far does the log move along its curved
path from t = 0 to t = 14? What is its average
speed for this time interval?

17.  Roller Coaster Problem: Assume that a roller
coaster track is a prolate cycloid (Figure 10-6y)
and that the position of a car on the track, in
feet, at time t, in seconds, is

a.  Write the velocity and acceleration vectors
as functions of t.

b.  Find the velocity and acceleration vectors at
the point shown, where t = 2.5. Plot these
vectors on a copy of Figure 10-6y, starting at
the point on the graph.

Figure 10-6y

c.  Find the tangential and normal components
of the acceleration vector at t = 2.5.

d.  Analyze the motion of the roller coaster at
t = 2.5. For instance, how can you tell that
the velocity vector is reasonable? Is the
normal component of acceleration
reasonable? How fast is the roller coaster
going? Is it speeding up or slowing down?

e.  Show that the acceleration vector is straight
down when the roller coaster is at a high
point and straight up when it is at a
low point.

f.  How long is the track from one high point to
the next?

18.  Dot Product Problem: The dot product of two
vectors is defined to be

If  1 = x1 + y1  and 2 = x2  + y2 , show, as in
Figure 10-6z, that

Figure 10-6 z

Assume the distributive property,
 You will need to

figure out what  equal, based
on the angles between these unit vectors.
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where distances are in miles and time is
in hours.



19.  Three-Dimensional Vector Problem:
       A three-dimensional vector (Figure 10-6aa) can 
       be resolved into three mutually perpendicular 
       components. If , , and  are unit vectors in 
       the x-, y-, and z-directions, respectively, then 
       position vector  from the origin to the point 
       (x, y, z) can be written 

Figure 10-6aa

Suppose that a moving object’s position is
given by the vector function

(t) = (10 sin 0.8t )  + (10 cos 0.6t) + (6t0.5)

Find the velocity and acceleration vectors at
time t = 1. At that time, is the object speeding
up or slowing down? Justify your answer.

20.  Curvature Project: Figure 10-6bb shows an
object moving with velocity  along a path. The
velocity makes an angle  (lowercase Greek
letter “phi”) with the positive x-axis. The
curvature of the path is  (lowercase Greek
letter “kappa”) defined to be the rate of change
of  with respect to distance, s, along the path.

Figure 10-6bb

That is,  is given by

a.  Explain why d /ds = (d /dt )(dt/ds).
b.  Explain why tan  = dy/dx, which equals

(dy/dt) / (dx/dt).
c.  Let  and  be the first and second

derivatives of x with respect to t, and
similarly for y. Show that the formula shown
in this box is true.

Calculation of Curvature

where the derivatives are taken with
respect to t.

d.  Figure 10-6cc shows the ellipse

x = 5 cos t
 y = 3 sin t

Show that the maximum curvature is at each
end of the major axis.

Figure 10-6cc

e.  Show that the curvature of a circle,

x = r cos t
 y = r sin t

is constant.
f.  Show that the curvature of this line is zero.

x = 5 cos2 t
 y = 3 sin2 t

g.  The radius of curvature is defined to be the
reciprocal of the curvature. Find the radius
of curvature of the ellipse in part d at the
right-most vertex (5, 0).
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h.  On your grapher, plot the ellipse in
     Figure 10-6cc. Then plot a circle tangent to
     the ellipse at point (5, 0), on the concave
     side of the ellipse, with radius equal to the
     radius of curvature. Sketch the result. This

10-7   Chapter Review and Test
In this chapter you have studied applications of calculus to motion. You
distinguished between distance traveled by a moving object and displacement
from its starting point. You made precise the concept of average velocity and
extended it to other average values. You extended your study of maximum and
minimum values to problems involving motion and then to other similar
problems. Finally, you applied the concepts to objects moving in a plane, using
vectors as a tool.

Review Problems

R0.  Update your journal with what you’ve learned
since your last entry. You should include such
things as
• The one most important thing you’ve

learned in studying Chapter 10
• Which boxes you have been working on in

the “define, understand, do, apply” table.
• The distinction among displacement,

velocity, and acceleration
• How to find average rates
• How to use rates of change to find extreme

values of functions
• How to analyze motion of objects moving in

two dimensions
• Any techniques or ideas about calculus that

are still unclear

R1.  Popeye and Olive Problem: Olive Oyl is on a
conveyor belt moving 3 ft/s toward the
sawmill. At time t = 0, Popeye rescues her and
starts running in the other direction along the
conveyor belt. His velocity with respect to the
ground, v, in ft/s, is given by

When does Popeye’s velocity become positive?
How far have he and Olive moved toward the

sawmill at this time? What is their net
displacement from the starting point at t = 25?
What total distance did they go from t = 0
to t = 25?

R2.  a.  The velocity of a moving object is given by
v(t) = 2t – 8 cm/min.

i.  Graph velocity versus time. Sketch
the result.

ii.  Find the net displacement between t = 1
and t = 4.

iii.  Find the total distance traveled between
t = 1 and t = 4.

b.  Acceleration Data Problem: An object
initially going 30 ft/s has the following
accelerations, in (feet per second) per
second, measured at 5-s intervals.

Time    Acceleration

0 2
5 8

10 1
15 0
20 –10
25 –20

Find the estimated velocities at the ends of
the time intervals. For each entry in the
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circle is called the osculating circle
(“kissing” circle). Appropriately, it is the
circle that best fits the curve at the point of
tangency.



table, explain whether the object was
speeding up, slowing down, or neither at
that instant.

b.  Average Value Problem: For the function
 f(x) = 6x2 – x3,

i.  Find the average value of f(x) on the
interval between the two x-intercepts.

ii.  Sketch a graph showing the graphical
significance of this average value.

iii.  Show that the average value is not equal to
the average of the two values of f(x) at the
endpoints of the interval.

R4.  a.  Campus Cut-Across Problem: Juana makes
daily trips from the math building to the
English building. She has three possible
routes (Figure 10-7a):

• Along the sidewalk all the way
• Straight across the grass
• Angle across to the other sidewalk

Figure 10-7a

She figures her speed is 6.2 ft/s on the
sidewalk and 5.7 ft/s across the grass.
Which route takes the least time? Explain.

b.  Resort Island Causeway Problem: Moe Tell
owns a resort on the beach. He purchases an
island 6 km offshore, 10 km down the beach
(Figure 10-7b). So that his guests may drive
to the island, he plans to build a causeway
from the island to the beach, connecting to a
road along the beach to the hotel. The road

will cost $5,000 per kilometer, and the
bridge will cost $13,000 per kilometer. What
is the minimum cost for the road and
causeway system? How much money is
saved by using the optimum path over what
it would cost to build a causeway from the
hotel straight to the island?

Figure 10-7b

R5.  a.  An object’s acceleration is given by
a(t) = 6t – t2 in the interval [0, 10]. Find:

i.  The maximum and minimum accelerations
for t in [0, 10]

ii. The maximum and minimum velocities
for t in [0, 10], assuming v(0) = 0

iii. The maximum and minimum
displacements from the starting point
for t in [0, 10]

b.  Inflation Problem: Dagmar lives in a country
where the inflation rate is very high. She
saves at a rate of 50 pillars (the currency in
her country) a day. But the value of money is
decreasing exponentially with time in such
a way that at the end of 200 days a pillar
will purchase only half of what it would at
the beginning.

i.  Find an equation for the purchasing power
of the money Dagmar has saved as a
function of the number of days since she
started saving.

ii.  On what day will Dagmar’s accumulated
savings have the maximum total
purchasing power? Justify your answer.
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R3.  a.  Average Velocity Problem: An object moves
            with velocity v(t) = sin ( t/6). Find the
            average velocity on the time interval

i.  [0, 3]
ii.  [3, 9]

iii.  [0, 12]



R6.  a.  Draw a sketch showing how the velocity and
            acceleration vectors are related to each other
            and to the curved path of an object moving
            in a plane if

b.  An object moves along the hyperbola shown
     in Figure 10-7c. The position vector at any
     time t, in minutes, is given by

i.  Find the position, velocity, and
acceleration vectors for the object at t = 1.

ii.  Draw these vectors at appropriate places
on a copy of the object’s path.

iii.  At t = 1, how fast is the object moving?
Is it speeding up or slowing down? At
what rate?

iv.  How far does the object move between
t = 0 and t = 1?

v.  Show that if the tails of the velocity
vectors are placed at the respective points
on the path, then their heads lie on one of
the asymptotes of the hyperbola.

Figure 10-7c

Concept Problems

C1.  One-Problem Test on Linear Motion and Other
Concepts: A particle moves up and down
the y-axis with velocity v, in feet per second,
given by

v = t3 – 7t2 + 15t – 9

during the time interval [0, 4]. At time t = 0, its
position is y = 4.
a.  Sketch the velocity-time graph.
b.  At what time(s) is the particle stopped?
c.  At what time is the velocity the maximum?

The minimum? Justify your answers.
d.  At what time(s) does the velocity-time graph

have a point of inflection?
e.  What is happening to the particle at the

point(s) of inflection?

f.  Find the position, y, as a function of time.
g.  Sketch the position-time graph.
h.  At what time is y the maximum? The

minimum? Justify your answers.

i.  At what time(s) does the position-time
graph have a point of inflection?

j.  What is happening to the particle at the
point(s) of inflection?

k.  Is y ever negative? Explain.
l.  What is the net displacement of the particle

from t = 0 to t = 4?

m.  How far does the particle travel from t = 0
to t = 4?

n.  What is the average velocity from t = 0
to t = 4?

o.  What is the average speed from t = 0
to t = 4?

C2.  New York to Los Angeles Problem: What is the
shortest possible time in which a person could
get from New York to Los Angeles? If you
ignore such things as getting to and from
airports, the type of vehicle used, and so forth,
the problem reduces to how much stress the
human body can take from acceleration and
deceleration (g forces). Recall that an
acceleration of 1 g is the same as the
acceleration due to gravity.
a.  What have you heard from the media or

elsewhere about the maximum g force the
human body can withstand?
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i.  The object is speeding up.

ii.  The object is slowing down.
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Los Angeles?
c.  You must be stopped both at the beginning

of the trip and at the end. What, then, is the
minimum length of time a person could take
to get from New York to Los Angeles?

C3.  Spider and Clock Problem: A spider sitting on a
clock face at the “12” attaches one end of its

b.  About how far is it from New York to

web there 25 cm from the center of the clock.
As the second hand passes by, it jumps onto it
and starts crawling toward the center at a rate
of 0.7 cm/s (Figure 10-7d). As the second hand
turns, the spider spins more web. The length
of this web depends on the number of seconds
the spider has been crawling and can be
calculated using the law of cosines. Find the
rate of change of this length at the instant the
spider has been crawling for 10 s.

Figure 10-7d

C4.  Submerging Cone Problem: A cone of base
radius 5 cm and height 12 cm is being lowered
at 2 cm/min, vertex down, into a cylinder of
radius 7 cm that has water 15 cm deep in it
(Figure 10-7e).

Figure 10-7e

As the cone dips into the water, the water level
in the cylinder rises. Find the rate at which the
level is rising when the vertex of the cone is
a.  10 cm from the bottom of the cylinder
b.  1 cm from the bottom of the cylinder

C5.  The Horse Race Theorem: Sir Vey and Sir Mount
run a horse race. They start at time t = a at the
same point. At the end of the race, time t = b,
they are tied. Let f(t) be Sir Vey’s distance from
the start and g(t) be Sir Mount’s distance from
the start. Assuming that f and g are
differentiable, prove that there was a time t = c
between a and b at which each knight was
going exactly the same speed.

C6.  Hemispherical Railroad Problem: A mountain
has the shape of a perfect hemisphere with a
base radius 1000 ft (unlikely in the real world,
but it makes an interesting problem!). A
railroad track is to be built to the top of the
mountain. The train can’t go straight up, so
the track must spiral around the mountain
(Figure 10-7f). The steeper the track spirals,
the shorter it will be, but the slower the train
will go. Suppose that the velocity of the train is
given by

v = 30 – 60 sin   

where v is in feet per second and   is the
(constant) angle the track makes with the
horizontal. If the track is built in the optimal
way, what is the minimum length of time the
train could take to get to the top?

Figure 10-7f
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PART 1: No calculators allowed (T1–T4)

T1.  For an object moving back and forth along a
straight line, how can you tell from the velocity
and acceleration whether the object is
speeding up or slowing down?

T2.  Freight Elevator Problem: A freight elevator
moves up and down with velocity v, in feet per
second, as shown in Figure 10-7g. Find the

 60

Chapter
Test

elevator’s net displacement and the total
distance it traveled in the 1-min period shown
in the figure.

Figure 10-7g

T3.  Estimate the average value of  f(x) on the
interval [1, 9] for the function graphed in
Figure 10-7h. On a copy of the figure, show that
you understand the graphical meaning of
average value and also the conclusion of the
mean value theorem for integrals.

Figure 10-7h

T4.  Figure 10-7i shows the path followed by an
object moving in the xy-plane. Write the
position vector for the point marked. On a copy
of the figure, sketch a possible velocity vector
and acceleration vector when the object is at
this point, showing that the object is moving in
the negative x-direction and slowing down.

Figure 10-7i

PART 2: Graphing calculators allowed (T5–T20)
T5.  Truck Passing Problem: You accelerate your car

to pass a truck, giving your car velocity

where v is in feet per second and t is time in
seconds since you started to pass. Find out
how far you go in the 25 s it takes you to get
around the truck.

T6.  Power Line Problem: Ima Gardner builds a camp
house that she wants to supply with electricity.
The house is 3 mi from the road. The electrical
contractor tells her it will cost $2520 ($360 per
mile) to run the power line 7 mi along the
highway to the point nearest the camp house
and $2400 ($800 per mile) more to run it the
3 mi from the highway to the camp house. You
believe that Ima could save money by making
the line cut off from the highway before the
7-mi point and angle across to the house. How
should the power line be run to minimize its
total cost? How much could Ima save over
the $4920 that the contractor proposes?

T7.  For the function f(x) = x3 – 4x + 5, find the
maximum, the minimum, and the average
values of the function on the interval [1, 3].
Sketch a graph showing the graphical
significance of the average value.

T8.  An object moving along a line has velocity
v(t) = 10(0.5 – 2–t ) ft/s.

a.  Find the distance it travels and its net
displacement from the starting point for the
time interval [0, 2].

b.  Find its acceleration at time t = 0.
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slowing down? Justify your answer.

T9.  An object is moving at 50 cm/s at time t = 0. It
has accelerations of 4, 6, 10, and 13 (cm/s)/s at
t = 0, 7, 14, and 21, respectively. Approximately
what was the object’s average velocity for the

(t) = (10 cos 0.4t)  + (10 sin 0.6t)

c.  At t = 0, was the particle speeding up or

21-s time interval? About how far did the
object go?

Figure 10-7j shows the path of an object moving
with vector equation

where distance is in miles and time is in hours.

Figure 10-7j

T10.  Find an equation for  (t).
T11. Find an equation for (t).

T12.  Find (2). Make a copy of Figure 10-7j and draw
(2) on it.

T13.  Find (2). On the copy of Figure 10-7j, plot this
vector starting at the object’s position when
t = 2. How is this vector related to the path of
the object?

T14.  Find (2). On the copy of Figure 10-7j, plot
this vector starting at the object’s position
when t = 2.

T15.  Sketch the components of (2), one of them
directed tangentially to the path and the other
normal to it.

T16.  Based on the components of (2), would you
expect that the object is slowing down or
speeding up when t = 2? How can you tell?

T17.  At what rate is the object speeding up or
slowing down when t = 2?

T18.  Explain why the normal component of (2) is
pointing toward the concave side of the path.

T19.  Find the distance the object travels between
t = 0 and t = 2.

T20.  What did you learn as a result of taking this
test that you did not know before?



The Calculus of
Variable-Factor Products

I-beams used in construction must be stiff so that they do not
bend too much. The stiffness depends on the shape of the beam’s
cross section. Stiffness is measured by the second moment of area
of the cross section, which is defined to be area times the square
of the distance from the centroid of the cross section. Different
parts of the cross section are at different distances from the
centroid, so you can use definite integrals to compute the stiffness
of a given type of beam.
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•  Moment = displacement × quantity

Graphically The icon at the top of each
even-numbered page of this chapter
reminds you that work equals force
times displacement.

Numerically Force Displacement Work

50 10 0
53 12 103
58 14 214
70 16 342
90 18 502

···
···

···

Algebraically  My = x · dA, the definition of moment of area

Verbally I calculated the balance point of a piece of cardboard by finding its
centroid. Then I showed that I was right by cutting out the cardboard.
It actually did balance on a pencil point placed at the calculated
centroid!

Mathematical Overview

You will perform the applications in four ways.

A definite integral enables you to find the product of x and y,
where y varies. In Chapter 11, you will apply integrals to

•  Work = force × displacement
•  Force = pressure × area
•  Mass = density × volume
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11-1      Review of Work—Force Times
Displacement

In previous chapters you learned that the work done in moving an object from
one place to another equals the force with which it is pushed or pulled times the
displacement through which it moves. For instance, if you push a chair 7 ft
across the floor with a force of 11 lb (Figure 11-1a), you do 77 ft-lb
(foot-pounds) of work. 

In Problem Set 11-1, you will refresh your memory about how to compute the
work done if the force is variable. As you study this chapter you will see how the
thought process you use for this one application can be used for many others.
You will learn such things as how to find the balance point of a solid object and
how to calculate volumes and masses of objects quickly, without actually
evaluating any integrals.

Figure 11-1a

OBJECTIVE
across the floor if the force you exert on it varies as you push.
By yourself or with your study group, find the work done in moving a chair

Exploratory Problem Set 11-1

Chair Work Problem: Suppose that you push a chair
across the floor with a force

F = 20xe–0.5x

where F is the force in pounds and x is the distance
in feet the chair has moved since you started
pushing.

1.  Figure 11-1b shows the graph of F. On a copy
of this figure, draw a narrow vertical strip of
width x = 0.2 centered at x = 4. Approximately
what is the force at any value of x in this strip?
Approximately how much work is done in
moving the chair a distance x at x = 4?

Figure 11-1b

2.  Write an equation for dW , the work done in
moving the chair a distance dx, in feet, when
the chair is at point x, where the force is given
by the previous equation.

3.  Add all the dW ’s from x = 0 to x = 7. That is,
find the definite integral of dW .

4.  How much work was done in moving the chair
from x = 0 to x = 7?

5.  If you continue to push the chair with the force
shown and it continues to move, what limit
would the amount of work approach as x
approaches infinity?



11-2   Work Done by a Variable Force

precise definition. Work is the product of the
force applied to an object and the displacement
the object moves as a result of that force. For
instance, if you push a chair 7 ft across the
floor by exerting a force of 11 lb, you have
done 77 ft-lb of work, as you saw in
Section 11-1.

In most real-world situations, the force does not remain constant as the object
moves. By now you should realize that finding the work under these conditions
is a job for definite integration!
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In ordinary English the word work is used in different contexts and with

  EXAMPLE 1

different meanings. For instance, you may feel that you did a lot of work
on your calculus assignment last night.
Physically, however, the word work has a

OBJECTIVE Given a situation in which a varying force acts on an object, or where different
parts of the object move through different displacements, calculate the 
amount of work done.

There are two ways to analyze a work problem.
•  Move the whole object a small part of the displacement.
•  Move a small part of the object the whole displacement.

Examples 1 and 2 show how this analysis can be done.

Move the whole object a small part of the displacement. A ship is at anchor
in 80 ft of water. The anchor weighs 5000 lb, and the chain weighs 20 lb/ft
(Figure 11-2a). The anchor is to be pulled up as the ship gets under way.

a.  How much force must be exerted to lift the anchor as it comes aboard the
ship? Write an equation expressing force in terms of the displacement, y,
of the anchor from the ocean floor.

 

 DEFINITION:  Work
 If an object moves a certain displacement as a result of being acted upon by a
 certain force, then the amount of work done is given by

             Work = (force)(displacement)

 



point where it comes aboard the ship?

Solution a.  When the anchor is on the ocean floor, and
neglecting buoyancy, you must pull with enough
force to lift the 5000-lb anchor and the 80-ft
chain. Letting F stand for force,

F = (20)(80) + 5000 = 6600 lb

At the ship, the only force needed is to lift
the 5000-lb anchor.

F = 5000 lb

In between, the force varies linearly with the length of the chain. If y is the
displacement from the ocean floor to the anchor, then this length is equal
to (80 – y ). Therefore,

F = 20(80 – y) + 5000
= 6600 – 20y

b.  If the anchor is raised a small displacement, dy, the force would be
essentially constant, the same as at some sample point in that particular
subinterval. So the work, dW, done in lifting the anchor this small
displacement would be

dW = F dy
= (6600 – 20y) dy

You can find the total amount of work, W, by adding the dW ’s, then taking
the limit as dy approaches zero. You should recognize by now that this
process is definite integration.

You could integrate numerically.
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b.  How much work must be done to raise the

  EXAMPLE 2

anchor the 80 ft from the ocean floor to the

Figure 11-2a

Figure 11-2b

Move a small part of the object the whole
displacement. A conical tank has top diameter
10 ft and height 15 ft (Figure 11-2b). It is filled
to the top with liquid of density k, in pounds
per cubic foot. A pump takes suction from the
bottom of the tank and pumps the liquid to a
level 8 ft above the top of the tank. Find the
total amount of work done.

Solution The first thing to realize is that the amount of
work done lifting any small volume of liquid is
independent of the path the liquid takes. It
depends only on how far the volume is

W = (6600 – 20y)dy

= 6600y – 10y2

= 464,000 ft-lb
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displaced upward from where it starts to where it finishes. Liquid at a sample
point (x, y) travels down through the tank, through the pump, and up to the
discharge 8 ft above the top of the tank (and thus 23 ft above the bottom of the
tank, where y = 0). So its net displacement is equal to (23 – y).

If you “slice” the liquid horizontally, liquid at each point in the slice will be
displaced essentially the same distance as that at the sample point. The force,
dF, needed to lift the water the displacement (23 – y) is equal to the weight of
the slice, namely, k dV. Letting W stand for amount of work, the work done in
lifting one slice is

The element of the cone where the sample point (x, y) is located is a line
segment through the origin, containing the point (5, 15). So its slope is 15/5 = 3,
and its equation is

Note: Work is a physical quantity equivalent to energy. For instance, the work
done compressing a spring is stored in that spring as energy. Foot-pounds of
work can be converted directly to joules or calories by the appropriate
conversion factors. Although first moment of force, called torque (pronounced
“tork”), also has the units (distance)(force), torque is not the same physical
quantity as work. For this reason, torque is usually called pound-feet rather than
foot-pounds (see Section 11-4).

Quick Review

to x = 2?

dW = (k dV )(23 – y)
= k  x2(23 – y ) dy Substitute x2 dy for dV , and commute.

Substitute y/3 for x.

Add the dW’s and take the limit (that is,
integrate).

You could integrate numerically.

If the liquid were water, with density k = 62.4 lb/ft3, the total work would be

Problem Set 11-2

Q1.  What is the area under one arch of  y = sin x?

Q2.  What is the area under  y = 4 – x2 from x = –2

Q3.  Find a velocity equation if the acceleration
is a = tan t.

Q4.  Find the acceleration equation if the velocity
is v = ln t.

about 287,927 ft-lb.

 y = 3x,        or    x = 

dW = (23 – y)dy

= 4614.214... k

dy

dyW =

=

=

= 



Q5.  Name the theorem that allows definite integrals

Q8.  Name the technique for finding dy/dx if
x3y5 = x sin2 y.

Q9.  Name the quick method for resolving an
expression into partial fractions.

Q10.  The average value of y = sin x for one complete
cycle is —?—.

A.  0 B.  1 C.  2 D.  E.  2

1.  Leaking Bucket Problem: Llara pulls a bucket of
water up from the bottom of the well
(Figure 11-2c). When she starts pulling, she
exerts a force of 20 lb. But by the time she gets
the bucket to the top, 50 ft up, enough water
has leaked out so that she pulls with only 12 lb.
Assume that both the rate she pulls the bucket
and the rate the water leaks are constant, so
the force she exerts decreases linearly with
displacement from the bottom. How much
work did Llara do in pulling the bucket out of
the well?

Figure 11-2c

2.  Spaceship Problem: A spaceship on a launchpad
weighs 30 tons (Figure 11-2d). By the time it

reaches an altitude of 70 mi, the spaceship
weighs only 10 tons because it has used
20 tons of fuel. Assume that the weight of the
spaceship decreases linearly with displacement
above Earth.

Figure 11-2d

a.  How many mile-tons of work are done in
lifting the spaceship to an altitude of 70 mi?

b.  The rocket engines exert a constant thrust
(that is, force) of 90 tons. How much work
was done by the engines in lifting the
spaceship to 70 mi? What do you think
happens to the excess energy from part a?

3.  Spring Problem: It takes work to compress a
spring (work = force × displacement).
However, the amount of force exerted while
compressing the spring varies and is directly
proportional to the displacement, s, the spring
has been compressed (Figure 11-2e). This
property is known as Hooke’s law. Let k be the
proportionality constant. Find the work required
to compress a spring from s = 0 to s = 10.
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to be calculated by antiderivatives.
Q6.   f(x) dx is a (n) —?— sum.

Q7.  Name the technique for integrating ex cos x dx.

Figure 11-2e



4.  Table Moving Problem: You push a table across

been displaced.
a.  Sketch the graph of F and show that it really

does have these properties.
b.  How much work is done pushing the table

the 4 ft?

5.  Conical Reservoir Problem: A conical reservoir
30 ft in diameter and 10 ft deep is filled to the
top with water of density 62.4 lb/ft3. Find the
work done in pumping all this water to a level
of 7 ft above the top of the reservoir.

6.  Paraboloidal Tank Problem: A tank is made in
the shape of the paraboloid formed by rotating
about the y-axis the graph of y = x2 from x = 0
to x = 4 (Figure 11-2f). The tank is filled with
benzene, an organic liquid with density
54.8 lb/ft3. Find the work done in pumping a
full tank of benzene to a level of 10 ft above
the top of the tank.

Figure 11-2f

7.  Spherical Water Tower Problem: A spherical
water tower 40 ft in diameter has its center
120 ft above the ground (Figure 11-2g). A pump
at ground level fills the tank with water of
density 62.4 lb/ft3.

Figure 11-2g

a.  How much work is done in filling the tank
half full?

b.  Quick! How much work is done in filling the
tank completely? (Be careful!)

8.  Flooded Ship Problem: A compartment in a ship
is flooded to a depth of 16 ft with sea water of
density 67 lb/ft3 (Figure 11-2h). The vertical
bulkheads at both ends of the compartment
have the shape of the region above the graph of

 y = 0.0002x4

where x and y are in feet. The compartment is
15 ft long. How much work must the bilge
pumps do to pump all of the water over the
side of the ship, which is 30 ft above the
bottom?
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the floor. At first, you push hard to get it
moving, then you ease off as it starts to move.
The force drops to zero at a displacement of
4 ft, where the table stops. Assume that the
force, F, in pounds is given by

F = –x3 + 6x2 – 12x + 16

where x is the number of feet the table has

Figure 11-2h

9.  Carnot Cycle Problem: An automobile engine
works by burning gasoline in its cylinders.
Assume that a cylinder in a particular engine
has diameter 2 in. (Figure 11-2i). When the
spark plug fires, the pressure inside the
cylinder is 1000 psi (pounds per square inch),



and the volume is at its minimum, 1 in.3. As

Figure 11-2i

where p is pressure, V is volume, and k1 is a
proportionality constant. When the piston is

farthest out and the volume is 10 in.3, the
exhaust valve opens and the pressure drops to
atmospheric pressure 15 psi. As the piston
comes back, the cool gases are compressed
and the cycle is repeated. For compression,
 p = k2V –1.4, where k2 is a different
proportionality constant.

a.  Find the work done on the piston by the
expanding hot gas.

b.  Find the work done by the piston as it
compresses the cool gas.

c.  Find the net amount of work done. This is
the amount of work that is available for
moving the car.

d.  How is “Carnot” pronounced? Who was
Carnot?

11-3   Mass of a Variable-Density Object
The density of an object is defined to be the mass per unit volume. For instance,
water has density 1 g/cm3; iron, 7.86 g/cm3; and uranium, 18.5 g/cm3. You
calculate density by dividing the mass of an object by its volume, therefore the
mass is equal to density times volume.

Mass = (density)(volume)
The density of a real object may vary from point to point within the object. For
example, the density of the materials composing Earth varies from about
12 g/cm3 at the center of Earth to about 4 g/cm3 at Earth’s surface.

Figure 11-3a
As another example, uranium oxide pellets, used as fuel in nuclear reactors, are
made by compacting uranium oxide powder with a press (Figure 11-3a). The
powder closer to the plunger in the press compacts to a density higher than the
density of the powder that is farther away.

In this section you will explore ways of predicting the mass of an object if you
know how its density behaves at various places.
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the piston goes out, the hot gases expand
adiabatically (that is, without losing heat to the
surroundings). The pressure drops according
to the equation

 p = k1V –1.4

that object, calculate the total mass of the object.
Given a function specifying the density of an object at various places withinOBJECTIVE

Example 1 shows how you can use techniques of definite integration that you
know to calculate the total mass of a hypothetical object where the density
varies. Your purpose is to apply these techniques to real-world problems.
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  EXAMPLE 1 A solid is formed by rotating about the x-axis the region under the graph of
 y = x1/3 from x = 0 to x = 8. Find the mass of the solid if the density, ρ (Greek
letter “rho”),

a.  Varies axially (in the direction of the axis of rotation), being directly
proportional to the square of the distance from the yz-plane

b.  Varies radially (in the direction of the radius), being directly proportional
to the distance from the x-axis

Solution a.  Figure 11-3b shows the solid. A vertical slice of the rotated region generates
a disk parallel to the yz-plane. So each point in the disk has essentially the
same density as at the sample point (x, y). Letting m stand for mass and V
stand for volume, the mass of a representative slice is defined as

dm = ρ dV
 ρ  = kx2 is directly proportional to the

square of x, the distance from
the yz-plane.

dV = y2 dx By geometry, volume =
(cross-sectional area)(length).

  dm = kx2 · y2 dx Substitute for  and for dV.

= k x2(x1/3)2 dx = k x8/3 dx

Add the dm’s and find the limit.
That is,  integrate.

(Find the actual mass by
substituting for k and doing the
arithmetic.)

Figure 11-3b Figure 11-3c

b.  The density varies radially (with the distance from the x-axis), so slicing the
rotated region horizontally will produce a constant density within the slice.
Rotating slices parallel to the axis of rotation produces cylindrical shells, as
shown in Figure 11-3c. Again, picking a sample point on the curve, the mass
of a representative shell is defined as

dm = ρ dV
= ky · 2 y(8 – x) dy  = ky and

dV = 2 y(8 – x) dy.= 2k y2(8 – y3) dy = 2k (8y2 – y5) dy

  m =  k x8/3 dx

=  k x11/3 

=  k
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Add the dm’s and find the limit.
Note that the bounds are from 0 to 2.

Quick Review

Note: Part b of the example shows the real reason for slicing objects into
cylindrical shells. If the density varies radially, it will be constant (essentially) at
all points in the shell. Slicing into plane slices would give a slice in which the
density varies.

Problem Set 11-3

Q1.  What is the volume of a cone inscribed in a
6-cm3 cylinder?

Q2.  What is the volume of a paraboloid inscribed in
a 6-cm3 cylinder?

Q3.  Sketch the graph:  y = sin x

Q4.  Sketch the graph:  y = ln x

Q5.  Sketch the graph:  y = 2x

Q6.  Sketch the graph:  y = x2

Q7.  Density = (—?—)/(—?—)

Q8.  Work = (—?—)(—?—)

Q9.  If y = sin–1 x, then   = —?—.
Q10.  y varies linearly with x. If x = 0, y = 12 and

if x = 2, y = 20. If x = 3, then y = —?—.

A. 18 B. 24 C. 26 D. 28 E. 40

1.  The region bounded by the graph of y = ln x,
the x-axis, and the line x = 3 is rotated about
the line x = 0 to form a solid. Find the mass
of the solid if

a.  The density varies inversely with the
distance from the axis of rotation

b.  The density varies linearly with y, being 5
if y = 0, and 7 if y = 1

2.  The region bounded by the graph of y = sin x
and the x-axis, between x = 0 and x = , is

rotated about the y-axis to form a solid.
The density of the solid varies directly with
the distance from the axis of rotation. Find the
mass of the solid.

3.  The region under the graph of y = 9 – x2 is
rotated about the y-axis to form a solid. In
parts a–c, find the mass of the solid if

a.  The density is a constant, k
b.  The density is constant in any thin

horizontal slice but varies directly with the
square of y in the y-direction

c.  The density does not vary in the y-direction
but is directly proportional to the quantity
(1 + x), where x is the distance between the
sample point and the axis of rotation

d.  Which of the solids in parts a, b, and c has
the greatest mass? Assume that the
constant k is the same in all three parts.

4.  The region bounded by the graphs of y = 
and y = 0.5x is rotated about the x-axis to form
a solid. Find the mass of the solid if

a.  The density varies axially, being directly
proportional to the distance between the
sample point and the yz-plane

b.  The density varies radially, being directly
proportional to the square of the distance
between the sample point and the axis of
rotation

m = 2k dy

= 2k

= 2k k
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size—base radius 3 in. and height 6 in.
(Figure 11-3d). Both have the same weight
densities at their two ends—50 oz/in.3 and
80 oz/in.3—but one has the higher density at
the base and the other has the higher density
at the vertex. In both, the density varies linearly
with the distance from the plane of the base.

5.  Two Cone Problem: Two cones have the same

Figure 11-3d

a.  Without performing any calculations,
predict which cone has the higher mass.
Explain your reasoning.

b.  Confirm (or refute!) your prediction by
calculating the mass of each cone.

6.  Two Cylinder Problem: Two cylinders have the
same shape—3-in. radius and 6-in. height
(Figure 11-3e). One has density 50 oz/in.3

along the axis and 80 oz/in.3 at the walls. The
other has density 80 oz/in.3 along the axis and
50 oz/in.3 at the walls. In both cylinders the
density varies linearly with the distance from
the axis.

Figure 11-3e

a.  Without performing any calculations,
predict which cylinder has the higher mass.
Explain your reasoning.

b.  Confirm (or refute!) your prediction by
calculating the mass of each cylinder.

7.  The region bounded by the graphs of
 y = 4 – 2x2, y = 3 – x2, and x = 0 (Figure 11-3f)
is rotated about the x-axis to form a solid. Both
x and y are in centimeters. The density varies
directly as the square of the distance from the
 yz-plane (that is, the base of the solid). Find
the mass of the solid.

Figure 11-3f

8.  The region in Problem 7 (Figure 11-3f) is
rotated about the y-axis to form a different
solid. The density decreases exponentially with
distance from the y-axis, according to the
equation  = e–x. Find the mass of the solid.

9.  Uranium Fuel Pellet Problem: Uranium oxide is
used as a fuel in nuclear power plants that
generate electricity. Powdered uranium oxide is
compressed into pellets, as shown in
Figure 11-3a on page 553. The compressing
makes the pellets slightly denser at the top
than they are at the bottom. Suppose that the
cylindrical pellets have base diameter 1 cm
and height 2 cm. Assume that the density is
constant in the radial direction but varies with
 y, the distance from the bottom of the pellet
(as shown in the table), being 9 g/cm3 at the
bottom and 10 g/cm3 at the top. Predict the
mass of the pellet, taking into consideration
the variable density.

 y (cm)    Density (g/cm3)

2.0 10.0
1.6 9.9
1.2 9.8
0.8 9.6
0.4 9.4
0 9.0



10.  The “triangular” region in the first quadrant,

density varies directly with x, the distance
from the yz-plane.

c.  Find the mass of the solid in part a if the
density varies directly with y, the distance
from the xz-plane, instead of with x.

11.  Find the mass of a sphere of radius r if
a.  The density varies directly with the distance

from a plane through the center
b.  The density varies directly with the distance

from one of its diameters
c.  The density varies directly with the distance

from the center (use spherical shells.)

12.  Mass of Earth Problem: The density of Earth is
about 12 g/cm3 at its center and about 4 g/cm3

at its surface. Assume that the density varies
linearly with the distance from the center. Find
the mass of Earth.
Useful information:
•  1 mi = 5280 ft; 1 ft = 12 in.; 2.54 cm = 1 in.
•  Radius of Earth is about 3960 mi.
•  Slice into spherical shells.

13.  The region under the graph of y = ex from
x = 0 to x = /2 is rotated about the y-axis to
form a solid. The density is given by = cos x.
Find the mass of the solid.

14.  Buckminster’s Elliptical Dome Problem:
Architect Buckminster Fuller (1895–1983) once

proposed that a dome should be built over
Manhattan Island and an air-conditioning
system be built to regulate the temperature,
remove air pollution, and so forth. Your job is
to find out how much air would be inside such
a dome. Figure 11-3g shows what that dome
might look like. Assume that the dome is
a half-ellipsoid 8 mi long, 2 mi wide, and
1/2 mi high.

Figure 11-3g

a.  The three-dimensional equation for an
ellipsoid is

where a, b, and c are the x-, y-, and z-radii,
respectively. Show that any cross section
of the ellipsoid parallel to the xy-plane is
an ellipse.

b.  The weight density of air at sea level (z = 0)
is about 0.08 lb/ft3. But it decreases with
altitude according to the equation

= 0.08e–0.2z, where z is in miles. Find the
mass of air inside the dome. How many tons
is this?

c.  Suppose that you assume the density of
the air is constant throughout the dome,
0.08 lb/ft3. How many more pounds of air
would you have assumed are in the dome
than are actually there? Surprising?

d.  The volume of a (whole) ellipsoid is
V = (4/3) abc. See if you can derive this
formula by integrating the dV from this
problem.
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= 1

bounded by the graphs of y = 4 – x2,
 y = 4x – x2, and x = 0, is rotated about various
axes to form various solids.
a.  Find the mass of the solid formed by

rotating the region about the y-axis if the
density varies directly with x, the distance
from the y-axis.

b.  Find the mass of the solid formed by
rotating the region about the x-axis if the
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and the Theorem of Pappus

If you hold a meterstick at one end and hang a weight on it, the force caused by
the weight twists the meterstick downward (Figure 11-4a). The farther from your
hand you hang the weight, the more twisting there is. Doubling the
displacement doubles the twisting for a given weight. And doubling the weight

OBJECTIVE Given the description of a solid or a plane region, find its first or second
moment of volume, area, or mass with respect to a point, line, or plane, and its
center of mass, volume, or area.

11-4   Moments, Centroids, Center of Mass,

hung at the same displacement also doubles the twisting. The amount of
twisting is the torque. The torque with respect to an axis through your hand is
defined to be the amount of force created by the weight, multiplied by the
displacement from your hand perpendicular to the direction of the force.

Torque = (force)(displacement)

Figure 11-4a

Torque is just one example of a more general concept called moment. The word
moment comes from the Latin movere, “to move,” and momentum, “moving
power.” The moment of a physical quantity equals the magnitude of that
quantity multiplied by some power of the displacement from a reference point,
line, or plane to the place where the quantity is located.

The torque produced by the weight in Figure 11-4a is thus the first moment of
 force with respect to an axis through your hand. You can find any order moment
of any quantity with respect to a point, line, or plane. Some moments have
interesting meanings in the real world. Others are of interest in the
mathematical world only. In this section you will explore first and second
moments of mass, volume, arc length, and area. You will use the results to
calculate the center of mass of a solid, the point where all of the mass could be
concentrated to produce the same first moment, and the related centroid, which
is a center of volume, length, or area. Calculus is used if parts of the object are
at different displacements.

 

 DEFINITION:  nth Moment

 nth moment of quantity = (magnitude of quantity)(displacement)n

 



Section 11-4:   Moments,  Centroids ,  Center of Mass,  and the Theorem of Pappus © 2005 Key Curriculum Press 559

  EXAMPLE 1 A solid paraboloid has the shape of the solid formed by rotating about the

line y = 9 (Figure 11-4b).

dV = x2 dy = y dy

V = y dy

= 

= 40.5  = 127.234... cm3

Figure 11-4b

a.  Find the volume of the solid if the dimensions
are in centimeters.

b.  Find Mxz, the first moment of volume with
respect to the xz-plane.

c.  Find (“y bar”), the y-coordinate of the
centroid, at which  · volume = Mxz from part b.

d.  At the centroid ( , , ),  · volume = Myz, and
 · volume = Mxy, where the moments are with

respect to the yz- and xy-planes, respectively.
Explain why both  and  are zero for this solid.

Solution a.  Let V stand for volume. Slicing perpendicular to the y-axis gives

b.  Let Mxz stand for the moment with respect to the xz-plane. Slicing
perpendicular to the y-axis, as in part a, makes the slice parallel to the
xz-plane, so every point in the slice has approximately the same
displacement from the xz-plane as the sample point (x, y).

dMxz = y dV Moment = (displacement)(volume).

= y · y dy = y2 dy Substitute for dV.

Add the dM’s and take
the limit (integrate).
The units are (cm)(cm3).

c.  · 40.5  = 243 ( )(volume) = moment.

The units are (cm4)/(cm3).

Note that the centroid is two-thirds of the way up from the vertex to the
base. This fact is to be expected because the solid is wider near the base.

d.  The displacement is a directed distance. The solid is symmetrical with
respect to the xy- and yz-planes, so there is just as much negative moment
on one side of the plane as there is positive moment on the other side.
The moments with respect to these planes are thus zero. So the x- and
z-coordinates of the centroid are also zero, and the centroid lies on
the y-axis.

 y-axis the region in Quadrant I above the graph of y = x2 and below the

Mxz =

=

=              = 6 cm
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  EXAMPLE 2

and center of arc length) are similarly defined. For instance, a region of area A in
the xy-plane has a centroid at a displacement from the y-axis given by A = My.
A curve of length L in the xy-plane has a centroid at a displacement from the
x-axis given by L = Mx.

If a solid has a uniform density, its center of mass, or balance point, will be at

After a firework explodes,
its motion still follows its
center of mass.

Centroids, or geometrical centers, of plane regions and curves (center of area

the centroid. If the density of the solid is not uniform, the center of mass can be
at a place other than the centroid. Example 2 shows how to calculate the center
of mass when the density of the solid is not uniform.

Suppose that the solid in Example 1 has a density that is constant radially but
varies axially, being equal to y1/2 g/cm3.

a.  Find the mass of the solid.
b.  Find the first moment of mass with respect to the xz-plane.
c.  Find the y-coordinate of the center of mass, the point ( , , ) for which

( )(mass) = moment of mass with respect to the xz-plane. Show that the
answer is reasonable.

Solution a.  Figure 11-4c shows the solid, sliced horizontally as in Example 1. The
density varies only axially and all points in the slice are about the same
displacement from the xz-plane, therefore the mass, dm, of any slice is the
density at the sample point times the volume of the slice.

From Example 1,
dV = y dy.

The units are
(g/cm3)(cm3).

Figure 11-4c
b.  Let Mxz stand for the first moment of mass with respect to the xz-plane. All

points in a slice are about the same displacement from this plane. So the
moment of the slice, dMxz, equals the displacement from the xz-plane to
the sample point times the mass of the slice.

The units
are (cm)(g).

 

 DEFINITION:   Centroid

 The centroid of a solid is the point ( , , ) at which

             

 where V is volume, and Myz, Mxz, and Mxy are the first moments of volume of
 the solid with respect to the yz-, xz-, and xy-planes, respectively.
  
 Note: To find the center of mass of a solid, ( , , ), replace volume, V, with
 mass, m. Myx, Mxz, and Mxy  then represent the first moments of mass rather
 than volume.
 
 

,                   ,

dm = dV = y1/2 y dy = y3/2 dy

m = y3/2 dy =  y5/2  = 97.2   305.4 g

dMxz = ydm = y y3/2 dy = y5/2 dy

Mxz =   y5/2 dy =  y7/2   1963.0 cm-g



c.  The y-coordinate of the center of mass, , is found using the fact that

The units are [(cm)(g)]/(g).

The answer is reasonable because it is a little larger than 6 cm, the
 y-coordinate of the centroid. The density is greater near the base than
at the top of the solid, so the center of mass is closer to the base than is
the centroid.

Example 3 shows how to extend the concept of moment and centroid to a plane
region.

Let R be the region in Quadrant I bounded by the graph of y = 3 cos x and the
two coordinate axes, where x and y are in inches.

a.  Find the first moment of area of R with respect to the y-axis.
b.  Find the first moment of area of R with respect to the x-axis.
c.  Find the centroid of R, the point ( , ) at which ( )(area) = first moment with

respect to the y-axis and ( ) (area) = first moment with respect to the x-axis.

Solution a.  Figure 11-4d shows the region R. Slicing parallel to the y-axis gives strips in
which all points are about the same displacement from the y-axis. Use A
for area and My for moment with respect to the y-axis. The moment, dMy,
of a strip of area dA is

dMy = x dA = x(3 cos x) dx

= 3x cos x dx

= 3x sin x + 3 cos x  + 0 – 0 – 3

= 1.71238... in.3 Note that the units are in.3.

b.  To find Mx, the moment with respect to the x-axis, slice horizontally
(Figure 11-4e). That way, each point in the strip will be about the same
displacement from the x-axis.

dMx = y dA = y(x dy)

Figure 11-4d Figure 11-4e
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(displacement from center of mass)(total mass) = moment.

  EXAMPLE 3

My = 3x cos x dx

 · m = Mxz 

 =  = 6  = 6.428...cm



562 © 2005 Key Curriculum Press Chapter 11:   The Calculus of Variable-Factor Products

integrating algebraically, it is easier to substitute 3 cos x for y and

  EXAMPLE 4

–3 sin x dx for dy. Because x is /2 when y is 0, and 0 when y is 3, the
limits of integration are /2 to 0.

 =  = 0.570796...  0.57 in.

 =  = 1.178097...  1.18 in.

You could put cos–1 (y/3) in place of x and integrate from 0 to 3. If you are

c.  To find the centroid, you need to find the area of the region first. You can
either integrate 3 cos x from 0 to /2 or recall that the area under a
half-arch of y = cos x equals 1 so that the total area is 3.

Figure 11-4f

Figure 11-4f shows the location of the centroid, point (0.57... , 1.178...).

The photograph shows the region in Example 3 drawn on cardboard. The cutout
will balance on a pencil point placed at the centroid!

The last example for this section shows you the meaning of second moment.

For the region R in Example 3,

a.  Find the second moment of area of the region with respect to the y-axis.
b.  Find , the x-coordinate of the center of second moment, which is the

displacement from the y-axis for which

(Displacement)2(area) = second moment

Solution a.  Slice parallel to the y-axis, as shown in Figure 11-4d, so that points in a
strip will be about the same displacement from that axis.

dMy = x2 dA = x2(3 cos x dx) Second moment = (area)(square
of displacement).

Note that the units are in.4.

b.  To find the center of second moment, you must use the fact that
displacement squared times area equals second moment.

Notice that the units
come out inches.

Mx

3.534291...  3.53 in.3

A = My

A = Mx

My = 3x2 cos x dx = 1.402203... in.4

( )2A = My(3) = 1.402203...

 = = 0.683667...  0.68 in.



Problem Set 11- 4

Q1.   Evaluate  –x2 if x is 5.

Q2.   Evaluate  x2 if x is –11.

Q3.   Write sin 2x in terms of functions of x.

Q4.   Write cos2 x in terms of cos 2x.

Q5.   Resolve into partial fractions:  1/[(x – 2)(x – 5)]

Q6.   Integrate: dx/[(x – 2)(x – 5)]

Q7.   Differentiate:  y = 1 / [(x – 2)(x – 5)]

Q8.   Write the definition of indefinite integral.

at x = 2?

Q10.  Which of these hypotheses of Rolle’s theorem is
not a hypothesis of the mean value theorem?

A.  f(a) ≠ f(b) B.  f is continuous.
C.  f is differentiable. D.  f is integrable.
E.  f(a) = f(b) = 0

1.  Paraboloid Problem: The region in Quadrant I
under the graph of y = 9 – x2 is rotated about
the y-axis to form a solid. Assume that
dimensions are in centimeters.

a.  Find the volume of the solid.
b.  Find its first moment of volume with respect

to the xz-plane.
c.  Find its centroid.

2.  Ellipsoid Problem: A half-ellipsoid (Figure 11-4g)
is formed by rotating about the x-axis the
region in the first quadrant bounded by

= 1 (dimensions in feet)

Figure 11-4g

a.  Confirm by appropriate integration that the
volume is .

b.  Find the first moment of volume with
respect to the yz-plane.

c.  Find the centroid.

3.  Paraboloid Mass Problem: The paraboloid in
Problem 1 has density, in grams per cubic
centimeter, that is constant in the radial
direction but directly proportional to the cube
root of y in the axial direction.
a.  Find the mass of the solid.
b.  Find the first moment of mass of the solid

with respect to the xz-plane.
c.  Find the center of mass.
d.  True or false: “The center of mass of a solid

is always at the centroid.”
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The stiffness of a beam is related to the second moment of area of a region that
has the cross-sectional shape of the beam. The resistance of a uniform flat plate
to being rotated about an axis is related to the second moment of area about
that axis. The larger the second moment, the more difficult it is to start the
region rotating, or stop it once it gets started. For this reason the second
moment of area is sometimes called the moment of inertia of the region. The
displacement to the center of second moment from the axis of reference is
called the radius of gyration. The same terms apply to second moments of
volume or mass of a solid figure.

Quick Review

Q9.   Is  f(x) = x3  – 7x increasing or decreasing
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Problem 2 has a weight density, in pounds per
cubic foot, that is constant in the radial direction
but varies directly with x in the axial direction.
a.  Find the weight of the solid.
b.  Find the first moment of weight of the solid

with respect to the yz-plane.

c.  Find the center of weight (which is the same
as the center of mass in this case).

4.  Ellipsoid Mass Problem: The half-ellipsoid in

d.  True or false: “The center of mass of a solid
is always at the centroid.”

5.  Exponential Region and Solid Problem: Let R be
the region under the graph of y = ex from
x = 0 to x = 2 (Figure 11-4h).

Figure 11-4h

a.  Find the x-coordinate of the centroid of R.
b.  R is rotated about the x-axis to form a solid.

Find the x-coordinate of the centroid.
c.  True or false: “The centroid of a region and

the centroid of the solid formed by rotating
that region about the x-axis have the same
x-coordinate.”

6.  Secant Curve Region Problem: Let R be the
region under the graph of y = sec x from x = 0
to x = /3 (Figure 11-4i).

Figure 11-4i

a.  Find the x-coordinate of the centroid of R.
b.  R is rotated about the x-axis to form a solid.

Find the x-coordinate of the centroid.
c.  True or false: “The centroid of a region and

the centroid of the solid formed by rotating
that region about the x-axis have the same
x-coordinate.”

7.  Centroid of a Triangle Experiment: Prove that
the centroid of a triangle is located one-third of
the way up from the base (Figure 11-4j). Then
draw a triangle on cardboard, draw lines
one-third of the way from each base, and cut
out the triangle. If your work is done accurately,
you should find that the lines intersect at one
point and that you can balance the triangle on
the point of a pencil placed at that point.

Figure 11-4j

8.  Centroid Cut-Out Experiment: Let R be the
region under the graph of y = x2/3 from x = 0
to x = 8, where x and y are in centimeters.

a.  Find the area of R.
b.  Find the first moment of R with respect to

the x-axis.
c.  Find the first moment of R with respect to

the y-axis.
d.  Find the coordinates of the centroid of R.
e.  Plot an accurate graph of R on an index card

or graph paper. Mark the centroid. Then cut
out the region and try to balance the region
on a pencil point at the centroid.

9.  Second Moment of Area Problem: Let R be the
region under the graph of y = sin x from x = 0
to x =   (Figure 11-4k), where x and y are in
centimeters.

Figure 11-4k



   

a.  Show that the centroid of R is at x = /2.

shapes (Figure 11-4l).

Figure 11-4l

a.  A rectangle of base B and height H, with
respect to an axis along the base

b.  A rectangle of base B and height H, with
respect to an axis through the centroid,
parallel to the base

c.  A triangle of base B and height H, with
respect to an axis along the base

d.  A triangle of base B and height H, with
respect to an axis parallel to the base,
one-third of the way to the opposite vertex
(that is, through the centroid)

11.  Second Moments for Solid Figures: Find the
second moment of volume and radius of
gyration for these solids (Figure 11-4m):

a.  A cylinder of radius R and height H, with
respect to its axis

b.  A cone of base radius R and height H, with
respect to its axis

Figure 11-4m

c.  A sphere of radius R, with respect to its
diameter

12.  Rotation of Solids Problem: You can measure
the amount of resistance an object has to
starting or stopping rotation by its second
moment of mass with respect to the axis of
rotation. If the density is constant, the second
moment of mass equals the density times the
second moment of volume. Suppose that
1000 cm3 of clay is made into a sphere, and
another 1000 cm3 is made into a cylinder with
a diameter equal to its height (Figure 11-4n).
Which one has higher resistance to rotating?
Justify your answer.
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b.  Find the second moment of area of the
region with respect to the y-axis.

c.  Find the radius of gyration (displacement to
center of second moment) of R with respect
to the y-axis.

10.  Second Moments for Plane Regions Problem:
Find the second moment of area for these

           

Figure 11-4n

13.  Beam Moment Problem: The stiffness of a beam
is directly proportional to the second moment
of area of the beam’s cross section with respect
to an axis through the centroid of the cross
section. In this problem you will investigate
the stiffness of beams with the same
cross-sectional area but with different shapes.



a.  Prove that if a rectangle has base B and

ii.  Lying flat

Use k for the proportionality constant.
Based on the results, explain why boards
used for floor joists in houses are turned on
edge rather than laid flat.
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Figure 11-4o

c.  An I-beam is made with the same
cross-sectional area as the 2 in.-by-12 in.
beam in part b. Find its stiffness if

i.  All three parts (two flanges and one web)
are 4 in. wide

ii.  The two flanges are 2 in. by 4 in., but the
web is 1 in. by 8 in.

d.  Does increasing an I-beam’s depth without
changing the cross-sectional area make
much change in the beam’s stiffness? What
physical limitations keep people from
making a beam very tall and thus very stiff?

14.  Introduction to the Theorem of Pappus: The
region R under the graph of y = x3 from x = 0
to x = 2 is rotated about the y-axis to form a
solid (Figure 11-4p).

Figure 11-4p

a.  Find the area of R.
b.  Find the volume of the solid using vertical

slices of R.
c.  Find the first moment of area of R with

respect to the y-axis. What do you notice
about the integral?

d.  Find the x-coordinate of the centroid of R.
e.  A theorem of Pappus states that the volume

of a solid of revolution equals the area of
the region being rotated times the distance
the centroid of the region travels. Show that
this problem confirms the theorem.

height H, then the second moment of area
with respect to an axis through the centroid
and parallel to the base is equal to BH3/12.

b.  Find the stiffness of a 2 in.-by-12 in. beam
(Figure 11-4o) if it is
i.  Turned on edge



15.  Theorem of Pappus Problem: Pappus was a
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Greek mathematician who lived in Alexandria
in the fourth century A.D. One of his theorems
is stated here.

Theorem: The Theorem of Pappus
for Volumes

where A is the area of the region being
rotated, is the displacement from the axis
of rotation to the centroid of the region, and
the region is not on both sides of the axis of
rotation. The quantity 2  is thus the
distance the centroid travels as the region
rotates.

The volume, V, of a solid of revolution is
given by

In Problem 14, you saw an example of this
theorem. In this problem you will use the
theorem, once forward and once backward.

a.  Toroid Problem: A toroid (Figure 11-4q) is
formed by rotating a circle of radius r about
an axis R units from the center of the circle,
where r  R. Find the volume of the toroid.

Figure 11-4q

b.  Centroid of a Semicircle: A semicircle of
radius r is rotated about its diameter to
form a sphere (Figure 11-4r). You know
formulas for the area of a semicircle and for
the volume of a sphere. Use these facts to
find the displacement from the center of a
semicircle to its centroid.

Figure 11-4r

16.  Theorem of Pappus Proof: Prove the theorem of
Pappus for volumes.

11-5   Force Exerted by a Variable
Pressure—Center of Pressure

Pressure exerted by a fluid, such as air or water, is defined to be the force
exerted by the fluid per unit area. For instance, water in a home’s pipes is
usually at a pressure of 40 to 100 psi (lb/in.2). The air in a scuba diving tank
is compressed to about 3000 psi. This means that each square inch of the tank’s
wall is pushed with a force of 3000 lb. As a result of the definition of
pressure,

Force = (pressure)(area)

In  20,000 Leagues Under the Sea, Jules Verne foresaw the idea of a
 pressurized underwater vehicle.

In many real-world situations, the pressure acting on a surface is different at
various places on the surface. For instance, the pressure acting on an airplane’s
wings is usually higher near the middle of the wing than it is at either the
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found by integrating rather than simply by multiplying.

In this section you will learn how to calculate the force exerted by a variable

  EXAMPLE 1

pressure. You will also calculate the moment of force and use it to find the
center of pressure, where the entire force could be concentrated to produce the
same moment.

OBJECTIVE Given a region and a function specifying the pressure acting on the region,
calculate the total force, the moment of force, and the center of pressure.

dF = 2k(4 – y) y1/2dy

leading or trailing edge. So the total force, which holds up the plane, must be

Figure 11-5a

Weir Problem: A weir (a small dam) is to be built
across a stream. When finished, the weir will
have a vertical parabolic cross section the shape
of the region above the graph of y = x2 and
below the line y = 4, where x and y are in feet
(Figure 11-5a). The pressure at any sample
point below the water’s surface will be directly
proportional to the distance from the surface
down to that point. The proportionality
constant is the density of water, 62.4 lb/ft3.

a.  Predict the total force acting on the weir
when the water is all the way to the top.

b.  Find the first moment of force with respect to the x-axis.
c.  Find the center of pressure, the point on the face of the weir where the

entire force could be applied to produce the same moment with respect to
the x-axis.

d.  The weir face is wider at the top, so you would expect the center of
pressure to be more than halfway up. But the pressure is greater toward the
bottom, so you would also expect the center of pressure to be less than
halfway up. Based on your answer to part c, which of these two competing
effects predominates?

Solution a.  Slice the region parallel to the x-axis so that the pressure will be essentially
constant at any point in the slice. Pick a sample point (x, y) in the slice and
on the graph. Let F stand for force, p for pressure, and A for area. By the
definition of pressure,

dF = p dA
Pressure varies directly with depth, (4 – y), therefore the pressure at the
sample point will be

 p = k(4 – y)

where k = 62.4 lb/ft3, which will be substituted at the end to get a
numerical answer. Because dA = 2x dy = 2y1/2 dy, you can write
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the limit as dy goes to zero. This process is, of course, definite integration.
To find the total force acting on the weir’s face, you add all the dF’s and take

= 1064.96, or about 1065 lb

b.  The first moment of force with respect to the x-axis is defined to be the
product of the force and the displacement from the x-axis to the point
where the force is acting. Fortunately, all points in the horizontal slice
(Figure 11-5a) are essentially the same displacement from the x-axis as the
sample point, (x, y). Using M for moment, the moment acting on the slice is

dM = y dF = y · p dA

where y and p are both measured at the sample point.
dM = y · 2k(4 – y) y1/2 dy Substitute for p and dA.

= 2k(4y3/2 – y5/2) dy

Add the dM’s and take the limit
(that is,  integrate).

 , or about 1826 lb-ft

c.  By the definition of center of pressure, its vertical coordinate, , is the
number for which

By symmetry, the x-coordinate, , of the center of pressure is zero, so the
center of pressure is at point (0, 1 ).

d.  The center of pressure is less than halfway up, meaning that the increasing
pressure at greater depths predominates over the decreasing area.

As you learned in Section 11-4, the first moment of force with respect to an axis
is called torque. In part b of Example 1, 1826 lb-ft is the amount of torque
exerted by the water on the dam face. It measures the amount of twisting that
the force does on the dam face, tending to make it rotate about the x-axis and
fall over.

F  =

F  =

= 1825.645...
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Q1.  The geometrical center of a solid is called

Quick Review

its —?—.
Q2.  The point where all the mass of a solid could be

concentrated is called its —?—.
Q3.  The displacement from an axis to the center of

second moment with respect to that axis is
called the —?—.

Q4.  The process of adding parts of a physical
quantity then taking the limit as the size of the
parts goes to zero is called —?—.

Problem Set 11-5

Q5.  The process of finding the antiderivative is
called —?—.

Q6.  Density equals —?— divided by —?—.
Q7.  Simplify: (x1/3)(x1/6)
Q8.  Integrate: sec x dx
Q9.  Differentiate:  y = tan–1 x

Q10.  (0.5)(ex  + e–x) is defined to be —?—.
A. cosh x B. sinh x C. tanh x
D. Constant E. Linear

1.  Trough Problem: A trough has a vertical end in
the shape of the region above the graph of y = 2x4

and below the line y = 2, where x and y are in
feet (Figure 11-5b). The trough is filled with
liquid of density k, in pounds per cubic foot.

Figure 11-5b

a.  Find the force acting on the end of the
trough. Recall that force = (pressure)(area),
and the pressure at a point varies directly
with the displacement from the surface of
the liquid to that point.

b.  The force in part a causes a moment with
respect to the x-axis. However, different
points on the end of the trough are at
different displacements from the x-axis.
Find the moment of force with respect to the
x-axis.

c.  Find the center of pressure, where the entire
force could be concentrated to produce the
same moment with respect to the x-axis.

2.  Dam Problem: At its narrowest point, Scorpion
Gulch is 20 ft wide and 100 ft deep. A dam at
this point has its vertical face in the shape of
the region bounded by the graphs of y = x2

and y = 100, where x and y are in feet.

a.  Confirm that the dam is 20 ft wide at the
top.

b.  Find the area of the vertical dam face.
c.  When the gulch is filled with water to the

top of the dam, the greatest force will be
exerted. It is important to know whether this
force will be large enough to rip the dam
from its foundations. Find this total force.

d.  The dam could also fail by being pushed
over. The first moment of force with respect
to the x-axis is the quantity that the dam
must withstand to prevent this. Find the first
moment of force with respect to the x-axis.

e.  How far above the bottom of Scorpion Gulch
could the entire force be concentrated to
produce the same moment as in part d?

3.  Ship’s Bulkhead Problem: A bulkhead on a ship
is a vertical wall that separates two
compartments. Bulkheads are often designed
so that they will withstand the water pressure
if the compartment on one side of it gets
flooded. Suppose that you are hired to build a
bulkhead that goes all the way across a ship
(Figure 11-5c). The bulkhead is to be 40 ft wide
at the top and 32 ft from bottom to top. The
cross section of the ship where the bulkhead
will go is in the shape of the quartic ellipse



where y is the vertical displacement, in feet,

Figure 11-5c

a.  Find the area of the bulkhead.
b.  Find the force that you must design the

bulkhead to withstand from water pressure
if the compartment on one side is filled to
32 ft with seawater of density 67 lb/ft3.

c.  You also must design the bulkhead to
withstand the torque caused by this force.
Find the torque with respect to the x-axis,
taking into account that different parts of
the force act at different displacements
from the axis.

d.  Find the center of pressure at which the
total force could be concentrated to produce
the same torque.

e.  Find the centroid of the bulkhead. Is the
center of pressure located at the centroid?

f.  When the ship is floating, the water outside
is expected to come up to y = 16 ft.
Assuming that the ship has a uniform cross
section, the center of buoyancy of the ship is
located at the centroid of the part of the
bulkhead that lies below the water line. Find
the center of buoyancy. (The center of mass
of the ship must be below the center of
buoyancy, or the ship will capsize. Ships
often carry ballast, consisting of rock, metal
scrap, lead, and so on, at the bottom for
the specific purpose of lowering the center
of mass.)

4.  Oil Truck Problem: An oil truck has a tank the
shape of an elliptical cylinder (Figure 11-5d).
The tank is 12 ft wide and 6 ft high. Your job is
to analyze the forces acting on the elliptical
end of the tank.
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from the bottom of the ship to the sample
point and x is the horizontal displacement,
also in feet, from the center line of the ship to
the sample point.

Figure 11-5d

a.  Write an equation for the ellipse using axes
with origin at the ellipse’s center.

b.  Suppose that the tank is half full. Find the
force acting on the ellipse. Recall that
pressure at a sample point is directly
proportional to the point’s displacement
below the liquid’s surface. The
proportionality constant is the density of
oil, 50 lb/ft3. (If your answer comes out
negative, see if you can find your mistake!)

5.  Airplane Wing Problem I: An airplane wing has
the shape of the region bounded by the graph
of y = 60 cos x and the x-axis, where x and y
are in feet.

a.  Find the area of the wing.
b.  Assume that the pressure pushing up on

the wing when the plane is in flight is
constant in the y-direction, but is directly
proportional to the quantity (10 – |x|) in
the x-direction. Find the total force acting on
the wing.

c.  For the plane to fly, each wing must lift
96 tons. What must the proportionality
constant equal?

6.  Airplane Wing Problem II: Suppose you have
been hired by Fly-By-Night Aircraft
Corporation. You are to analyze the forces that
will act on the wings of a new plane. From the
design department you find that, looking from
the top, the wing’s shape (Figure 11-5e, on the
next page) is the region bounded by the graph
of y = 100 – x2 and the x-axis, where x and y



are in feet. The x-axis runs along the line where

pressure is 90 lb/ft2 at the y-axis and
20 lb/ft2 at x = 10. Find the total force
acting on the wing.

b.  Find the first moment of force with respect
to the y-axis.

c.  For the plane to be properly balanced, you
need to know where in the x-direction the
force could be concentrated to produce the
same first moment of force. Find the
x-coordinate of the center of pressure.

d.  During a certain banking maneuver, the
pressure pattern changes. It becomes directly
proportional to y and does not vary in the
x-direction. The pressure is 60 lb/ft2 at
 y = 50. Find the total force acting on the wing.

e.  Find the first moment of force in part d with
respect to the x-axis.

f.  The first moment of force in part e
measures the amount of twisting needed to
make the plane bank. How far out on the
wing could the total force be concentrated
and produce the same first moment with
respect to the x-axis?

7.  Double-Integration Airplane Wing Problem: The
place where an airplane’s wing joins the

fuselage must be designed to withstand the
bending torque caused by air pressure acting
on the wing. The stiffness of this joint is
measured by the second moment of area of the
joint with respect to a horizontal axis. Suppose
that a new design of plane is to have a cross
section as shown in Figure 11-5f. The equation
of the curve is

 y = 0.25(x – 4) – (x – 4)1/3

Your mission is to calculate the second
moment of area of this region with respect to
the x-axis.
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Figure 11-5e

a.  The research department finds that in
normal flight the pressure pushing up on
the wings varies linearly with x. The

Figure 11-5f

a.  Slice the region vertically into strips of
width dx. Slice each strip horizontally,
forming rectangles of dimensions dx by dt.
Find the moment of a strip by finding the
moment of a rectangle, then integrating
from t = 0 to t = y. Recall that x and dx will
be constants with respect to this integration.

b.  Find the total second moment of the region
by adding the moments of the vertical strips
and taking the limit (that is, by integrating
with respect to x).

8.  Double Integration Variable Pressure Problem:
A variable pressure acts on the region bounded
by the curve y = e–x and the lines y = 1 and
x = ln 5. Find the force acting on this region if
a.  The pressure is constant in the y-direction

but varies directly with the square of x.
b.  The pressure is constant in the x-direction

but varies inversely with y.
c.  The pressure varies both directly with the

square of x and inversely with y. To solve
this problem, you must slice one way, then
slice the slice the other way. One integration
gives dF. A second integration gives F. See
Figure 11-5g for suggestions.

the wing joins the fuselage.



 

Figure 11-5g

9.  Problems 7 and 8 involve double integrals. Why
do you suppose this name is used?

10.  Floodgate Problem: A vertical floodgate at the
bottom of a dam has the shape of the region
bounded by the graph of y = 5 tan2 ( /8)x and
the line y = 5, where x and y are in feet
(Figure 11-5h). The lake behind the dam is
filled with water to the level y = 20 ft.

a.  Find the area of the floodgate.

b.  Find the total force acting on the floodgate.

Figure 11-5h

c.  The force acting on one side of the floodgate
makes it difficult to open. The force with
which the equipment must pull up on the
gate equals the coefficient of friction
between the gate and the dam multiplied by
the force of the water acting on the gate.
Experience shows that this force is about
10,000 lb. What does the coefficient of
friction equal?

11-6   Other Variable-Factor Products
The area of a rectangular region equals its length times its width. For the region
in Quadrant I bounded by the graph of y = 4 – x2 (Figure 11-6a), the length and
width vary. If you slice the region into horizontal strips, you are taking a small
amount of length, dy, in which the width is essentially constant. If you slice into
vertical strips, you are taking a small amount of width, dx, in which the length is
essentially constant. In the former case, dA = x dy. In the latter case, dA = y dx.
Integrating either one gives the exact area by adding the areas of the strips and
taking the limit.
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Figure 11-6a



Most applications of definite integration involve similar reasoning. A product

height, dy, in which the cross-sectional area, x2, is constant. For cylindrical
shells, you take a small amount of cross-sectional area, 2 x dx, in which the
height, y, is constant (Figure 11-6b, right).

Figure 11-6b

Slicing may be easier one way than another. You know that
work = (force)(displacement), or W = (F)(D). If the whole object is moved the
same amount, you should take small displacements, dD, in which the force is

Figure 11-6c

essentially constant, so dW = F dD. But different
parts of a fluid may move different amounts. So it
is preferable to take small amounts of force (that
is, weight) for which the displacement is constant.
In this case, dW = D dF  (Figure 11-6c).

In this section you will work problems in which one
factor of a product varies. You will be expected to
read and interpret the definition of each physical
quantity, then translate it into the appropriate
mathematics. It is the ability to see the underlying
similarities in seemingly different phenomena that
will enable you to make intelligent applications of
mathematics.
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(slice) in which the other quantity is essentially constant, evaluate the
“constant” quantity at a sample point in the strip, and find the product. The
trick is in deciding which factor to slice. For example, volume = (cross-sectional
area)(height). For plane slices (Figure 11-6b, left), you take a small amount of

OBJECTIVE Given a real-world situation in which a product has a factor that varies,
calculate the value of the product.

has one or both factors that vary. You take a small amount of one quantity



Section 11-6:   Other Variable-Factor Products © 2005 Key Curriculum Press 575

Quick Review

Q1.  x100 dx = —?—
Q2.  tan x dx = —?—

Q3.   ln x dx = —?—

Problem Set 11-6

Q4.  Write 2 sin x cos x in terms of a trigonometric
function of 2x.

Q5.  Work = —?—

Q6.  If  y = tan–1 3x, then y = —?—.
Q7.  y = x3 + 6x2  has a point of inflection at x = —?—.

Q8.  sec2 x = —?—

Q9.  If  y = cos 3x, then d2y/dx2 = —?—.

Q10.  The graph of 3x2 – 7y2 = 39 is a(n) —?—.

A. Ellipse B. Circle C. Parabola
D. Hyperbola E. Cylinder

1.  Heat Capacity Problem: The number of calories
(heat, as energy) required to warm a substance
from temperature T1 to temperature T2 equals
the heat capacity of the substance (calories per
degree) times the change in temperature
(T2 – T1), where T is in degrees Celsius.
Unfortunately, most substances have heat
capacities that vary with temperature. Assume

that calculus foeride (a rare, tough substance!)
has a heat capacity given by

C = 10 + 0.3T1/2

where C is in calories per degree and T is in
degrees. How many calories would be needed
to warm a gram of calculus foeride from 100°C
to 900°C?

2.  Phoebe’s Speeding Problem: Phoebe is caught
speeding. The fine is $3.00/min for each mile
per hour above the 55 mi/h speed limit. She
was clocked at speeds up to 64 mi/h during a
6-min period, so the judge fines her

($3.00)(time)(mi/h over 55)
= (3.00)(6)(64 – 55) = $162

Phoebe is good at calculus. She argues that her
speed varied over the 6 min. It was 55 mi/h at
t = 0 and t = 6 and was 64 mi/h only at t = 3.
She figures that her speed, v, was

v = 55 + 6t – t2

a.  Show that this equation gives the correct
speeds at the times 0, 3, and 6 min.

b.  What should Phoebe propose to the judge as
a more reasonable fine?

3.  Tunnel Problem: The amount of money it takes
to dig a tunnel equals the length of the tunnel
times the cost per unit length. However, the

 

 Some Variable-Factor Products

  •  Distance = (rate)(time)

  •  Area = (width)(length)

  •  Volume = (cross-sectional area)(height)

  •  Work = (force)(displacement)

  •  Force = (pressure)(area)

  •  Mass = (density)(volume)

  •  Moment = (displacement)n(mass, volume, area, force, and so on)

  •  Worth of a region = (price)(area)
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gets longer because of the expense of carrying
workers and tools in and carrying dirt and rock
out. Assume that the price per foot varies
quadratically with the number of feet, x, from
the beginning of the tunnel.
a.  Find the particular equation for the price

per foot if these prices are known.

cost per unit length increases as the tunnel

100 $820
200 $1180

b.  Find the cost per foot for digging at a point
700 ft from the beginning of the tunnel.

c.  Find the total cost, in dollars, for digging a
tunnel 1000 ft long if the workers start at
one end and dig through to the other end.

d.  How much money could be saved by starting
the 1000-ft tunnel from both ends and
meeting in the middle?

4.  Water Pipe Problem: The flow rate of water
through a pipe (cubic inches per second) equals
the velocity of the water (in inches per second)
times the cross-sectional area of the pipe.
a.  Show that velocity times cross-sectional area

gives the right units for flow rate.

b.  In real pipes, the flow rate varies at different
points across the pipe, with a maximum at
the center and dropping to zero at the pipe
walls (Figure 11-6d). Assume that the
velocity, v, through any cross section of a
4-in.-diameter pipe is given by

v = 4 – x2

where x is the number of inches from the
center of the pipe and v is in inches per
second. Show that the velocity really is a
maximum at the center and zero at the pipe
walls.

Figure 11-6d

c.  What is the flow rate in cubic inches per
second?

d.  How many gallons per minute are flowing
through the pipe? (There are 231 in.3 in a
gallon.)

e.  How many gallons per minute would be
flowing through the pipe if all the water
were moving at the maximum velocity?

f.  As far as the mathematics is concerned, this
problem is identical to some other kind of
problem you have worked. Which kind?

5.  Wire-Pulling Problem: Paul Hardy tries to pull
down a tree. He attaches one end of a long wire
to the tree and the other end to the bumper of
his truck. As he slowly drives the truck away,
the wire stretches tighter and tighter and
finally breaks. At first the force increases
linearly with x, the number of inches the wire
stretches. At x = 2 in., the wire yields (that is,
begins to break). The table shows the forces to
the point where the wire breaks at x = 5.

x (in.)    Force (lb)

0 0
0.5 150
1 300
1.5 450
2 600 (before yielding)
2 450 (after yielding)
2.5 470
3 440
3.5 420
4 410
4.5 390
5 330 (breaks)

a.  Plot the graph of force versus x.
b.  Describe the behavior of the force function

at x = 2.
c.  Find the work done in stretching the wire

from x = 0 to x = 2.
d.  Find the work done in stretching the wire

from x = 2 to x = 5.
e.  Find the total work done in breaking the wire.
f.  Is it possible for a discontinuous function to

be integrable? Explain.
6.  Variable Attraction Problem: A solid paraboloid

is formed by rotating about the y-axis the

x Price

0 $500
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 y = 4 – x2 (Figure 11-6e), where x and y are in
centimeters. The solid has a uniform density k,
in grams per cubic centimeter.

Figure 11-6e

region in Quadrant I bounded by the graph of

a.  Find the mass of the solid.
b.  The solid is attracted by a force that is

inversely proportional to the square root of
the distance from the base of the solid and
directly proportional to the mass. That is,

Force = (constant)(mass)(y–1/2)
But different parts of the solid are at
different distances from the base. By
appropriate slicing, find the total force
exerted on this solid.

7.  Moment of Inertia Problem: The second
moment of mass of an object with respect to
an axis is defined to be the mass times the
square of the distance between the object and
the axis. It is sometimes called the moment of
inertia because it measures how difficult it is
to start or stop rotating the solid about the
axis. Find the second moment of mass of the
solid in Problem 6 with respect to the y-axis.

8.  Degree-Days Problem: Engineers who design
heating and air-conditioning systems use a
quantity called degree-days to measure how
much above or below normal the weather has
been. For example, if the temperature is
10 degrees above normal for 2 days, then the
weather has been (+10)(2) = +20 degree-days.
If it is 30 degrees below normal for half
a day, the weather has been (–30)(1/2) =
–15 degree-days. However, the temperature
varies throughout the day, so degree-days
should be calculated by calculus rather than by
arithmetic. Suppose that one morning the

temperature starts out at normal, and 6 hours
later has risen 20 degrees above normal, and
that any time D, in days, after the morning
reading, the temperature, T, is

T = 20 sin 2 D
a.  Show that this equation gives the right

values of T for times D = 0 and D = 1/4.
b.  Find the number of degree-days between

D = 0 and D = 1/4.

9.  Rocket Car Problem: Iona Carr is building a
rocket-powered car that she plans to use in
racing. In this problem you are to help Iona
figure out the car’s speed and the distance it
will travel in a given time. The car, with Iona in
it and a full load of fuel, will have a mass of
2000 kg. When the engine is running it will
develop 7000 N (newtons) of thrust, which
means the car will be pushed with a constant
force of 7000 N. You recall from physics that
force = (mass)(acceleration), and 1 N is
1 kg-m/s2. However, the car uses fuel at a rate
of 5 kg/s, so its mass is decreasing.
a.  Write an equation expressing mass as a

function of time.
b.  Write an equation expressing acceleration as

a function of time.
c.  The answer to part b is a differential

equation because acceleration is the
derivative of velocity. Solve the differential
equation for velocity as a function of time
if v(0) = 0.

d.  Twenty seconds after the car starts, how fast
will it be going? How far will it have gone?

10.  Field Worth Problem: Suppose you have a tract
of land the shape of the “triangular” region in
Quadrant I bounded by the y-axis and by the
graphs of y = 4 – x2 and y = 4x – x2

(Figure 11-6f, on the next page), where x and y
are in kilometers. The land’s value per square
kilometer is directly proportional to its
distance from the railroad tracks (along the
 y-axis), being $200 thousand per square
kilometer at the point farthest from the tracks.
To the nearest thousand dollars, what is the
total worth of the land? How much less would
it cost you than if the entire tract were worth
$200 thousand per square kilometer?
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11.  Sinusoidal Land Tract Problem: A tract of land
has the shape of the region in Quadrant I
under the graph of y = cos x (Figure 11-6g).
Find the total worth of the land if the worth
per square unit is

 y = 9 – x2, where x and y are in meters and the

Figure 11-6f

a.  Constant in the y-direction but directly
proportional to x in the x-direction

b.  Constant in the x-direction but directly
proportional to y in the y-direction

Figure 11-6g

12.  Painted Wall Problem: Calvin has a contract to
paint the wall of a new auditorium. The wall is
the shape of the region under the graph of

x-axis runs along the ground. It is harder to
paint higher up, so he charges a price per
square meter that is directly proportional to
the square of the distance above the ground.
At a point 2 m above the ground, he charges
$12 per square meter. What total amount will
Calvin charge for the job?

13.  City Land Value Problem: Suppose that you
have been hired by the tax assessor’s office in
the town of Scorpion Gulch. You are to calculate
the total worth of all land within the city limits.

The town is circular, with a radius of 3 km. You
find that land is worth $10 million per square
kilometer at the center of town and $1 million
per square kilometer at the edge of town. For
parts a–c, find the total worth of the land
assuming that the price per square kilometer
a.  Varies linearly with the distance from the

center of town.
b.  Varies exponentially with the distance from

the center of town.
c.  Is given by the table of values.

Distance    Million $/    Distance    Million $/
(km) km2 (km) km2

0 10 1.8 8
0.3 12 2.1 5
0.6 15 2.4 3
0.9 14 2.7 2
1.2 13 3 1
1.5 10

d.  This problem is mathematically equivalent
to another type of problem you have
worked. What kind of problem?

e.  What real-world reason(s) can you think of
to explain the pattern of the data in part c?

14.  Diving Board Problem: Calvin sits on the end of
a diving board (Figure 11-6h), exerting a
pressure p, in pounds per square foot, on the
diving board that varies in the x-direction
according to the formula

 p = 100[(x – 8)1/2 – 0.5(x – 8)]

The pressure is constant across the width of
the board (in the z-direction). The diving board
is 2 ft wide in the z-direction.

Figure 11-6h

a.  To the nearest pound, how much does
Calvin weigh?

b.  What is the average pressure Calvin exerts in
the interval between x = 8 and x = 10?



c.  To the nearest pound-foot, find Calvin’s first

The region under each graph has the same
area, as you will show in part b. But the region
under the g graph is skewed to the right. In
this problem you will calculate the skewness,
which is used in statistics to measure how
unbalanced a region is.

Figure 11-6i

a.  Show that the only x-intercepts of
both functions f and g are –3 and 3
(Figure 11-6i).

b.  Show that the regions under the two graphs
have equal area. How do the properties of
definite integrals between symmetrical
limits help you calculate the area easily?

c.  At what value of x in the interval [–3, 3] do
the maxima of the f and g graphs occur?

d.  Find the x-coordinate of the centroid of the
region under the graph of function g.
Recall that this is the number  such that
( )(area) = first moment of area of the
region with respect to the y-axis.

e.  True or false: “The centroid of the region is
on a vertical line through the maximum on
the g graph.”

f.  True or false: “There is just as much area to
the left of the centroid as there is to the
right.”

g.  The skewness of a region is defined to be
the third moment of area of the region with
respect to a vertical line through the
centroid. Calculate the skewness of the
region under the graph of function g.

h.  Show that the skewness of the region under
the parabola, function f, is equal to zero.
Why is the word skewness appropriate in
this case?

i.  Sketch the graph of a region with skewness
that is the opposite sign from that under the
graph of function g.

16.  Moment of Arc Length Problem: You have
found moments of area, mass, and volume. It is
also possible to find moments of length.
Figure 11-6j shows the arc of the parabola
 y = x2 from x = 0 to x = 2. The moment, dMy,
of the arc dL with respect to the y-axis is the
length, dL, times its distance, x, from the
 y-axis. That is,

dMy = x dL

Figure 11-6j

a.  Find dMy explicitly in terms of x and dx.
b.  Find the total moment of the parabolic arc

with respect to the y-axis.
c.  Find the length of the parabolic arc.
d.  Find the x-coordinate of the centroid of the

parabolic arc. This point would be the center
of mass of a thin, uniform wire bent in the
shape of the arc.

e.  Find the surface area of the paraboloid
formed by rotating the arc about the y-axis.

f.  What interesting thing do you notice about
the integral in part e?
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moment of force with respect to the yz-plane.
d.  Calvin wishes to exert the same first

moment by standing on tiptoes at some
point near the end of the board. Where
should he stand?

15.  Skewness Problem: Figure 11-6i shows the
graphs of

 f(x) = 9 – x2       and    g(x) = – x3 – x2 + 3x + 9
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17.  Another Theorem of Pappus Problem: In
Section 11-4, you learned the theorem of
Pappus for volumes. The theorem states the
volume of a solid of revolution equals the area
of the region being rotated times the distance
traveled by the centroid of that region. There is
a similar theorem for surface area.

Theorem: The Theorem of Pappus
for Surfaces
The area, S, of a surface of revolution is
given by

S = 2 L

where L is the length of the curve being
rotated,  is the displacement from the axis
of rotation to the centroid of the curve, and
the curve is not on both sides of the axis of
rotation. The quantity 2 is thus the
distance the centroid travels as the curve
rotates.

Demonstrate that this theorem is true for the
paraboloid in Problem 16, part e.

18.  Application of Pappus’ Other Theorem: A
toroidal surface (like an inner tube) is formed
by rotating a circle of radius r about an axis
(Figure 11-6k) R units from the center of the
circle. It is hard to find the surface area of the
toroid directly by integration, but it is easy to
do so by using the theorem of Pappus for
surfaces. Find a formula for the area of a
toroidal surface in terms of r and R.

Figure 11-6k

11-7   Chapter Review and Test
In this chapter you have applied definite integration to problems involving a
product of two quantities, where one of the quantities is a variable. By now you
should be able to take any such situation, familiar or unfamiliar, and perform
the appropriate mathematics. The ability to see similarities among seemingly
dissimilar phenomena is the key to intelligent application of mathematics.

Review Problems

R0.  Update your journal with what you’ve learned
since the last entry. You should include such
things as those listed here.

•  The one most important thing you have
learned in studying Chapter 11

•  Which boxes you have been working on in
the “define, understand, do, apply” table

•  Physical quantities that you can calculate as
products, such as work, moment, and mass

•  Centroid, center of mass, center of gravity,
center of pressure, and so on

•  Any techniques or ideas about calculus that
are still unclear

R1.  Work Problem: Manuel Dexterity drags Bob Tail
across the floor. Manuel pulls hard at first,
then eases off. The force he exerts
(Figure 11-7a) is given by

F = 30e–0.2x



Figure 11-7a

R2.  a.  Magnet Problem: A magnet repels another
magnet with a force inversely proportional
to the square of their distance apart. That is,
F = k/x2, where F is in pounds and x is in
inches. Find the work done in moving the
magnets from 3 in. apart to 1 in. apart.

b.  Conical Cup Problem: Phil puts a 10-in.-long
straw into a conical cup filled to the top with
root beer (Figure 11-7b). The cup has a top
diameter 6 in. and a height 7 in. The root
beer has a density of 0.036 lb/in.3. How
much work will Phil do in raising all the
liquid in the cup to the top of the straw?

Figure 11-7b

R3.  Variable Density Problem: The region in
Quadrant I bounded by the graph of y = 8 – x3

is rotated about the y-axis to form a solid. Find
the mass of the solid if the density
a.  Is constant in the radial direction but equal

to ky in the y-direction, where k is a
proportionality constant

b.  Is constant in the axial direction but equals
ex in the radial direction

R4.  a.  Triangle Centroid Problem: Figure 11-7c
shows a triangle of base b and height h.
Write an equation for the width of the
triangle in terms of y, the distance from the
base to a sample point. Find the first
moment of area of the region inside the
triangle with respect to its base. Show that
the centroid is one-third of the distance
from the base to the opposite vertex.

Figure 11-7c

b.  Second Moment of Volume Problem: The
region under the graph of y = ex from x = 0
to x = 1 is rotated about the y-axis to form a
solid. Find the second moment of volume of
the solid with respect to the y-axis.

R5.  Wind Force Problem: A tower has the shape of a
slender pyramid (Figure 11-7d). The base of the
pyramid, at ground level, is a square of length
150 ft. The building is 400 ft tall. When the
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displacement in feet from the starting point.
where F is in pounds and x is Bob’s

The work Manuel does is the force times the
displacement. Find the number of foot-pounds
of work he does in dragging Bob from x = 0
to x = 10.

Figure 11-7d



also that the face of the building is a vertical
triangle of base 150 ft and height 400 ft.
Calculate the total force of the wind acting on
that face.

R6.  Oil Well Problem: Suppose you work for a
company that plans to drill a well to a depth of

50,000 ft, farther than anyone has ever drilled
before. Your job is to estimate the cost of
drilling. From historical records you find that it
costs about $30 per foot to drill at the surface
and about $50 per foot at a depth of 10,000 ft.
a.  Assume that the cost per foot, in dollars,

varies exponentially with depth. Write the
particular equation expressing cost per foot
in terms of depth.

b.  The total cost of the well is the cost per foot
times the depth, in feet. The cost per foot
varies, so you realize that this is a job for
calculus! Your boss needs the estimated cost
of the well. What are you going to tell him?

Concept Problems

C1.  Cubic Parabola Region Problem: The following
problems concern a region in the xy-plane of
an xyz-coordinate system. The region is
bounded by the graphs of y = x3, y = 8, and
x = 0 (Figure 11-7e).

Figure 11-7e

a.  Find the area of the region.
b.  Find the first moment of area of the region

with respect to
i.  The x-axis
ii.  The y-axis

c.  Find the centroid of the region.

d.  Find the volume of the solid generated by
rotating the region
i.  About the x-axis
ii.  About the y-axis
iii.  About the line x = 3

e.  Show that for each of the solids in part d,
the volume is equal to the area of the region
times the distance traveled by the centroid
of the region as it rotates to form the solid.

f.  Find the first moment of volume with
respect to the xz-plane for the solid in
part d, part ii.

g.  Find the centroid of the solid in part d,
part ii.

h.  Does the y-coordinate of the centroid of the
solid in part d, part ii equal the y-coordinate
of the centroid of the region?

i.  Find the mass of the solid in part d, part ii if
the density varies directly with the square of
the distance from the y-axis.

j.  Find the second moment of mass of the
solid in part d, part ii with respect to the
 y-axis.
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wind blows, the pressure acting on the
triangular face of the building is greater at the
top than at the bottom, because the wind
speed increases with altitude. Assume that the
pressure due to the wind is given by

 p = 200(1 – e–0.01y)
where p is in pounds per square foot and y is
the height in feet above the ground. Assume



k.  Find the force acting perpendicular to the

m.  Suppose that the object in part d, part ii is
made of a substance with heat capacity

its dimensions are in centimeters. Suppose

temperature that is constant in the radial
direction but is given by T = 10 – y  in the
axial direction. Find the amount of heat
needed to cause this temperature change.

C2.  Moment vs. Volume Problem: Show that finding
the first moment of the area of a region with
respect to the y-axis is mathematically
equivalent to finding the volume by cylindrical
shells for the solid formed by rotating that
region about the y-axis, provided that the
region is not on both sides of the axis of
rotation.

C3.  Paraboloid Moment Conjecture Problem: A solid
paraboloid is formed by rotating about the
 y-axis the region in Quadrant I under the graph
of y = 9 – x2. Show that the first moment of
volume of the solid with respect to the plane of
its base equals the second moment of volume
of the solid with respect to its axis. Does this
property hold in general for any solid
paraboloid? Justify your answer.

C4.  Infinitesimals of Higher Order:
a.  Figure 11-7f shows a lower Riemann sum for

 y = mx, where m ≠ 0. The area of each strip
is dA  y dx, the area of the rectangle. The
length of each piece of graph is dL  dx.
Both approximations become exact as x
approaches zero. Show that on integrating
from a to b, dA  y dx gives the exact area
of the region, but dL  dx does not give the
exact length.

Figure 11-7f

b.  Figure 11-7g shows the cone formed by
rotating about the x-axis the graph of
 y = mx (m ≠ 0) from x = 0 to x = h. Plane
sections cut the cone into frustums of
volume . Each frustum has area
dS  2 y dx. Both approximations become
exact as x approaches zero. Show that on
integrating from 0 to h,  gives
the exact volume of the cone, but
dS  2 y dx does not give the exact
surface area.

Figure 11-7g

c.  Find the exact area of a strip in Figure 11-7f
and the exact volume of a frustum in
Figure 11-7g. (The volume of a frustum of
height dx is V = (  / 3)(R2 + Rr + r2)(dx),
where R is the larger radius and r is the
smaller radius of the frustum.)

d.  A quantity, such as 2 y dx, that approaches
zero as x approaches zero is called a
first-order infinitesimal. A quantity, such
as 0.5 y dx, that is the product of two or
more first-order infinitesimals is called a
higher-order infinitesimal. Show that
the approximations dA  y dx and
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region due to a pressure equal to (3 – x) in
the x-direction (and constant in the
 y-direction).

l.  Find the work done by moving the region

part k acts on the region when it is at z = 1,

square of z as the region moves in the
z-direction and acts in the positive

and that the force varies inversely with the

from z = 1 to z = 3. Assume that the force in

z-direction.

0.3 cal/g/°C and density 5.8 g/cm3, and that

also that the object is warmed from 0°C to a
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dV  y2 dx differ from the exact values in
part c only by infinitesimals of higher order.

e.  You recall that the differential of arc length
is dL = . The approximation
dL  dx = leaves out the first-order
infinitesimal . Make a conjecture about  0.5 y dx = 0.5(0)(b–a) = 0

Property: Infinitesimals of Higher Order

If dQ  Q leaves out only infinitesimals
of higher order, then

dQ is exactly equal to Q

 y-axis)2

 F = 40x – 10x2

how accurate a differential of a quantity
must be so that it yields the exact value
when it is integrated.

f.  The second-order infinitesimal 0.5 y dx
appears in the exact value of the area of
the strip in Figure 11-7f in part d. The
limit of the Riemann sum of such a
higher-order infinitesimal equals zero. Give

a reason for each step in this example of
that statement.

Chapter
Test
PART 1: No calculators allowed (T1–T4)

T1.  Complete the equations.
a.  Work  = —?— · —?—
b.  —?— = density · volume
c.  —?— = pressure · area
d.  Moment of area with respect to the

x-axis = —?— · —?—
e.  —?— = volume · (displacement from

f.  Moment of mass with respect to
 yz-plane = —?— · mass

T2.  Find the work done in dragging an object from
x = 1 to x = 4 if the force, in pounds, exerted
on the object is given by

T3.  An object of mass 200 g is at a point where its
moment with respect to the xz-plane is
3000 g-cm. Find , the distance from the
xz-plane to the center of mass.

T4.  A circle of radius 7 cm in the xy-plane has its
center at the point (8, 9). Find the volume of
the toroid formed by rotating this circle about
the y-axis.

PART 2: Graphing calculators allowed (T5–T9)
T5.  A packing case is dragged across the floor

from x = 0 to x = 10 ft. As it moves, it becomes
damaged, causing the force needed to move it
to increase, as shown in the table. Find the
exponential function that best fits these data.
Use the function to find the total amount of
work done.

x Force (lb)

0 30
2 34
4 38
6 43
8 49

10 55

T6.  For the region under the graph of y = ex from
x = 0 to x = 2, where x and y are in inches,

a.  Find the first moment of area with respect
to the y-axis. Give the units in your answer.

b.  Find the second moment of area with
respect to the y-axis. Give the units in your
answer.

c.  Find the x-coordinate of the centroid of the
region. Give the units in your answer.

0.5 y dx = 0.5 y dx

= 0.5 y (b–a)



T7.  A solid is formed by rotating about the x-axis

equal to 3y radially (in grams per cubic
centimeter). Find its mass.

T8.  A trough 8 ft deep and 4 ft across has an end
the shape of the region above the graph of
 y = |x3| (Figure 11-7h).

Figure 11-7h

a.  Find the total force acting on the end of the
trough when it is full of water of density
62.4 lb/ft3.

b.  Find the center of pressure, where the force
could be concentrated to produce the same
moment.

T9.  Theater in the Round Problem: A round theater
is to be built with the stage at the center. The
seats will be in circular rows starting at
r = 30 ft from the center and ending at r = b ft
(Figure 11-7i).

Figure 11-7i

a.  The value of the seating area for any given
performance is given by v = 150/r  (in
dollars per square foot). Find the total value
of the seating area in terms of the outer
radius, b.

b.  How big must the theater be to receive
$60,000 for a performance?
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the region under the graph of y = x1/2 from

centimeters. Its density is constant axially and
x = 0 to x = 16, where x and y are in
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The Calculus of Functions
Defined by Power Series

If you take regular doses of a medication, the amount in your
system is the sum of what remains from the series of the doses
you have taken. The limit of that series as the number of doses
becomes large is important to know for determining long-term
effects of the medication. You can find such limits by calculus
techniques.
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How does a calculator find sines and logs when all it can do is add
and multiply? In Chapter 12, you will see that these transcendental
functions can be calculated as accurately as you need using infinite
polynomials called power series. You will study these series in
four ways.

Graphically The icon at the top of each
even-numbered page of this chapter
shows that the first few terms of a
power series can fit the sine function
close to x = 0.

Numerically sin 0.6 = 0.56462473...
n Series for sin 0.6

0 0.6

0.564642445...

1
2
3
4

0.564
0.564648

0.564642473...

Mathematical Overview

Algebraically sin x = x –  – ... , the Maclaurin series for sine

Verbally Perhaps the most surprising thing I have learned about power series is
that sometimes they converge as more and more terms are added, and
sometimes they don’t. For each power series, there is an interval of
x-values for which the series converges.



divide 1 – x into 6, you get a polynomial that
continues forever!

P(x) = 6 + 6x + 6x2 + 6x3 + 6x4 + 6x5 + · · ·

The result is called a power series. The word series
indicates that an infinite number of terms are being
added. The word power indicates that each term
contains a power of x.

The following problem set is designed to let you work toward this objective
either on your own or with your study group following your test on Chapter 11.

Let f(x) = 6/(1 – x) and let
P(x) = 6 + 6x + 6x2 + 6x3 + 6x4 + 6x5 + · · · .

1.  On the same screen, plot f(x) and the
polynomial function P5(x) (the six terms of
P(x) through 6x5). Use a window with x = 1 as
a grid point, an x-range of about [–2, 2], and a
 y-range of [–100, 100]. Sketch the result. For
what range of x-values is the graph of P5 so
close to the graph of f that you can’t tell them
apart? Give an x-value for which the graph of
P5 bears no resemblance to the graph of f.

2.  On the same screen as Problem 1, plot the
polynomial function P6(x). Does the graph of
P6 fit the graph of f for a range of x-values
wider than the range of P5?

3.  Show that P6(0.5) is closer to f(0.5) than
P5(0.5) is, but that P6(2) is not closer to f(2)
than P5(2) is.

4.  If the limit of the sum of a series as you
add more and more terms equals the

corresponding value of f(x), then the series is
said to converge to f(x). If the series does not
converge to f(x) or some other number, it is
said to diverge. Make a conjecture about the
interval of values of x for which the series

P(x) = 6 + 6x + 6x2 + 6x3 + 6x4 + 6x5 + · · ·

converges to f(x) = 6/(1 – x).

5.  Write the values of P0(1), P1(1), . . . , P4(1). Write
the values of P0(–1), P1(–1), . . . , P4(–1).
Explain why each series diverges. Does this
result affect your conjecture in Problem 4?

6.  By how much do P5(0.5) and P5(–0.5) differ
from the respective values of f(0.5) and
 f(–0.5)? How do these differences compare
with 6x6, the first term of the series that is left
out of the sum?

7.  Each term of P(x) after the first equals the
preceding term multiplied by the same
number, x in this case. What is this type of
series called? What is the multiplier x called?
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12-1         Introduction to Power Series

OBJECTIVE Find values of P(x) for a given power series, and compare the results with the
corresponding values of the function from which the power series originates.

Exploratory Problem Set
12-1

Suppose that f(x) = 6/(1 – x) (Figure 12-1a). If you

Figure 12-1a



In Problem Set 12-1, you saw how the rational function f(x) = 6/(1 – x) could be
expanded as a series, 6 + 6x + 6x2 + 6x3 + · · · . You can generate any term after
the first by multiplying the preceding term by the same number, x in this case.
Thus the series fits the definition of geometric series from algebra. In this
section you will reverse the process to see how to represent a geometric series,
at least in some instances, as a rational function. By so doing you will be able to
analyze some functions in the real world in which the function values change
discretely (by jumps) rather than continuously.

Background

The sizes of dolls in a set of Russian
Matryoshka dolls are calculated using
a common ratio.

A geometric series is defined to be a
series, t1 + t2 + t3 + t4 + · · · , for which
there is a constant, r, called the
common ratio such that tn = rtn–1 for
any integer n > 1. The numbers
t1, t2, t3, . . . are called terms of the
series, hence the letter t. The variable n
is called the term index . If n starts at 1,
the term index is the same as the term
number. The nth partial sum, Sn, of a
geometric series is the indicated sum
of the first n terms. By clever algebra it
is possible to derive a closed formula
(no ellipsis) for Sn as a function of the
first term, t1, and the common ratio, r.

Sn = t1 + t2 + t3 + t4 + · · · + tn–1 + tn

Sn = t1 + rt1 + r2t1 + r3t1 + · · · + rn–2t1 + rn–1t1 Each term is r times
the preceding term.

rSn = rt1 + r2t1 + r3t1 + r4t1 + · · · + rn–1t1 + rnt1 Multiply both sides of
the equation by r.

Sn – rSn = t1 – rnt1 Subtract the third equation
from the second one. The
middle terms telescope.

Sn = t1 Solve for Sn.
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12-2   Geometric Sequences and Series
as Mathematical Models

OBJECTIVE Given a function defined by a geometric series, explain whether you can write
the series as a rational algebraic function, and if so, write an equation for that
target function.



 

A Convergent Geometric Series—Drug Dosage

Sn = 500 + 300 + 180 + 108 + · · · 180 is 60% of 300, 108 is 60%
of 180, and so forth.

= 500 + 500(0.6) + 500(0.62) + 500(0.63) + · · · + 500(0.6n–1)

This series is geometric, with first term 500 and common ratio 0.6. After
10 doses,

S10 = 500  = 1242.441... 

The person would have only about 1240 mg of vitamin C in his or her system,
despite having taken a total of 5000 mg.

If the person continues taking the 500-mg doses for a long time, does the
amount in the body become exceedingly high? To find out, it is instructive to
look at the partial sums graphically and numerically. As shown in Figure 12-2a,
the amount of vitamin C rapidly levels off toward 1250 mg. As shown in the
accompanying table, the partial sums stay the same for more and more decimal
places. Both the table and the graph give evidence that the sequence of partial
sums converges to 1250. If the sequence of partial sums converges, then the
series converges also.

Figure 12-2a

n S
n

25 1249.996446...
26 1249.997867...
27 1249.998720...
28 1249.999232...
29 1249.999539...
30 1249.999723...
31 1249.999834...
32 1249.999900...

From the formula for Sn, you can tell algebraically that the series converges to
1250. Take the limit of Sn as n approaches infinity.

Because 0.6n approaches zero.

=  1250

So the amount of vitamin C in the person’s system never exceeds 1250 mg, no
matter how long the treatment is continued.
A geometric series will converge if the common ratio, r, is a proper fraction
(that is, |r| < 1). This is because the term rn in the formula for Sn approaches
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Suppose a person takes 500 mg of vitamin C every 8 h. Assume that at the end
of any 8-h period, only 60% of the vitamin C present at the beginning of the
period remains in the person’s system. At the end of the first 8-h period, only
300 mg of the original 500 remains. After the second dose, the amount jumps to
800 mg. Immediately after the nth dose, the amount of vitamin C remaining in
the system is the sum of the 500 mg from the last dose and the remains of each
previous dose.



zero as a limit as n approaches infinity. The number S to which the series
converges is given by

A Divergent Geometric Sequence—Compound Interest

In Chapter 7, you saw that you can use an exponential function as a
mathematical model for invested money if the interest is compounded
continuously. A sequence is more appropriate if the interest is compounded
at discrete intervals, such as once a day, once a month, or once a quarter.
Suppose you invest $500 in a savings account that pays 6% per year interest,
compounded quarterly. For the first 3 months you have only the initial $500.
Then $7.50 is added to the account, 1.5% of the $500 (a fourth of 6%), and you
have $507.50 for the next 3 months. At the end of the second quarter the
account increases by $7.6125, which is 1.5% of the $507.50.

To find a pattern in the amounts, observe how you can calculate the $507.50.

500 + 500(0.015) = 500(1 + 0.015) = 500(1.015)After the first quarter.

Repeating the computation for the second quarter without simplifying
500(1.015) gives

500(1.015) + 500(1.015)(0.015)
= 500(1.015)(1 + 0.015) = 500(1.015)2 Second quarter.

The amounts are terms in a geometric sequence, with first term 500 and a
common ratio 1.015.

500, 500(1.015), 500(1.015)2,
account.

0 1 2 3 4 . . .

The exponent of 1.015 equals the number of quarters. After 10 years the amount
would be

t40 = 500(1.015)40 = 907.0092...  $907.01 Notice that n is 40, not 10.

The amount of interest earned in the 10 years would be $407.01, the difference
between the $907.01 and the initial investment of $500. In this instance it is
more convenient to start n at 0 instead of 1 so that the term index will equal the
number of quarters elapsed.

Note that the sequence diverges because the common ratio is greater than 1.
This fact is useful in the real world. For instance, it alerts bankers to the
consequences of money left in dormant accounts. If the $500 had been invested
by George Washington the year he died, 1799, his heirs could claim more than
$106,000,000 in 2005!

Words Relating to Sequences and Series

The definitions and properties concerning sequences and series are
summarized in the box on the next page.
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500(1.015)3, 500(1.015)4, . . . Dollars in the

Quarters.
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DEFINITIONS:  Vocabulary Relating to Sequences and Series

Example: 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + · · ·

The terms of a sequence or series, t1, t2, t3, . . . , tn, . . . , are the numbers that
appear in the sequence or series.

The term index is the variable integer subscript n used to calculate the term
value. If n starts at 1, the term index also equals the term number.

A partial sum of a series is the sum of a finite number of terms in the series.

Example: S4 = 2 + 3 + 5 + 7 = 17 Fourth partial sum of
the series of primes.

The sequence of partial sums of a series is the sequence with terms that are
the first partial sum, the second partial sum, the third partial sum, and so on.

Example: For the series of primes, above, the sequence of partial sums is
S1, S2, S3, S4, S5, S6, S7, S8, . . . = 2, 5, 10, 17, 28, 41, 58, 77, . . . .

A sequence converges to L if its nth term approaches a finite limit L as n
approaches infinity. If the sequence does not converge, it is said to diverge.

Example: converges to 2.
2, 3, 5, 7, 11, 13, . . . (the sequence of primes) diverges.
1, 0, 1, 0, 1, 0, 1, . . . diverges by oscillation.

A series converges if and only if its sequence of partial sums converges.

Example:  converges because its sequence of
partial sums is  . . . , which converges to 2.

A geometric series is a series for which each term after the first term is given
by tn = r · tn–1 for some constant r, called the common ratio.

Properties of Geometric Series

The nth partial sum of a geometric series is given by

Sn = t1 

A geometric series converges if |r| < 1.
The number to which a convergent geometric series converges is

S = t1 

A sequence is an infinite ordered set of numbers.

Example: 2, 3, 5, 7, 11, 13, 17, 19, 23, . . .

A series is the indicated sum of the terms of a sequence.

The sequence of primes.

The series of primes.



Q1.  Definition: L is the limit of f(x) as x approaches
infinity if and only if —?—.

Q2.  “If g(x) =  f(x) dx, then  f(x) dx = g(b) – g(a)”
is a statement of —?—.

Q3.  (d/dx)  f(t) dt = f(x) is a statement of —?—.

Q4.  “. . . such that (c) = [f(b) – f(a)]/(b – a)” is
part of the conclusion of —?—.

Q5.  Instantaneous rate of change of a function is
the physical meaning of —?—.

Q6.  (d/dx)(x cos x) = —?—

Q7.   x cos x dx = —?—

Q8.  The differential of area in polar coordinates
is dA = —?—.

Q9.  What function is graphed in Figure 12-2b?

Figure 12-2b

Q10.  The function —?— is graphed in Figure 12-2c.

A.  y = cos x B.  y = sin x
C.  y = sin (x – /2) D.  y = 2 cos x
E.  y = cos x + 1

Figure 12-2c

1.  Write the first few terms of the geometric series
with first term 200 and common ratio –0.6.
Write the corresponding partial sums. Plot the
graph of the partial sums and sketch the result.

To what number does the series converge?
Show this number on the graph. What is the
first value of the term number, n, for which the
partial sum is within 0.0001 of the limit? What
can you say about the proximity of Sn to the
limit for greater values of n?

2.  Write the first few terms of the geometric
series with first term 30 and common ratio 1.1.
Write the corresponding partial sums. Give
numerical and graphical evidence that the
series diverges. For instance, what does S100
equal? What meaning does the algebraic
formula S = t1/(1 – r) have for this series?

3.  Allergy Spray Dosage Problem: Suppose a
person takes a 7-μg (microgram) dose of
allergy spray every 6 h. Suppose also that at
the end of each 6 h, the amount of spray
remaining in the body is 80% of the total
amount at the beginning of that 6 h.
a.  Write a geometric series with partial sums,

Sn, that represent the total amounts of spray
remaining in the body just after dose
number n has been taken. With which dose
will the total amount in the body first
exceed 20 μg? Will the total amount in the
body ever reach 40 μg? Sketch a graph
showing the pattern followed by the partial
sums of this series.

b.  Write a sequence with terms that are the
amounts of spray remaining in the body just
before the nth dose. Show these terms on
the graph from part a. Is there a number of
doses beyond which the amount never
drops below 20 μg?

c.  Sketch a dashed line on the graph from
part b showing the piecewise-continuous
function that represents the amount of
spray remaining at times between doses.

4.  Inscribed Squares Problem: Figure 12-2d shows
an outer square of side 4 cm. The midpoints of
the sides of the square are the vertices for an
inscribed square. More squares are inscribed
using the same pattern, infinitely!
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Problem Set 12-2

Quick Review



converge, or does the total perimeter
approach infinity?

d.  The sum of the areas of the squares is also a
geometric series. Does this series converge,
or does the sum of the areas become
infinite?

5.  Compound Interest Problem: Meg A. Buck
invests a million dollars in a certificate of
deposit (CD) that earns 9% interest a year,
compounded once a month.

a.  Write a geometric sequence for the amounts
the CD is worth after 0, 1, 2, and 3 mo.

b.  How much will the CD be worth at the end
of the first year? How much interest will
have been earned?

c.  How do you explain that after 12 mo the
term index is 12, but there are 13 terms in
the sequence?

d.  The annual percentage rate (APR) an
investment earns is the amount of interest
for 1 yr expressed as a percentage of the
investment’s worth at the beginning of the
year. What is the APR for Meg’s CD?

e.  When will Meg’s CD be worth 2 million
dollars?

6.  Regular Deposits Problem: Ernest Lee invests
$100 a month in an individual retirement
account (IRA). The interest rate is 10.8% per
year, compounded monthly. After 0 months,

Ernest has only the first $100 in the IRA. After
1 month, he has $200, plus interest on the first
$100. After 2 months, he has $100 invested the
last month, plus $100 with 1 month’s interest
for the preceding month, plus $100 with
2 months’ interest.

a.  Write the amount Ernest has at the end of
5 months as a partial sum of a geometric
series.

b.  The 5 (months) in part a is the term index.
How many terms are in the partial sum?
Why is the number of terms not equal to the
term index?

c.  How much will Ernest have after 10 years?
How much of this is principal and how
much is interest?

7.  Bouncing Ball Problem: A superball is
catapulted from floor level. It rises 10 ft above
the floor then starts back down. On the next
bounce it rises 9 ft above the floor. On each
subsequent bounce it rises 90% of the maximum
height of the previous bounce (Figure 12-2e).

Figure 12-2e

a.  The ball travels 20 ft vertically before the
first bounce. Write the first few terms of the
sequence of distances the ball travels
between bounces.

b.  Calculate the fourth partial sum of the
series of distances corresponding to the
sequence in part a.

c.  To what number does the series in part b
converge? What does this fact imply for the
total distance the ball travels as it comes
to rest?

d.  From physics you learn that the distance an
object drops from rest under the influence
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Figure 12-2d

a.  Show that the perimeters of the squares
form a geometric sequence.

b.  The total perimeter of all the squares is a
geometric series. Find the tenth partial sum
of the series.

c.  Does the series for the total perimeter



of gravity is d = (1/2)gt2. If d is distance,
in feet, and t is time, in seconds, then
g  32.2 ft/s2. The time taken for an
up-and-down cycle is twice the time to fall
from a high point. How long does it take the
ball to make the 20-ft first up-and-down
cycle? How long does it take to make the
18-ft second cycle?

e.  According to this mathematical model, the
ball makes an infinite number of bounces
before it comes to rest. Does this infinite
number of bounces take an infinite length
of time, or does the model predict that the
ball eventually comes to rest? Explain.

8.  Snowflake Curve Problem: A figure called the
snowflake curve is generated as shown in
Figure 12-2f. An equilateral triangle has the
one-third points marked on each side. For the
first iteration, the middle one-third of each
side is erased and two line segments equal to
the length of the erased segment are added to
form sides of smaller equilateral triangles. In
the second iteration, the process is repeated.
Each old segment is replaced with four new
segments, each of which is one-third as long
as the segment it replaces. The snowflake
curve is the figure that results from taking the
limit as the number of iterations approaches
infinity. This limit was first considered by
Helge von Koch in 1904.

Figure 12-2f

a.  Suppose the pre-image (the original triangle)
has sides 9 cm long. Write the total length of
the curve at the first, second, and third
iterations. How can the length at one

particular iteration be generated from the
length at the previous iteration?

b.  Does the sequence of total lengths in part a
converge or diverge? What does the answer
indicate about the total length of the
snowflake curve? Surprising?

c.  The area enclosed by each iteration is a
partial sum of a geometric series. Write the
first few terms of this series. Does the series
converge or diverge? If it converges, find the
limit to which it converges. If it diverges,
explain how you know it diverges.

d.  The snowflake curve is a classic example of
a fractal curve. It is so fractured that it is
more than one-dimensional but less than
two-dimensional. Its dimension is a fraction
equal to about 1.26. The curve is continuous
everywhere but differentiable nowhere. For
more about such curves, see, for example,
Benoit Mandelbrot’s The Fractal Geometry
of Nature, published by W. H. Freeman and
Company in 1983.

you will consider the derivatives of the power
series from Problem Set 12-1 and see how they
relate to the rational algebraic function from
which the series was derived.

P(x) = 6 + 6x + 6x2 + 6x3 + 6x4 + 6x5 + · · ·
 f(x) = 6/(1 – x)
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Assume you can find the derivatives of a series
by differentiating each term. Write series for

(x), (x), and (x). [ (x) is the third
derivative, or the derivative of (x).] Show
that (0), (0), and (0) equal the
corresponding values of (0), (0), and

(0). How does P(n)(0) relate to f (n)(0), the
nth derivative?

9.  Derivatives of a Power Series: In this problem



series used, the closer the graph of P is to the graph of f.

Figure 12-3a

You can calculate values of f(x) = 6/(1 – x) directly. You cannot, however,
calculate values of the elementary transcendental functions directly using only a
finite number of arithmetic operations, namely, +, –, ×, and . Fortunately, it is
possible to express many of these functions as power series. You can use partial
sums of these series to calculate sin x, ln x, ex, and so forth to as many decimal
places as you need. In this section you will derive a power series for f(x) = 5e2x.

In Problem Set 12-3, you will accomplish this objective.

Q1.  Write 1/3 as a repeating decimal.

Q2.  Write 4/9 as a repeating decimal.

Q3.  Write 0.6666... (repeating) as a ratio of two
integers.

Q4.  Write 0.4  +  0.04  +  0.004  +  0.0004  + · · · as
a ratio of two integers.

Q5.  Write the next term of the arithmetic series
1 + 5 + 9 + · · · .

Q6.  Write the next term of the geometric series
1 + 5 + 25 + · · · .

Q7.  First moment of mass = —?— times —?—.

Q8.  Center of volume is called —?—.

Q9.  Evaluate the integral:  x–1 dx

Q10.  For the function y = sec 2x,  = —?—.

A.  tan x B.  sec 2x tan 2x
C.  sec 2x tan 2x D.  2 sec 2x tan 2x
E.  2 sec2 2x

For Problems 1–11, let f(x) = 5e2x.

second, third, and fourth derivatives of f(x).

2.  Function f is locally linear at x = 0. Let P1 be
the linear function P1(x) = c0 + c1x that best
fits f(x) at x = 0. (c0 and c1 are used for the
constants rather than b and m so that you will
see a pattern later.) Find the values of c0 and c1
that make P1(0) = f(0) and 1(0) = (0),
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12-3   Power Series for an Exponential Function

OBJECTIVE Given a particular exponential function, derive a power series that fits the
function for values of x close to zero.

Problem Set 12-3

Quick Review

1.  Find (x), (x), (x), and f (4)(x), the first,

In Section 12-1, you saw that you can write the function

 f(x) = 

as a power series,

P(x) = 6 + 6x + 6x2 + 6x3 + 6x4 + · · ·

Figure 12-3a shows that for values of x between –1 and 1, the more terms of the



3.  Function f is also locally quadratic at x = 0.
That is, there is a quadratic function
P2(x) = c0 + c1x + c2x2 that best fits f(x) at
x = 0. Find the values of the constants c0, c1,

compare with the corresponding values for the
linear function P1?

4.  Function f is also locally cubic and locally
quartic at x = 0. Find equations for the cubic
and quartic functions,

P3(x) = c0 + c1x + c2x2 + c3x3

P4(x) = c0 + c1x + c2x2 + c3x3 + c4x4

that best fit f(x) at x = 0. For these equations,
P3(0) and P4(0) must equal f(0), and the first
three derivatives (for P3) or the first four
derivatives (for P4) must equal the
corresponding derivatives of f at x = 0. How do
the coefficients c0, c1, and c2 compare with
those for the quadratic and linear functions in
Problems 2 and 3?

5.  Plot graphs of f, P3, and P4 on the same
screen. Use a window with an x-range of [–2, 2]
and a y-range of [–20, 100]. Sketch the results.

6.  For what range of values of x is the graph of P4
indistinguishable from the graph of f on your
grapher?

7.  Show that the value of P4(1) is closer to the
actual value of f(1) than the value of P3(1) is.

8.  In Problem 4, you should have found that for
the fourth derivative, P (4)

4     (0), to equal f  (4)(0),
the value of c4 was

24c4 = 80   c4 = 

Write the 80 as the product of 5 and a power of
2. Write the 24 as a factorial. What pattern do
you notice?

9.  Show that c3, c2, c1, and even c0 follow the
pattern in Problem 8.

10.  Let P(x) be the power series P(x) = c0 + c1x +
c2x2 + c3x3 + c4x4 + c5x5 + · · · . Note that P3(x)
and P4(x) are partial sums of this series. Make
a conjecture about the values of c5 and c6 such
that P5(x) and P6(x) best fit f(x) at x = 0.

11.  In previous courses you probably learned how
to express series in Σ (sigma) notation. For
instance,

In sigma notation you evaluate the expression
1/(n + 1) · xn for each integer value of n
starting at 0, and going to infinity, as you add
the terms. Use what you have learned in this
problem set to write in Σ notation the series for
P(x) that best fits f(x) = 5e2x.

Elementary Functions
In Sections 12-1 and 12-3, you saw that you can represent two quite different
functions in similar form as power series, at least for values of x close to zero.

Rational function: f(x) = 

Series: P(x) = 6 + 6x + 6x2 + 6x3 + 6x4 + 6x5 + · · ·

Exponential function: f(x) = 5e2x

Series: 5 + 10x + 10x2 +  + · · ·
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2(0) = (0). How do the values of c0 and c1

and c2 that make P2(0) = f(0), 2(0) = (0), and

12-4   Power Series for Other



   

The two series have the same form. The only difference is the values of the
coefficients, all 6s for one series and 5, 10, 10, 20/3, . . . for the other.

power series about x = 1 rather than x = 0.

The general form of a power series is defined here.

By equating derivatives, show that the following are the first three nonzero
terms of the power series for f(x) = sin x expanded about x = 0.

Let P(x) = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5 + · · ·

For P(x) to fit f(x) = sin x at x = 0, the function value and each derivative of f(x)
must equal the corresponding function value and derivative of P(x) at x = 0.
Assume that you can differentiate the series termwise.

P(x) = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5 + c6x6 + · · ·

(x) = c1 + 2c2x + 3c3x2 + 4c4x3 + 5c5x4 + 6c6x5 + · · ·  (0)   = c1

(x) = 2c2 + 6c3x + 12c4x2 + 20c5x3 + 30c6x4 + · · ·  (0)  = 2c2

(x) = 6c3 + 24c4x + 60c5x2 + 120c6x3 + · · ·  (0) = 6c3 = 3!c3

P(4)(x) = 24c4 + 120c5x + 360c6x2 + · · ·  P(4)(0) = 24c4 = 4!c4

P(5)(x) = 120c5 + 720c6x + · · ·  P(5)(0) = 120c5 = 5!c5

[Recall that 3! (three factorial) is the product of the first three counting
numbers, 1 · 2 · 3.]
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OBJECTIVE Given an elementary function, find the first few terms of the power series that
best fits the function, find a pattern that allows you to write more terms of the
series, write the series in sigma notation, and plot the graph to see how well
the series fits the function.

  EXAMPLE 1

Solution

DEFINITION:  Power Series
You can write a power series for f(x) expanded about x = 0 as

P(x) = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5 + · · ·

where c0, c1, c2, . . . stand for constant coefficients.

Informally: A power series is a polynomial with an infinite number of terms.

 P(0)     = c0

The process of finding the right coefficients for a particular function is called
expanding the function as a power series. If a function and the series match
each other at x = 0, the function is said to be expanded about x = 0.

In Problem 5 of Problem Set 12-4, you will see how to expand a function as a



   

For the function, these are the derivatives of f(x).
 f(x) = sin x  f (0) = 0
(x) = cos x (0) = 1
(x) = –sin x  (0) = 0
(x) = –cos x   (0) = –1

 f (4)(x) = sin x  f (4)(0) = 0
 f (5)(x) = cos x   
 

Equating the function values and corresponding derivatives of f and P gives

c0 = 0
c1 = 1

2c2 = 0   c2 = 0
3!c3 = –1  c3 = –
4!c4 = 0  c4 = 0
5!c5 = 1  c5 = 

Thus, the sum of the first three nonzero terms is

P(x) = , Q.E.D.

Once you have found derivatives for the series, you can remember the pattern
and use it when you are called upon to expand other functions as series by
equating derivatives.

All you have to do to expand a function f as a power series about x = 0 is find
the values of f(0), (0), (0), . . . , f (n)(0), . . . , set them equal to the values of
P(0) and derivatives, and solve for the values of c.

For the series sin x = x – – · · ·

a.  Demonstrate that you understand the pattern in the series by writing the
next three terms.

b.  Write the series using sigma notation.

a.  The exponents of x are the odd integers. Each coefficient is the reciprocal
of the factorial of the exponent. The signs alternate, with the first term
being positive. Thus,

sin x = x –  + · · ·
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 f (5)(0) = 1

  EXAMPLE 2

Solution

PROPERTY:  Derivatives of a Power Series

If P(x) = c0 + c1x + c2x2 + c3x3 + c4x4 + c5x5 + · · · + cnxn + · · ·,

then P(0) = c0, P′ (0) = c1, P′′ (0) = 2!c2, . . . , P(n)(0) = n!cn , . . . .



b.  You can write the series in sigma notation this way:

This symbol is read, “the sum from n = 0 to infinity of . . .” It means to let
n = 0, 1, 2, 3, . . . and add the resulting terms. The secret to finding a
formula for tn (the term with index n) is to write the values of n under the
terms. In this case it is helpful to start n at 0 rather than 1.

0 1 2 3
Write the values of the term index, n,
under the respective terms.

By comparing the values of n with numbers in the terms, you can see that
the exponent and denominator in each term are one more than twice the
value of n. The factor (–1)n makes the signs alternate. The index of
summation, n, could start at 0, 1, or whatever number you feel is
appropriate. For instance, the answer above could be written

Alternative form.

Consider the power series for sin x expanded about x = 0.

a.  Plot the sixth partial sum.

b.  Find the approximate interval of x-values for which the sixth partial sum is
within 0.0001 unit of the value of the sine function.

c.  Find a wider interval for which the ninth partial sum is within 0.0001 unit
of sin x.

a.  The sixth partial sum is S5(x) because the index of summation starts
at n = 0.

S5(x) = x – 

A time-efficient way to enter the partial sum uses the formula for the nth
term that was found in Example 2 and the grapher’s sequence commands.
For a typical grapher you can enter the formula this way:

 y1 = sum (seq ((–1) ^ n/(2n + 1)!    x ^ (2n + 1), n, 0, 5, 1))

Figure 12-4a

The sequence command tells the grapher to generate a set of numbers
using the formula inside the parentheses. The n after the comma tells the
grapher that n is the index of summation. The last three numbers tell the
grapher to start n at 0, end it at 5, and increase it by steps of 1 each time
(thus giving six terms). The sum command tells the grapher to add the
terms of the sequence it has calculated. The grapher performs this
computation for each value of x in the window you specify. Figure 12-4a
shows the result.
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 EXAMPLE 3

Solution

*



b.  A table of values of the differences between
sin x and the series quickly shows the interval
of x-values. Enter (sin x – y1) as y2. From the
table you can see that if x is between –2 and
2, the absolute value of the difference is
less than 0.0001. By exploring the interval
between 2 and 3 with another table, stepping
x by 0.1, you can find that the series is within
0.0001 unit of sin x for –2.7 < x < 2.7.

You can also find the answer using the solver
feature of your grapher. If you have entered

x sin x – sum

–4   –0.0100020...
–3   –0.0002454...
–2   –0.00000129...
–1   –0.000000000159...

0 0
1 0.000000000159...
2 0.00000129...
3 0.0002454...
4 0.0100020...

sin x as y1 and the partial sum as y2, then set (y1 – y2) – 0.0001 equal
to 0. The result is x  2.7986... . By symmetry, the interval is
–2.7986... < x < 2.7986....

Figure 12-4b

c.  The ninth partial sum is S8(x). If you are using the sequence commands,
you can change the 5 in part a to 8. The grapher will then calculate nine
terms of the series, starting at n = 0, for each value of x. The resulting
graph is shown in Figure 12-4b. Numerically, as in part b, you can find that
the ninth partial sum is within 0.0001 of sin x if

–4.8974... < x < 4.8974...

Power series relate to functions the way decimals relate to irrational numbers.
For instance,

 = 3.141592653... and  = 85.7846140...

The human mind can grasp the size of the approximation 85.78... more easily
than it can grasp the exact value . Similarly, a computer can calculate
values of sin x from a power series more easily than it can calculate them
directly from a definition of sine.

The more decimal places you use for a number such as , the more accurate the
approximation is. In many cases, the more terms you use for the partial sum of a
series, the better the partial sum fits the function values. As was shown in
Figure 12-4b, the ninth partial sum of the series in Example 3 seems to coincide
visually with sin x for –7 < x < 7. The sixth partial sum in Figure 12-4a
coincides only for about –4 < x < 4.

Q1.  Sketch the graph of y = sin x.

Q2.  Sketch the graph of y = cos x.

Q3.  Sketch the graph of y = ex.

Q4.  Sketch the graph of y = ln x.

Q5.  Sketch the graph of y = cosh x.

Q6.  Sketch the graph of y = tan–1  x.

Q7.  In the expression 3x5, the number 5 is called
the —?—.

Q8.  In the expression 3x5, the number 3 is called
the —?—.
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Problem Set 12-4

Quick Review



Q9.  The expression x5 is called a(n) —?—.

a.  Show by equating derivatives that the power
series expansion for ex about x = 0 is

P(x) = 1 + x +  + · · ·

b.  Write the next two terms of the series.
c.  Write the series using sigma notation.
d.  Plot the fourth partial sum of the series. On

the same screen, plot y = ex. Use a window
with an x-range of [–3, 3] and a y-range of
[–2, 10]. Sketch the result.

e.  For what interval of x-values are the two
graphs indistinguishable from each other?

f.  For what interval of x-values is the fourth
partial sum within 0.0001 unit of ex?

g.  For what wider interval is the ninth partial
sum of the series within 0.0001 of ex?

2.  Cosine Function Series Problem: Consider the
function g(x) = cos x.

a.  Show by equating derivatives that the power
series expansion for cos x about x = 0 is

P(x) = 1 –  – · · ·

b.  Write the next three terms of the series.
c.  Write the series using sigma notation. Start

the index of summation at n = 0.
d.  Figure 12-4c shows the graph of the fifth

partial sum, S4(x). Plot this graph on your
grapher. Then plot y = cos x on the same
screen. Sketch both graphs.

Figure 12-4c

e.  Plot the graph of the eighth partial sum,
S7(x). For what interval of x-values is the
S7(x) graph indistinguishable from that of
 y = cos x? Sketch the result.

f.  For what interval of x is the eighth partial
sum within 0.0001 unit of cos x?

g.  Explain why the series for P(x) agrees with
the properties of the cosine function.

3.  Sine Series Problem: Let P(x) = x – 
 · · ·, which is the sine series.

a.  Show that S3(0.6), the fourth partial sum, is
approximately equal to sin 0.6.

b. The tail of a power series is the series of
terms left after a given partial sum. Write
the value of sin 0.6 to as many places as
your grapher gives. Use this number to
evaluate, approximately, the tail of the
P(0.6) series for S1(0.6), S2(0.6), and S3(0.6).
Show that in each case the value of the tail
of the series is less in magnitude than the
absolute value of the first term of the tail.

c.  Assuming that your observation in part b
about the tail of the series is correct for all
values of n, determine how many terms of
the series for P(0.6) it would take to get a
partial sum that estimates sin 0.6 correct to
at least 20 decimal places.

4.  Hyperbolic Sine and Cosine Series Problem: Let

a.  Write the first four terms of the series
(through n = 3).

b.  Show by equating derivatives that the series
P(x) represents sinh x.

c.  Show that S3(0.6), the fourth partial sum
of the series, is approximately equal to
sinh 0.6.

d.  For what interval of x-values is S3(x) within
0.0001 unit of sinh x?

e.  Assume that the derivative of the series
equals the sum of the derivatives of the
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P(x) = 

Q10.  The area of the region between the graph of

1.  Exponential Function Series Problem: Consider
the function f(x) = ex.

A.  0    B.  18    C.      D.  36    E.  48
 y = 9 – x2 and the x-axis equals —?—.



terms. Differentiate each term of the series
for P(x) to get a series for (x).

f.  Because the derivative of sinh x is cosh x,
the series you found in part e should be the
series for cosh x. Demonstrate that this is
true by showing that the value of (0.6) is
approximately equal to cosh 0.6. Use the
fourth partial sum of the derivative series.

g.  Integrate the series for P(x) term by term to
get a power series for  P(x) dx. Show that
the result is the series for cosh x in part f if
the integration constant is picked
appropriately.

5.   Natural Log Series Problem: Let P(x) = (x – 1) –
 + · · ·. This

series is the power series for ln x expanded
about x = 1.
a.  By equating derivatives, show that P(x) and

ln x have the same function value at x = 1,
and the same first, second, and third
derivative values at x = 1.

b.  Write the next two terms of the series.
c.  Write the series using sigma notation. Start

the index of summation at n = 1.
d.  Figure 12-4d shows the graph of the fourth

partial sum of the series. The graph fits
 y = ln x reasonably well when x is close to 1.
Plot y = ln x and S10(x), the tenth partial sum
of the series, on the same screen. Sketch.

e.  By appropriate use of the TRACE or TABLE

feature, compare S10(1.2), S10(1.95), and
S10(3) with the values of ln 1.2, ln 1.95, and
ln 3. For what interval of x-values does the
tenth partial sum of the series seem to fit

the ln function? Is this interval much larger
than that for the fourth partial sum in
Figure 12-4d?

6.  Convergence and Divergence Problem: From
Problem Set 12-1, recall that a series converges
to f(x) for a particular value of x if the partial
sums of P(x) approach the value of f(x) as the
number of terms in the partial sum approaches
infinity. In Problem 5, the series P(x) converges
to ln x when x = 1.2 and x = 1.95, but the series
diverges for x = 3. In this problem you will see
why this is true.
a.  Make a table of values for the first few terms

of P(3). What is happening to the absolute
value of the terms?

b.  By appropriate use of  l’Hospital’s rule, show
that the absolute value of the nth term for
P(3) approaches infinity as n approaches
infinity. Explain how this fact indicates that
the series for P(3) cannot possibly converge.

c.  Make a table of values for the first few terms
of P(1.2). Show that these terms approach
zero for a limit as n approaches infinity, and
thus the series could converge.

d.  In Problem 3, you observed that the value of
the tail of the series for sin x that remained
after the nth partial sum was smaller in
absolute value than the absolute value of the
first term of the tail. Is this observation true
for P(1.2)? Justify your answer.

7.  Inverse Tangent Series Problem: Let
 f(x) = tan–1 x.
a.  Let P(x) be the power series

Write the first few terms of the series.
b.  Plot the graph of f and the graphs of the

sixth and seventh partial sums on the same
screen. For what values of x do the partial
sums represent the graph of f quite well?
For what values of x do the partial sum
graphs bear little or no resemblance to the
graph of f ?
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Figure 12-4d
P(x) = 



The powers are (x – a)n rather than xn because (x – a) equals zero when x = a.

Example 1 of this section. In general, if function f is expanded about x = a, then
the coefficients are

c0 = f(a), c1 = f ′ (a), c2 = , · · ·

The result is called the Taylor series expansion of f(x) about x = a after the
British mathematician Brook Taylor (1685–1731). If a = 0, the Taylor series is
called the Maclaurin series expansion of f(x) after the Scottish mathematician
Colin Maclaurin (1698–1746), although neither Taylor nor Maclaurin was the first
to publish this kind of series. A partial sum of a Taylor series is called a Taylor
polynomial. For instance, ln x  P(x) = (x – 1) – 
is called a fourth-degree Taylor polynomial approximating ln x.

To accomplish the objective efficiently, it is a good idea to memorize the eight
series on the next page, which you derived in Sections 12-1 through 12-4.
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12-5       Taylor and Maclaurin Series, and
Operations on These Series

DEFINITIONS:  Taylor Series and Maclaurin Series
If f is a function with differentiable derivatives, then you can write f(x) as a
Taylor series expansion about x = a as follows:

 f(x) = f(a) + (a)(x – a) +   · · ·

+   + · · ·

If a = 0, the series is called a Maclaurin series.

A partial sum of a Taylor series is called a Taylor polynomial.

OBJECTIVE Given the Taylor series for ex, sin x, cos x, sinh x, cosh x, ln x, 1/(1 – x), and
tan–1 x, perform operations on these series to derive power series for related
functions.

In Problem 5 of Problem Set 12-4, you learned that the expansion of ln x about
x = 1 is

ln x = (x – 1) –  + · · ·

You can find the coefficients by equating derivatives at x = 1, as you will see in



Taylor series are used in
error analysis of data
recorded at an acoustics
lab.

Show by equating derivatives that the Taylor series for ln x expanded about
x = 1 is

ln x = (x – 1) – 

So that P(1) will equal c0, (1) will equal c1, and so forth, the series is written in
powers of (x – 1) instead of in powers of x as before.

P(x) = c0 + c1(x – 1) + c2(x – 1)2 + c3(x – 1)3 + c4(x – 1)4 + · · ·

[If you were to use P(x) = c0 + c1x + c2x2 + · · · , then P(1) would equal
c0 + c1+ c2+ · · · instead of simply c0.] Equating derivatives gives

 f(x) = ln x     f(1) = 0     c0 = 0
(x) = 1/x = x–1    (1) = 1     c1 = 1
(x) = –x–2    (1) = –1     2!c2 = –1     c2 = 

(x) = +2x–3   (1) = 2     3!c3 = 2     c3 = 

 f (4)(x) = –6x–4     f (4)(1) = –6     4!c4 = –6     c4 = – 
 f (5)(x) = +24x–5     f (5)(1) = 24     5!c5 = 24     c5 = 

   ln x = (x – 1) –  + · · · , Q.E.D
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Eight Basic Power Series

ex = 1 + x + 

sin x = x – 

cos x = 1 – 

sinh x = x + 

cosh x = 1 + 

ln x = (x – 1) –  + · · ·

(A geometric series.)

tan–1 x = x – 

 = 1 + x + x2 + x3 + x4 + · · · =

  EXAMPLE 1

Solution



(x) = cos x      

(x) = –sin x     

(x)  = –cos x    

Example 2 shows that once you have found the derivatives for the function you
are expanding, you can simply substitute them directly into the formula for the
Taylor series. It isn’t necessary to equate derivatives.

Figure 12-5a shows that the fifth partial sum in Example 2 fits sin x well if x is in
a neighborhood of /3.

Figure 12-5a
It is usually easier to derive a series by starting with one of the known series
than it is to calculate derivatives of f(x). Examples 3–6 show you ways to do this.

Write the first few terms of the Maclaurin series for sin (3x)2.

Take the known series for sin x, and replace the x with (3x)2. The rest is algebra.

sin (3x)2 = (3x)2 –  + · · ·

= 32x2 –  + · · ·

Write the first few terms of the Maclaurin series for

g(x) = 

You can derive this series by performing long division or by substituting –x3 for
x in the geometric series from 1/(1 – x).

g(x) = 1 + (–x3) + (–x3)2 + (–x3)3 + (–x3)4 + · · ·
= 1 – x3 + x6 – x9 + x12 – · · ·

By appropriate operations, show that the Maclaurin series for tan–1 x is

tan–1 x = x –  + · · ·

If you start the process of equating derivatives, the result is

 f(x) = tan–1 x
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and so forth.

  EXAMPLE 2

Solution

  EXAMPLE 3

  EXAMPLE 4

  EXAMPLE 5

Solution

Solution

Solution

(x) = 

Expand f(x) = sin x as a Taylor series about x = /3.

 f(x) = sin x       



You can expand the expression for the first derivative as a Maclaurin series by
substituting –x2 for x in the geometric series from 1/(1 – x), as in Example 4.

(x) = 1 – x2 + x4 – x6 + · · ·

Then you can find the series for tan–1 x by integrating, assuming that you can
integrate an infinite series termwise.

Because tan–1 0 = 0, the constant of integration C is also zero. Thus

tan–1 x = x – + · · ·, Q.E.D.

Write a power series for f(x) = t cos t5 dt. Evaluate the sixth partial sum
at x = 0.8.

Write a series for the integrand, then integrate term by term. As in Example 5,
assume that you can integrate an infinite series termwise, which is true in this
case but not always. First, replace x with t5 in the Maclaurin series for cos x.

cos t5 = 1 –  + · · ·

Then multiply each term by t, and integrate.

To find S6(0.8), substitute and use a calculator with sufficient accuracy to
calculate the total.

= 0.31715062893841...

Of course you could find the answer by calculating Riemann sums. But the
series takes only six terms to give 13-place accuracy. As you will see in
Section 12.6, it is possible to determine the accuracy of an integral if you use a
series rather than a Riemann sum or other numerical methods.
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tan–1 x

  EXAMPLE 6

Solution

S6(0.8) =



 f  (4)(3).

c.  Find a fourth-degree Taylor polynomial for g(x) = f(x2 + 3), and use it to
find an approximation for g(1), assuming the series converges if x = 1.

d.  Use the second-derivative test to show that function g in part c has a local
maximum at x = 0.

e.  Find a fifth-degree Taylor polynomial for h(x) = g(t) dt.

a.  f(2.6)  P4(2.6) = 5 – 2(–0.4) + 0.6(–0.4)2 + 0.12(–0.4)3

– 0.08(–0.4)4

= 5.886272
You must assume that the series converges if x = 2.6.

b.  f(3) = c0 = 5
(3) = c1 = –2
(3) = 2!c2 = 2(0.6) = 0.12
(3) = 3!c3 = 6(0.12) = 0.72

 f (4)(3) = 4!c4 = 24(–0.08) = –1.92

c. g(x) = 5 – 2(x2) + 0.6(x2)2 + 0.12(x2)3 The ellipsis indicates
a series.– 0.08(x2)4 + · · ·

= 5 – 2x2 + 0.6x4 + 0.12x6 – 0.08x8 + · · ·
 P4(x) = 5 – 2x2 + 0.6x4 No ellipsis indicates

a polynomial.

g(1)  P4(1) = 5 – 2 + 0.6 = 3.6 Assuming the series
converges if x = 1.

d.  By equating derivatives, g(0) = 5, (0) = 0, and (0) = 2!(–2) = –4.
 g(0) = 5 is a local maximum because the tangent is horizontal and the

graph is concave down at x = 0.

e.
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  EXAMPLE 7

Solution

Let f be a function with derivatives of all orders and with values that are given
approximately by the fourth-degree Taylor polynomial

 f(x)  P4(x) = 5 – 2(x – 3) + 0.6(x – 3)2 + 0.12(x – 3)3 – 0.08(x – 3)4

a.  Find the approximate value of f(2.6). What assumption must you make
about 2.6 for this approximation to be valid?

b.  Use the pattern for equating derivatives to find f(3), (3), (3), (3), and



The techniques for finding Taylor or Maclaurin series for a given function are
summarized here.

Q1.  Evaluate: 4!

Q2.  Evaluate: 3!

Q3.  Evaluate: 4!/4

Q4.  What does n equal if 4!/4 = n!?

Q5.  If  m!/m = n!, then n = —?—.

Q6.  0! = m!/m. What does m equal?

Q7.  Why does 0! equal 1?

Q8.  Why is (–1)! infinite?
Q9.  Differentiate: f(x) = 

Q10.  sinh x dx = —?—

A.  cosh x + C
B.  –cosh x + C

C.

D.  x sinh–1 x – (x2 + 1)1/2 + C
E.  sinh x + C

For Problems 1–8, write the power series from
memory.

1.  f(u) = eu 2.  f(u) = ln u

3.  f(u) = sin u 4.  f(u) = cos u

5.  f(u) = cosh u 6.  f(u) = sinh u

7.  f(u) = (1 – u)–1 8.  f(u) = tan–1 u

For Problems 9–22, derive a power series for the
given function. Write enough terms of the series to
show the pattern.

9.  x sin x 10.  x sinh x

11.  cosh x3 12.  cos x2

13.  ln x2 14.  e–x2

15.   e–t 2 dt 16.   ln (3t) dt

17.  18.  

19.   dt 20.  

21.  22.  
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TECHNIQUES:  Finding a Taylor or Maclaurin Series

You can find a Taylor or Maclaurin series for a function

 •  By equating derivatives

 •  From memory, by looking it up, or by computer algebra system

 •  By operating on a given or known series

Substitute for the variable in the series.

Multiply or divide the terms by a given expression.

Integrate or differentiate the series termwise.

 •  By operating on the parent function

Integrate or differentiate the function, then find a series.

Perform long division, such as 6/(1 – x) = 6 + 6x + 6x2 + 6x3 + · · ·.

Problem Set 12-5

Quick Review

 + C



                           

For Problems 23–24, write a Taylor polynomial of
the given degree for the function described.
23.  Fourth-degree Taylor polynomial expanded

(2) = 0.51, and f (4)(2) = –0.048
24.  Fifth-degree Taylor polynomial expanded

about x = –1, if f(–1) = 7, (–1) = 2,
(–1) = –0.48, (–1) = 0, f (4)(–1) = 0.36,

and f (5)(–1) = –0.084

25.  Let f be a function with derivatives of all
orders and with values that are given
approximately by the fourth-degree Taylor
polynomial

 f(x)  P4(x) = 2 + 0.5(x + 1) – 0.3(x + 1)2

– 0.18(x + 1)3 + 0.02(x + 1)4

a.  Find the approximate value of f(0.4). What

b.  Use the pattern for equating derivatives to

c.  Find a sixth-degree Taylor polynomial for
g(x) = f(x3 – 1), and use it to find an
approximation for g(1), assuming the series

d.  Use the second-derivative test to determine
whether g(0) in part c is a local maximum
or a local minimum.

e.  Find a seventh-degree Taylor polynomial
for h(x) = g(t) dt.

26.  Let f be a function with derivatives of all
orders and with values that are given
approximately by the fourth-degree Taylor
polynomial

 f(x)  P4(x) = –4 + 3(x – 2) + 0.5(x – 2)2

– 0.09(x – 2)3 – 0.06(x – 2)4

a.  Find the approximate value of f(1). What
assumption must you make about 1 for this
approximation to be valid?

b.  Use the pattern for equating derivatives to

c.  Find a fourth-degree Taylor polynomial for
g(x) = f(x2 + 2), and use it to find an
approximation for g(1), assuming the series
converges if x = 1.

d.  Use the second-derivative test to determine
whether g(0) in part c is a local maximum
or a local minimum.

e.  Find a fifth-degree Taylor polynomial for
h(x) = g(t) dt.

For Problems 27–32, expand the function as a Taylor
series about the given value of x. Write enough
terms to reveal clearly that you have seen the pattern.

27.  f(x) = sin x, about x = /4

28.  f(x) = cos x, about x = /4

29.  f(x) = ln x, about x = 1

30.  f(x) = log  x, about x = 10

31.  f(x) = (x – 5)7/3, about x = 4

32.  f(x) = (x + 6)4.2, about x = –5

33.  Find the Maclaurin series for cos 3x by equating

34.  Find the Maclaurin series for ln (1 + x) by

35.  Accuracy for ln x Series Value: Estimate ln 1.5

36.  Accuracy Interval for ln x Series: Find the

37.  Inverse Tangent Series and an Approximation

series for tan–1 1. Then use the appropriate
features of your grapher to find the 10th
partial sum of this series. Multiply by 4 to
find an approximate value of . How close
does this approximation come to ?
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about x = 2, if f(2) = –8, (2) = 3, (2) = 0.7,

assumption must you make about 0.4 for
this approximation to be valid?

find  f(–1), (–1), (–1), (–1), and
 f(4)(–1).

find f(2), (2), (2), (2) and f (4)(2).

derivatives. Compare the answer, and the ease
of finding the answer, with the series you obtain
by substituting 3x for x in the cos (x) series.

equating derivatives. Compare the answer, and
the ease of finding the answer, with the series
you obtain by substituting (1 + x) for x in the
Taylor series for ln x expanded about x = 1.

using S4(1.5), fourth partial sum of the Taylor
series. How close is your answer to the exact
answer? How does the error in the series value
compare with the first term of the tail of the
series, t5, which is the first term left out in the
partial sum?

interval of values of x for which the fourth
partial sum of the Taylor series for ln x gives
values that are within 0.0001 unit of ln x.

 for : Recall that tan ( /4) = 1. Thus,
tan–1 1 = /4. In this problem you will use the
inverse tangent series to estimate .
a.  Write the first few terms of the Maclaurin

converges if x = 1.



b.  Find another approximation for  using the
50th partial sum of the series in part a. Is
this approximation much better than the one
using the 10th partial sum?

c.  By appropriate trigonometry, show that

tan–1 1 = 

Use the result to write /4 as a sum of two
Maclaurin series. Estimate the value of  by
adding the 10th partial sums of the two
series. How much better is this method for
estimating  than the methods of parts a
and b?

38.  Tangent Series Problem: Recall that tan x =
(sin x)/(cos x). Use long division to divide the
Maclaurin series for sin x by the Maclaurin
series for cos x to get a power series for tan x.
Use enough terms of both the sine and cosine
series to find four terms of the tangent series.
Show by calculator that the fourth partial sum
for tan 0.2 is close to tan 0.2.

39.  Taylor Series Proof Problem: Prove algebraically
that for all positive integers n, the nth
derivative of the general Taylor series equals
 f (n)(a).

Maclaurin’s first names? When did they live in
relation to Newton and Leibniz, the inventors of
calculus?

gives better and better approximations for
values of a function the more terms you use.
For some series this is true only for certain
values of x. For instance, the series for the
natural logarithm,

converges to ln x only for 0 < x  2. If x is
outside this interval of convergence, the series
does not converge to a real number. It diverges

and thus cannot represent ln x. In this problem
you will investigate the ratio of a term in this
series to the term before it. You will also try to
discover a way to find, from this ratio, whether
the series converges.
a.  The formula for tn, the nth term in the series

for ln x, is

Let rn be the ratio |tn+1/tn|. Find a formula
for rn in terms of x and n.

b.  Calculate r10 for x = 1.2, x = 1.95, and x = 3.
c.  Let r be the limit of rn as n approaches

infinity. Find an equation for r in terms of x.
d.  Evaluate r for x = –0.1, x = 0, x = 0.9,

x = 1.9, x = 2, and x = 2.1.
e.  Make a conjecture: “The series converges to

ln x whenever the value of x makes r —?—
and diverges whenever the value of x makes
r —?—.”

f.  If your conjecture is correct, you can use it
to show that the series converges if x is in
the interval 0 < x < 2. Check your conjecture
by showing that it gives this interval.

42.   Journal Problem: Update your journal with what
you’ve learned since the last entry. Include such
things as
 •  The one most important thing you’ve

learned since the last journal entry
 •  The difference between a sequence and a

series
 •  The distinction between term index and

term number
 •  The definition of geometric series
 •  The meaning of power series and for what

purpose it may be useful
 •  What it means for a series to converge and to

diverge
 •  Anything about series that is still unclear
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40.  Historical Problem: What were Taylor’s and

tn = 

41.  Ratio of Terms Problem: A Taylor series usually



converges when x = 1.6. The quantity (x – 1) equals 0.6, and the powers 0.6n

approach zero rapidly as n gets large. But if x = 4, the quantity (x – 1) is 3, and
the powers 3n become infinitely large as n approaches infinity. You can see what
happens from a table of values.

n     nth term, x = 1.6 nth term, x = 4

1 0.6 3
2 –0.18 –4.5
3 0.072 9
4 –0.0324 –20.25
5 0.015552 48.6
6 –0.007776 –121.5
7 0.00399908... 312.428...

20 –0.00000182... –174339220.05

Figure 12-6a shows what happens to the partial sums of the natural logarithm
series. The graph on the left shows that the partial sums for x = 1.6 converge
rapidly to a number around 0.5 as n approaches infinity. The graph on the right
shows that the partial sums for x = 4 diverge.

Figure 12-6a

Surprisingly, the series for sin x,

sin x = x – 
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a Series—The Ratio Technique
12-6   Interval of Convergence for

A series converges to a certain number if the limit of the nth partial sum as n
approaches infinity is that number. Power series often converge if x is within 1 unit
of a, the constant about which the series is expanded. For instance, the series

ln x = (x – 1) –  + · · ·



converges no matter how large x is! At x = 10, for instance, the power 102n+1 is
very large. But the denominator, (2n + 1)!, is much larger. If n = 20, then
(2n + 1)! = 41! = 3.3... × 1049, which is 300 million times as large as 1041. In this
section you will develop a method called the ratio technique (sometimes called
the ratio test) for finding algebraically the open interval of convergence—that
is, the interval of x-values for which a power series converges.

The ratio technique is based on bounding the given series with a convergent
geometric series. To see how the technique works, consider the series for ln x
when x = 1.6.

ln 1.6 = (1.6 – 1) –  + · · ·

= 0.6 – + · · ·

If you take the ratios of the absolute values of adjacent terms, |tn+1/tn|, you get
the sequence

= 0.3, 0.4, 0.45, 0.48, 0.5, 0.514... , 0.525,  0.5333... ,  . . .

A given term in the ln 1.6 series is formed by multiplying the preceding term by
the appropriate one of these ratios. So each term is less than 0.6 times the
preceding term.

Compare |tn|, the absolute values of the terms in the tail of the ln 1.6 series,
with the terms gn in a geometric series that is known to converge. For instance,
starting at |t4| = 0.25(0.6)4 = 0.0324, and using a geometric series with common
ratio between 0.6 and 1, such as r = 0.7, you find

n: 4 5 6 7 . . .
|tn|: 0.0324 0.015552 0.007776 0.0039990... . . .
 gn: 0.0324 0.02268 0.015876 0.011132 . . .

Figure 12-6b graphically shows that |tn| < gn for all n > 4. This is true because
|t4|= g4 and |tn| decreases faster than gn for n > 4.

Figure 12-6b
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OBJECTIVE Given a power series in x, use the ratio technique to find the open interval of
convergence.



The geometric series converges to

In general, a power series will converge if you can keep the ratio of the absolute
values of adjacent terms less than some number R, and R is less than 1. In that
case you can always find a geometric series with common ratio between R and 1
that converges and is an upper bound for the tail of the series.

Figure 12-6c

One way to show that there is such a number R
is to take the limit, L, of the ratios of adjacent
terms. As shown in Figure 12-6c, if L < 1, then
you can pick an epsilon small enough so that
R = L +  is also less than 1. Then any
geometric series with common ratio r between
R and 1, and with a suitable first term, will be
an upper bound for the tail of the given series.

You can use this fact as a relatively simple way
to find the interval of values of x for which a
series converges absolutely. Example 1 shows
you how this technique is used with the series
for ln x.

Find the interval of convergence for ln x = 

Notice that |–1|n+1 and |–1|n+2 both equal 1.

Because |x – 1| is independent of n.

By l’Hospital’s rule, first embedding tn in a
continuous function.

So the series will converge if

|x – 1| < 1  –1 < x – 1 < 1  0 < x < 2   Open interval of convergence.

Note that the ratio technique also allows you to conclude that if L > 1, then the
series diverges. You can bound the absolute values of the terms below by a
divergent geometric series. If L = 1, as it will be at the endpoints of the interval
of convergence, the ratio technique does not indicate whether the series converges
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  EXAMPLE 1

Solution

S = 0.0324 ·  = 0.108

So the sum of the tail of the ln 1.6 series is bounded above by 0.108. Similarly,
the tail is bounded below by –0.108. Because the terms of the ln 1.6 series
alternate and approach 0 as n increases, you can bound the tail of the series by
numbers arbitrarily close to zero. Because the series of absolute values of terms
converges, the series is said to converge absolutely. If a series converges
absolutely, then it converges even if some of the terms are negative.



or diverges. So the technique finds only the open interval of convergence. In
the next section you will learn other techniques for proving convergence or
divergence at the endpoints. Here is a statement of the ratio technique.

Figure 12-6d

The interval of convergence in Example 1,
0 < x < 2, goes ±1 unit on either side of x = 1,
the value of x about which the series is
expanded. The half-width of the interval of
convergence is called the radius of
convergence. The word radius is used because
if x is allowed to be a complex number, the
series turns out to converge for all x inside a
circle of that radius (Figure 12-6d).

For the series 

a.  Write the first few terms.

b.  Find the interval of convergence.

c.  Find the radius of convergence.

a.   + · · ·

b.

The series will converge if L < 1, so make L < 1.
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TECHNIQUE:  The Ratio Technique for Convergence of Series
For the series  then

i.  The series converges absolutely if L < 1.
ii.  The series diverges if L > 1.
iii.  The series may either converge or diverge if L = 1.

  EXAMPLE 2

Solution



c.  The radius of convergence is the distance from the midpoint of the interval

a.  Write the first few terms.

b.  Show that though the first few terms decrease in value, the radius of
convergence is zero.

c.  For what one value of x does the series converge?

a.  (x – 3) +  + · · ·

b.  Note that the factorials simplify nicely when you divide adjacent terms.

Because n/(n + 1) goes to 1 as n approaches infinity, its fourth power also
goes to 1. So the quantity inside the absolute value sign approaches the
other (n + 1), and L is infinite for all values of x not equal to 3. The radius
of convergence is thus equal to zero, Q.E.D.

c.  If x = 3, the series becomes 0 + 0 + 0 + · · · , which converges to zero. So
3 is the only value of x for which the series converges.

Here are the two special cases from Example 3.
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  EXAMPLE 3

Solution

SPECIAL CASES:  Zero and Infinite  Radius of Convergence
For a power series in (x – a)n with radius of convergence r

If r = 0, the series converges only at x = a.

If r is infinite, the series converges for all values of x.

of convergence to one of its endpoints.

Radius of convergence is 3.

If x equals the number at an endpoint of the interval of convergence, the limit of
the ratio of terms equals 1. The series may or may not converge in this case. In
Section 12-7, you will learn tests for convergence that can be used when the ratio
technique doesn’t work.

Example 3 shows you that the radius of convergence of a series is zero if the
limit of the ratio of terms is infinite.

For the series 



Q1.  x – x3/3! + x5/5! – x7/7! + · · · = —?—

Q2.  x + x3/3! + x5/5! + x7/7! + · · · = —?—

Q3.  1 – x + x2/2! – x3/3! + x4/4! – · · · = —?—

Q4.  1 + x + x2/2! + x3/3! + x4/4! + · · · = —?—

Q5.  1 + x + x2 + x3 + x4 + x5 + · · · = —?—

Q6.  Integrate: cos 2x dx

Q7.  Differentiate: f(x) = tan 3x

Q8.  Find the limit as x approaches zero of
 f(x) = cos 4x.

Q9.  Find the limit as x approaches zero of
g(x) = (1 + x)1/x.

Q10.  (Force)(displacement) = —?—
A.  Mass B.  Work C.  Moment
D.  Total force E.  Velocity

For Problems 1–6,

a.  Write the first few terms.
b.  Find the open interval of convergence.
c.  Find the radius of convergence.

1.  2.  

3.  4.  

5.  6.  

For Problems 7–12, show that these familiar series
for the transcendental functions converge for all
real values of x.

7.  sin x = x –  + · · ·

8.  cos x = 1 –  + · · ·

9.  sinh x = x +  + · · ·

10.  cosh x = 1 +  + · · ·

11.  ex = 1 + x +  + · · ·

12.  e–x = 1 – x +  – · · ·

13.  Show that the series 0! + 1!x + 2!x2 + 3!x3 + · · ·
converges only for the trivial case, x = 0.

14.  Mae writes the first few terms of the series

= 1 + 0.01x + 0.0002x2 + 0.000006x3 + · · ·

She figures that because the coefficients are
getting small so fast, the series is bound to
converge, at least if she picks a value of x such
as 0.7, which is less than 1. Show Mae that she
is wrong and that the series converges only for
the trivial case, x = 0.

15.  Amos evaluates the Maclaurin series for
cosh 10 and gets

cosh 10 = 

He figures that because the terms are
increasing so fast, the series could not possibly
converge. Explain Amos’s mistake by showing
him that the series does actually converge,
even though the terms increase for a while.

16.  For the Taylor series for ln 0.1 expanded about
x = 1, construct a table of values showing the
term index, n; the term value, tn; and the
absolute value of the ratio of terms, |tn+1/tn|.
Make a conjecture about what number the ratio
seems to be approaching as n approaches
infinity. By taking the limit of the ratio, show
that your conjecture is correct, or change the
conjecture.

17.  Inverse Tangent Series Problem: The series

 p(x) x –  

converges to tan–1 x for certain values of x.
a.  Find the open interval of convergence of the

series.
b.  On the same screen, plot the graphs of

tan–1 x and the fourth and fifth partial sums
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Problem Set 12-6

Quick Review

= 1 + 50 + 416.666...
   + 1388.888... + · · ·
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what you found algebraically in part a?
c.  Evaluate the fourth partial sum of the series

for x = 0.1.
d.  Find the value of the tail of the series after

the fourth partial sum by comparing your
answer to part c with the value of tan–1 0.1
that you obtain with your calculator.

e.  Show that the remainder of the series in
part d is less in magnitude than the absolute
value of the first term of the tail of the series.

 y = 

erf x =  dt

erf  is equal to the fraction of a

 f(x) =  dt

of the series. How do the graphs confirm

18.  Volume Problem: Figure 12-6e shows the solid
generated by rotating about the y-axis the
region under the graph of y = x2 sin 2x from
x = 0 to x = 1.5.

Figure 12-6e

a.  Find the volume of this solid algebraically by
integrating by parts. Write all the decimal
places your grapher displays. Does
numerical integration give precisely the
same answer?

b.  Find the volume again by writing the
integrand as a Maclaurin series, integrating,
and evaluating the fifth partial sum. Be sure
to show that 1.5 is within the interval of
convergence. How does the answer compare
with the answer found algebraically in
part a?

c.  The integrated series in part b is an
alternating series with terms that decrease
in value and approach zero as n approaches
infinity. Thus, the remainder of the series
after a given partial sum is no larger in
magnitude than the absolute value of the
first term of the tail following that partial
sum. How many terms of the series would
you need to use to estimate the volume
correct to ten decimal places?

19.  The Error Function: Figure 12-6f shows the
graph of

Figure 12-6f

This function is related to the normal
distribution curve, sometimes used to “curve”
grades. The area of the region under the graph
from t = 0 to t = x is called the error function
of x, written erf x. That is,

The limit of the area as x approaches infinity
is equal to 1, so erf x is the fraction of the
area that lies between 0 and x. The quantity

normally-distributed population that lies
within x standard deviations of the mean
of the distribution.

You cannot use the fundamental theorem to
evaluate erf x because is not the derivative
of an elementary function. But you can use a
power series. Let

a.  Find the Maclaurin series for f(x). Write
enough terms to show the pattern clearly.

b.  On the same screen, plot the sixth partial
sum of the series for f(x) and the value of f(x)
by numerical integration. Use a window with
an x-range of [–3, 3]. For what interval of
x-values does the partial-sums graph fit the
numerical-integration graph reasonably well?

c.  Does the series in part a converge for all
values of x? Justify your answer.

d.  Does erf x really seem to approach 1 as
x approaches infinity? Explain.
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 f(x) =  dt

L = , where L < 1

L = 

and 24, you showed that  converges

what values of x does  converge?

20.  The Sine-Integral Function: The function

is called the sine-integral function of x,
abbreviated Si x. Because the antiderivative of
(sin t)/t is not an elementary transcendental
function, you cannot find values of Si x directly
using the fundamental theorem. Power series
give a way to do this.

a.  Write a power series for the integrand by a
time-efficient method. Integrate the series to
find a power series for Si x.

b.  Is the radius of convergence for the Si x series
the same as that for the integrand series?

c.  Find the third partial sum of the series
for Si 0.6. How does this value compare with
the value you get by numerical integration?

d.  Plot the graph of Si x by numerical integra-
tion. On the same screen, plot the graph of the
tenth partial sum of the series for Si x. Use a
window with an x-range of [–12, 12]. For what
interval do the partial sums seem to fit the nu-
merical integration values reasonably well?

21.  The Root Technique: You can show that a series
of positive terms converges if the nth root of the
nth term approaches a constant less than 1 for
its limit as n approaches infinity. Figure 12-6g
shows such a series. Let

a.  Use the definition of limit to show that for
any number  > 0 there is a number k such
that if n > k then  .

b.  Show that you can make  small enough so
that L +  is also less than 1.

c.  Show that for all integers .

Figure 12-6g

d.  Show that the tail of the series after tn is
bounded above by a convergent geometric
series.

e.  Explain how the reasoning in parts a–d
verifies that the series converges.

The result of Problem 21 is called the root
technique , or root test, and is stated here.

Technique: The Root Technique for
Convergence of Series

For the series then

i.  The series is absolutely convergent
if L < 1.

ii.  The series is absolutely divergent
if L > 1.

iii.  The series may either converge or
diverge if L = 1.

22.  A Special Limit Problem: To use the root
technique, it helps to know the limit of the nth
root of n. Let

Prove that L = 1. (Try taking ln L, finding its
limit, then raising e to that power to get L.)

Property: Limit of the nth Root of n

23.  Use the root technique to show that the open
interval of convergence of the Taylor series for
ln x is 0 < x < 2.

24.  Use the root technique to show that 
converges for all values of x.

25.  Use the root technique to show that 
converges only for x = 0.

26.  “Which One Wins?” Problem: In Problems 13

for no values of x except x = 0 and that
converges for all values of x. For

 = 1
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of the Convergence Interval
In Section 12-6, you learned the ratio technique for finding the interval of
x-values for which a power series converges. Because the limit of the ratios of

OBJECTIVE Given a series of constants for which the ratio technique is inconclusive, prove
either that the series converges or that it diverges.

DEFINITIONS:  Tail and Remainder of a Series

The tail of a series is the indicated sum of the terms remaining in the series
beyond the end of a particular partial sum.

2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + · · ·       The series of primes.

Example:

4th partial sum 

The remainder of a series, Rn, is the value of the tail after partial sum Sn,
provided the tail converges.

Examples:
For  , R5 =  because, S5 = , the series
converges to 2, and 2 – 1 .

For the series of primes, R4 is infinite because the series diverges.

See the Definitions box in Section 12-2 for other vocabulary relating to series.

12-7   Convergence of Series at the Ends

term values is 1 or –1 at the endpoints of the interval, other techniques are
needed to test for convergence there.

To accomplish this objective, it is helpful for you to consolidate your knowledge
about the tail and the remainder of a series.

Convergence of Sequences
There is one major property of sequences that leads to several methods of
testing for convergence. You might think at first that a sequence converges if
there is an upper bound for the terms of the sequence. Not true! The sequence

2, 3, 2, 3, 2, 3, 2, 3, . .
.is bounded above by 3 and does not converge. It diverges by oscillation.



However, a sequence such as

Figure 12-7a

does converge because the terms are strictly
increasing as well as being bounded above
(Figure 12-7a). The number 1 is an upper
bound for the terms because the numerators
are always less than the denominators. Term
tn = n/(n + 1) can be made arbitrarily close to 1
by picking a large enough value of n. Beyond
that value of n, the terms are even closer to 1
because they are strictly increasing. So 1 is the
limit of tn as n approaches infinity.

In Problem 48 of Problem Set 12-7, you will prove that a sequence converges if
its terms are bounded above and are strictly increasing.

Convergence of a Series of Positive
Terms—The Integral Test
If a series has all positive terms, then its partial sums are increasing, even
though the terms themselves may be decreasing. The p-series with p = 3,

called a p-series because the denominators are powers, has partial sums

S1 = 1,  S2 = 1.125,  S3 = 1.1620... ,  S4 = 1.1776... , . . .

that are increasing. The remainder, R4, after S4 is the value of the tail of the
series,

Because the partial sums are known to be increasing, all you need do to prove
convergence is show that R4 is bounded above.

The left side of Figure 12-7b shows that R4 is bounded above by the area of the
region under the graph of f(x) = 1/x3, from x = 4 to infinity. This is true because
the terms of the tail starting at n = 5 are embedded in this continuous function,
the rectangles have areas equal to the term values of the tail, and function f is
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R4 = 

 

 PROPERTY:  Convergence of Sequences

 If a sequence {t1, t2, t3, . . . , tn, . . .} is increasing and bounded above, then the

 sequence converges.
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the sum of the terms from 5 to infinity is bounded above by an improper
integral from 4 to infinity.

decreasing, so that the rectangles are inscribed in the region under the graph. So

Figure 12-7b

This p-series converges because it is increasing and bounded above by S4 + 1/32.
The technique used is called the integral test for convergence, because you
found the upper bound by comparing the tail with an improper integral.
The right side of Figure 12-7b shows that you can draw the rectangles to the
other side of the n-values, making them circumscribed about the region under
 f(x) = 1/x3, from x = 5 to infinity. So the sum of the terms from 5 to infinity is
bounded below by an improper integral from 5 to infinity. Evaluating the other
integral gives

By itself, the fact that R4 > 0.02 indicates nothing about convergence of the
series. Combined with R4< 1/32, however, you can conclude that the remainder
is between 1/50 and 1/32.

Not all p-series converge. For instance, if p = 0.6,

Figure 12-7c shows R4 for this series, bounded below by an improper integral
from 5 to infinity.

Figure 12-7c

The remainder is infinite, so the series diverges.

Analysis of these two p-series shows that to
determine convergence of a series of positive
terms that decrease toward zero, you can
evaluate the improper integral of the function in
which you can embed the tail. If the integral
converges, the series converges, and vice versa.



Note that you can use the integral test without actually embedding the terms in
the function being integrated. If tn  f(n) for all n  a and if the integral
converges, then the series converges because the integral still forms an upper
bound for the tail. Similarly, if tn  f(n) for all n  a and if the integral diverges,
then the series diverges.

A harmonic series is a series in which the terms are reciprocals of the terms of
an arithmetic series. The simplest harmonic series is the p-series with p = 1,

You can use the integral test to show quickly that this series diverges. The terms
are decreasing for all n = 1, and

So the series diverges because the integral diverges.

In Problem 4 of Problem Set 12-7, you will prove that the p-series converges if
and only if p > 1.

Figure 12-7d gives graphical evidence that the p-series converges for larger
values of p and diverges for smaller values of p. The graph on the left shows
that for p = 3, the terms decrease fast enough for the series to converge. The
graph in the middle shows that for p = 0.6, the terms decrease too slowly, and
the series does not converge. The graph on the right shows that for p = 1, the
series decreases faster, but still not fast enough to converge.

Figure 12-7d
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 PROPERTY:  Integral Test for Convergence of a Series of Positive Constants

 Given S =  f(n) and I = f(x) dx where f(x) decreases monotonically to 0

 for all x  a, then S converges if I converges, and S diverges if I diverges.

 

 

 PROPERTY:  Convergence of a p-Series

 The p-series 

 converges if p > 1 and diverges if p  1.
 

 



Convergence of a Series of Positive

You cannot integrate the function f(x) = 1/x! by techniques you know. Instead,
compare this series with the convergent geometric series beginning with 1 and
having common ratio 1/2.

For n  4, the geometric series terms are upper bounds for the factorial series
terms. So R3, the remainder starting at n = 4, is bounded above by

Thus S, the limit of the factorial series, is bounded by

S = S3 + R3 < S3 +  = 2.7916...

This upper bound is reasonable because the given series is the Maclaurin series
for ex evaluated at x = 1 and e1 = 2.71828... . These steps prove that this
Maclaurin series converges for x = 1.

Convergence of a Series of Positive
Terms—The Limit Comparison Test
Two functions are said to be of the same order if their ratio approaches a
positive finite number as x approaches infinity. For instance, suppose
 f(x) = 5x2 – 7x + 9, g(x) = x2, and h(x) = ex. Taking limits of the ratios, you find
by applications of l’Hospital’s rule that
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Terms—The Comparison Test

To derive the ratio technique in Section 12-6, you found an upper bound for the
given series by comparing it with a geometric series that was known to converge.
This method of finding the upper bound is called the comparison test for
convergence, which is particularly useful if you cannot integrate the embedding
function. For instance, consider the factorial reciprocal series,

R3 < 

n:

Factorial:

Geometric:

0 1 2 3 4 5 6

Tail



So functions f and g are of the same order because the ratio f(x)/g(x)
approaches the finite number 5. Function g is of a lower order than function h
because the ratio g(x)/h(x) approaches 0. Similarly, function h is of a higher
order than function g because h(x)/g(x) approaches infinity. This property
provides a relatively simple way to test a series for convergence. You can find
the limit of the ratio of the respective terms. If the functions that generate the
terms are of the same order and one series converges, then so does the other
one. This limit comparison test is summarized here. It is useful because you
need consider only the terms of the series, not the partial sums.

Example 6 on page 631 shows how to apply the limit comparison test.

Convergence of a Series of Alternating-Sign
Terms—Conditional Convergence

Figure 12-7e

It is fairly easy to show graphically that a series
with alternating + and – signs converges if the
absolute value of the terms decreases and
approaches zero for a limit. There are some
surprises, however, as you will see soon.

Figure 12-7e shows partial sums of the
alternating p-series

The limit is S = 0.68507... . Each term that is added causes the partial sums to
overshoot this limit, first above then below. Because the absolute values of the
terms decrease toward zero, the difference between the partial sum and the
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PROPERTY:  The Limit Comparison Test for Convergence of a Series
of Positive Terms

Given that f(n) > 0 and g(n) > 0 for all n  N (where N is a positive integer)

1.  If  = L, and L is a real number (f and g are of the same order), then

 f(n) and  g(n) either both converge or both diverge.

2.  If  = 0 (f is a lower order than g) and  g(n) converges, then  f(n)

converges also.

3.  If  =  (f is a higher order than g) and  g(n) diverges, then  f(n)

diverges also.

S =

= 1 –

= 1 – 0.5176... + 0.3521... – 0.2679... + · · ·



The surprise comes if you commute, or rearrange, the terms and associate
differently. For instance,

= 0.4823... – 0.2679... + 0.1698... – 0.1386... + 0.1045... – 0.0943... + · · ·

Each term of the series is used exactly once; no term is left out. The associated
terms alternate in sign and decrease toward zero. As shown in Figure 12-7f,
however, the partial sums approach a number S between 0.25 and 0.35, quite
different from the 0.6850... shown in Figure 12-7e.

Figure 12-7f

The reason for this surprising result is that the series is really the sum of two
divergent p-series,

The first series diverges to +  and the second one diverges to – , so the series
has the indeterminate form  – . You can rearrange the series to converge to
any positive or negative number or to diverge to +  or to – . Because of this
behavior, the given series is said to be conditionally convergent. It converges
under the condition that you don’t rearrange the terms. This behavior would not
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limit also approaches zero. In fact, the absolute value of this difference for a
partial sum of n terms is no greater than the absolute value of the first term of
the tail, |tn+1|. For instance,

S1000 = 0.68436589... , a lower bound for L
S1001 = 0.68577709... , an upper bound for L

Because S1001 = S1000 + t1001, the magnitude of the remainder, |R1000|, is less than
|t1001|. You can find a good estimate for S by averaging the upper and lower
bounds.

S  0.5(0.68436589... + 0.68577709...) = 0.68507149...

So the series converges to S  0.6850... with an error of no more than
|t1001| = 0.001411... , or an accuracy of about three decimal places. Term tn

approaches zero as n approaches infinity, so you can make the error as small as
you like by taking a sufficient number of terms.

S = 



happen if the series were absolutely convergent, such as the alternating p-series
with p = 3,

for which the series would still converge if you took the absolute value of each
term.

Here is a summary of the definitions of conditional convergence and absolute
convergence.

This box summarizes the tests for convergence in this section, presenting them
in a suggested order for you to try.
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DEFINITIONS:  Absolute and Conditional Convergence

The series  tn converges absolutely if  |tn| converges.

The series  tn converges conditionally if the series converges as

written, but the series  |tn| diverges.

PROPERTIES:  Tests for Convergence of a Series of Constants

Try the tests in this order.

1.  nth term test: If  tn ≠ 0, then the series diverges.

2.  Alternating series test: If (1) the signs are strictly alternating, (2) the term
values are strictly decreasing in absolute value, and (3)  tn = 0, then
the series converges. (Sn is within |tn+1| of the limit, S.) Note: To test for
absolute or conditional convergence, use the definitions in the previous
box.

3.  Geometric series test: A geometric series with first term t1 and common
ratio r converges to S = t1 ·  if and only if |r| < 1.

For series of positive terms

4.  p-series test: If the series is a p-series, then it converges if p > 1, and it
diverges if p < 1.

5.  Harmonic series test: A harmonic series diverges. (A p-series with p = 1 is
a special case of a harmonic series.)

6.  Integral test: For  f(n), find  f(x) dx for some positive constant a.
If the integral converges, then the series converges. If the integral diverges,
then the series diverges. Note that 

(continued)



Note: You may apply these tests to the tail of the series because a series
converges if and only if its tail converges.

The following examples show how to find the complete interval of convergence,
including convergence at the endpoints. Examples 3–6 lead you through the
necessary steps for ascertaining whether a series of constants converges,
independent of whether these are at the endpoints of an interval of convergence.

The open interval of convergence for the Taylor series for ln x expanded about
x = 1 is 0 < x < 2. Determine whether the series converges at x = 0 and at x = 2.

The series for ln x is ln x =  . At
x = 0, the series becomes  , which diverges because it is the
opposite of the divergent harmonic series. At x = 2, the series becomes
1 –  , which converges because it meets the hypotheses of the
alternating series test.

 the complete interval of convergence is 0 < x  2.

Find the complete interval of convergence of the power series 

By the ratio technique,

l’Hospital’s rule applies.

l’Hospital’s rule applies again.
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7.  Ratio test (from the ratio technique): For L =  |tn+1/tn|, if L < 1,
the series is absolutely convergent; if L > 1, the series is divergent; and
if L = 1, the test fails and the series may be either convergent or
divergent.

8.  Direct comparison test: If you can bound the tail of the series above by
the terms of another series that is known to converge, then the series
converges too. If you can bound the tail of the series below by another
series that is known to diverge, then the series diverges too.

9.  Limit comparison test: For two series with positive terms, find the limit

  EXAMPLE 1

  EXAMPLE 2

Solution

Solution

L =  [f(n)/g(n)].

•  If L is a positive real number, then both series either converge or diverge.

•  If L = 0, and  g(n) converges, then  f(n) converges, too.
•  If L = , and  g(n) diverges, then  f(n) diverges, too.



At x = , the series is

which converges because it meets the hypotheses of the alternating series test.
At x = , the series is

for which the terms starting at 1/ ln 3 are larger than  · · ·,
a divergent harmonic series.

 the complete interval of convergence is 

Determine whether the series converges.

The series begins 2 + 1.25 + 1.1111... + 1.0625 + · · · .

 the series diverges because tn approaches 1, not zero, as n approaches infinity.

Determine whether the series converges.

The series begins 0  · · ·, which equals

0 + 0.125 + 0.1818... + 0.1875 + 0.17391... + 0.15625 + 0.13953... + · · ·

The series might converge because the terms are decreasing after a while and
approach zero. (The n2 in the denominator dominates the n in the numerator, as
you could tell by l’Hospital’s rule.) Because it’s reasonably easy to integrate the
given function, you can compare the series with an improper integral. The lower
limit of integration can be any nonnegative number, because only the tail of the
series is in question.

 the series diverges because the tail could be bounded below by a divergent
integral.

Determine whether the series converges.
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 · · ·

 · · ·

  EXAMPLE 3

  EXAMPLE 4

  EXAMPLE 5

Solution

Solution



 the series converges because the partial sums are increasing and bounded
above by the limit of a convergent p-series.

Determine whether the series converges.

The series begins  

Even after the terms become positive, they are not bounded above by the
 p-series  1/n3. So use the limit comparison test.

Apply l’Hospital’s rule.

 the series converges because L is a positive real number.

Q1.  7 + 14 + 28 + 56 + · · · are terms of a(n) —?—
series.

Q2.  The next term in the series in Problem Q1 is
found from the preceding term by —?—.

Q3.  The number 2 for the series in Problem Q1 is
called the —?— of the series.

Q4.   is the
Taylor series expansion for —?—.

Q5.  The first three terms in the Maclaurin series
expansion of cos 2x are —?—.

Q6.  The coefficient of x6 in the Maclaurin series
expansion of f(x) = sin x2 is —?—.

Q7.  If the interval of convergence is 3 < x < 8, then
the radius of convergence is —?—.

Q8.  The open interval of convergence for

Q9.  If (t) = (e2t )  + (sin 3t)   then v(t) = —?—.
Q10.  The volume of the solid formed by rotating the

region under the graph of y = 9 – x2 about the
 y-axis is —?—.

A.  0 B.  36 C.  36
D.  40.5 E.  259.2
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The series begins 

The series might converge because the terms decrease and approach zero as a 

series is smaller than the corresponding term of a convergent p-series.

L =  = 1

Solution

  EXAMPLE 6

Solution

Problem Set 12-7

 is —?—.

limit (tn approaches the form 1/ ). Each term after the first one in the given

 p-series:

Value of n:

Given series:

1 2 3 4

Quick Review



1.  Vocabulary Problem 1: Given the series

a.  Write and add the terms of the fifth partial
sum, S5.

b.  Write the first few terms of the tail of the
series after the fifth partial sum.

c.  The factor (–1)n+1 makes this an alternating
series, which converges by the alternating
series test. What three hypotheses does
the series meet that makes this test apply?
Based on the tail of the series in part b,
quickly find an upper bound for |R5|.

d.  The series is also absolutely convergent.
What does this mean? What words would
describe the series if it were convergent but
not absolutely convergent?

e.  Explain why, when you are showing absolute
convergence, the partial sums are increasing
even though the terms themselves are
decreasing.

2.  Vocabulary Problem 2: Write the name of the
test for convergence or divergence described.
a.  Find an upper bound for the partial sums by

comparing the terms with a series that is
known to converge.

b.  Find an upper bound for the partial sums by
comparing the terms with the y-values in a
convergent or divergent improper integral.

c.  Show divergence by showing that tn does
not approach 0 as n approaches infinity.

d.  Show that the series is geometric, with
common ratio |r| < 1.

e.  Show that the limit of |tn+1/tn| < 1 as n
approaches infinity.

f.  Show that for  u(n) and  v(n),
 [u(n)/v(n)] is a finite, positive

number.
g.  Show that the terms have the form 1/np,

where p > 1.

3.  Integral Test Problem 1: Given the p-series

a.  Find the fifth partial sum, S5.
b.  Write the first few terms of the tail. Show

graphically how you can embed the terms of
the tail in a continuous function so that the
area of the region under the graph of the
function is an upper bound for R5, the sum
of the terms in the tail. Find this upper
bound by evaluating an appropriate
improper integral. Explain how your work
allows you to conclude that the given
 p-series converges.

c.  By comparison with other improper
integrals, find upper and lower bounds for
R1000. Use the average of these upper and
lower bounds to find a reasonable
approximation for S. To how many decimal
places is this approximation accurate?

d.  How many terms of the series would
it take to get a partial sum that you can
guarantee is correct to six decimal places
(Rn < 0.0000005)?

4.  Integral Test Problem 2: Consider the p-series

a.  Write the terms of S5, the fifth partial sum,
and add them. What is the value of p for this
series? What special name is given to the
series?

b.  Write the first few terms of the tail after S5.
Show graphically how the terms of the tail
can be embedded in a continuous function
so that the area of the region under the
graph of the function is a lower bound for
R5, the sum of the terms in the tail. Find this
lower bound by evaluating an appropriate
improper integral. Explain how your work
allows you to conclude that the given
 p-series diverges.

c.  Explain why graphing the terms of the series
so that the improper integral is an upper
bound for the tail would indicate nothing
about whether the series converges.

d.  Without actually adding the terms, how
many terms could you add to be sure that
Sn > 1000? If your computer could compute
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S = 

S = 



b.  Use the integral test to prove that the series
does not converge absolutely.

c.  This equation is the Taylor series for ln x
expanded about x = 1 and evaluated at
x = 2. So the series as written converges to
ln 2. Find S1000 and S1001 for the series. Show
that both sums are within |t1001| of ln 2. How
close to ln 2 is the average of S1000 and S1001?

d.  Commute and associate the terms this way:

Are any terms left out? Does any term
appear more than once? Evaluate the terms
in parentheses first, then factor out 1/2
from each resulting term. To what number
does the series converge under this
condition? What is meant by conditional
convergence of a series?

6.  Absolute vs. Conditional Convergence Problem 2:
Consider the alternating p-series

a.  Write the first few terms of the series. Prove
that the series converges by showing that it
meets the three hypotheses of the
alternating series test.

b.  Name an appropriate test that proves the
series is absolutely convergent.

c.  Explain why the ratio test (ratio technique)
fails to prove that this series is absolutely
convergent.

7.  Alternating Series Remainders Property Problem:
The first four terms (n = 0, 1, 2, 3) of the
Maclaurin series for sin 0.6 are 0.6 – 0.036 +
0.000648 – 0.00000555428... + · · ·
a.  Show how you calculate the fourth term, t3.
b.  Calculate the second and third partial sums,

S1 and S2, respectively.

c.  Calculate R1 and R2, the remainders after S1
and S2 (the values of the tail), by finding the
difference between the partial sum and the
value of sin 0.6 by calculator. Show that in
both cases the magnitude of the remainder
is less than the absolute value of the first
term of the tail.

d.  Use the appropriate property to prove that
the series for sin 0.6 converges.

8.  Sequence vs. Series Problem: Explain why the
sequence 2.3, 2.03, 2.003, . . . , 2 + 3(0.1)n, . . .
converges, but the series 2.3 + 2.03 +
2.003 + · · · + [2 + 3(0.1n)] + · · · does not.

9.  Limit Comparison Test Problem: Consider the

a.  Write the first few terms of the series. Using
the limit comparison test, prove that the
series converges.

b.  Why can’t you prove convergence of this
series by direct comparison with the
 p-series with p = 2, starting at n = 2?

c.  Why would the series diverge if the index of
summation started at 1 instead of 2?

10.  Comparison Test for the Exponential Function
Series: These are the first seven terms of the
Maclaurin series for e0.6.
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and add a million terms per second, how 

long would it take to find this value of Sn by
simple addition?

5.  Absolute vs. Conditional Convergence Problem 1:
Consider the alternating harmonic series

a.  Write the first few terms of the series. Prove
that the series converges by showing that it
meets the three hypotheses of the
alternating series test.

series 

n :       0        1           2           3               4                 5                     6             · · ·
e0.6  =  1  +  0.6  +  0.18  +  0.036  +  0.0054  +  0.000648  +  0.0000648  +  · · ·

5th partial sum Tail



    

a.  Show how the seventh term, t6, is calculated.
b.  Show that the fifth partial sum, S4, differs

from the actual value of e0.6 by more than t5,
the first term of the tail, but not by much
more.

c.  Show that each term of the geometric series

0.000648 + 0.0000648 + · · ·
with common ratio 0.1 is an upper bound
for the corresponding term in the tail.

d.  To what value does the geometric series in
part c converge?

e.  Based on your answer to part d, what
number is an upper bound for the sum of
the tail of the series? What number is an
upper bound for the entire series? Show that
the latter number is just above e0.6.

11.  Limit Comparison vs. Ratio Test Problem:

Consider the series

a.  Write the first few terms of the series. Use the
ratio test to prove that the series converges.

b.  Write the first few terms of this series.

Explain how you know from previous work
that this series converges.

c.  Explain why the limit comparison test is
inconclusive in proving that the given series
converges when comparing it with the
convergent series in part b.

12.  Direct Comparison vs. Limit Comparison Test
Problem: Consider the two series

and the convergent geometric series

a.  Write the first few terms of each series.
Explain why direct comparison of series U
with series G proves that series U
converges, but direct comparison of series V
with series G fails to prove that series V
converges.

b. Prove that series V converges by applying
the limit comparison test, using series G in
part a.

For Problems 13–32, state whether the series
converges. Justify your answer.

13.
 

14. 

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

For Problems 33–36, write the first few terms of the
series at each end of the given open interval of
convergence. From the result, find the complete
interval of convergence.

33.
 

34.

35.

36.
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U = 

G = 

and    V =

 open interval = (1, 9)

open interval = (1, 7)

open interval = (–4, –2)

 open interval = 



39. 40.

41. 42.

43. 44.

45. 46.

47.  Infinite Overhang Problem: Figure 12-7g shows
a pile of blocks. The top block sits so that its
center of mass is exactly on the right edge of
the second one down. The right edge of the
third block is placed under the center of mass
of the first two. The fourth is placed under the
center of mass of the first three, and so on.

Figure 12-7g

a.  Show that the overhangs of the blocks
are terms in the harmonic sequence

 where L is the length
of each block. To find the centroid of a
particular pile, find the sum of the moments
of the blocks by summing each one’s

moment with respect to the y-axis, then
dividing by the number of blocks. You must,
of course, find the centroid of one pile
before you can find the centroid of the next.

b.  What depth of pile is the first to have its top
block projecting entirely beyond its bottom
block?

c.  Explain why, in theory at least, it would be
possible to make a pile of blocks with any
desired overhang, using nothing but gravity
to hold the pile together.

d.  If you pile up a normal 52-card deck the way
the blocks are piled in this problem, by how
many card-lengths would the top card be
offset from the bottom card?

48.  Convergence of Sequences Proof: Figure 12-7h
shows a sequence

that is increasing and bounded above. Prove
that the sequence converges. Use the least
upper bound postulate (which states that any
set of real numbers that is bounded above has a
least upper bound) to establish the existence of
a least upper bound, L; then prove that L is the
limit of the sequence.

Figure 12-7h

12-8   Error Analysis for Series—The Lagrange
Error Bound
From time to time in this chapter you have estimated the remainder of a series,
or the value of the tail of the series after a certain number of terms. This
remainder represents the error in the value of a function that you get by using a
partial sum of the series. For certain alternating series, you found that the entire
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For Problems 37–46, find the interval of convergence
for the given power series, including convergence or
divergence at the endpoints of the interval.

37.
 

38. 

{t1, t2, t3, . . . , tn, . . . }



tail is bounded by the first term of the tail. By improper integrals, you found
upper and lower bounds for the tail of some series of positive terms. In this
section you will learn about the Lagrange form of the remainder of a Taylor
series, an expression similar to the first term of the tail. Joseph Louis Lagrange
(1736–1813) applied mathematics in many areas, including the motion of
planets, and helped establish the French metric system.

The Lagrange Error Bound for the Remainder

The general term of the Taylor series expansion of f(x) about x = a is

The first term of the tail of a Taylor series is tn+1. For any value of x in the
interval of convergence, there is a value of c between a and x for which Rn(x) is
given by

The only difference between this remainder and the first term of the tail is that
 f (n+1) (a) is replaced by f (n+1) (c). Usually this derivative is awkward to calculate,
although you can often find an upper bound, M, for it. If this is the case, an
upper bound can be found for the remainder. Finding the value of n that gives a
small enough remainder allows you to determine how many terms are needed to
get the desired accuracy in the partial sum representing f(x). You can use this
error bound to prove that the series converges to the target function, f(x), not to
some other value, if you can show that this error bound goes to zero as n
approaches infinity.
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OBJECTIVE Given a series, determine the number of terms needed to obtain an
approximation for the limit to which the series converges correct to a
specified accuracy.

PROPERTY:  Lagrange Form of the Remainder of a Taylor
Series
If f(x) is expanded as a Taylor series about x = a and x is a number in the
interval of convergence, then there is a number c between a and x such that
the remainder, Rn, after the partial sum, Sn, is given by the Lagrange form

If M is the maximum value of | f (n+1) (x)| on the interval between a and x, then
the Lagrange error bound is

Rn = 

Rn(x) = 

tn = 
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(c) = 

 f(x) – f(a) = (c)(x – a)

 f(x) = f(a) + (c)(x – a)

Figure 12-8a

  EXAMPLE 1

a.  S10 =  = 7.38899470...

|R10| < (2 – 0)11 = 0.0004617...

The property is an extension of the mean value
theorem, which concludes that there is a
number c between a and x for which

Multiplying by (x – a) gives

As shown in Figure 12-8a, f(x) – f(a) is the
error in using f(a) as an approximation for f(x).

Solving this equation for f(x) gives

In this form you can see that f(a) is the first term (n = 0) of the Taylor series
expansion of f(x) about x = a, and (c)(x – a) is the Lagrange form of the
remainder after n = 0. You will be asked to supply the algebraic details of the
derivation in Problem 21 of Problem Set 12-8.

Consider the Maclaurin series for ex.
a.  Estimate e2 using the 11th partial sum (n = 10).
b.  Use the Lagrange form of the remainder to estimate the accuracy of using

this partial sum.
c.  How does the estimate of the remainder you found in part b compare with

the value calculated by subtracting S10 from the value of e2 on your
calculator?

Solution

b.  All derivatives of ex are equal to ex. Because you are estimating e2 from
scratch, you should not assume that e is known to be 2.718 ... . However,
you know that e < 3. So a value of M is 32; so f (n+1)(x) < 9 for all x
between 0 and 2.

Thus, S10 may be off by as much as five in the fourth decimal place and,
thus, should match e2 to 1 in the third decimal place.

c. e2 = 7.38905609... By calculator.

S10 = 7.38899470... From part a.

The difference is 0.00006138... , which is significantly less than the upper
bound 0.0004617... by the Lagrange form. Note that although the difference
has zeros in the first four decimal places, the partial sum and the more
precise value of e2 still differ by one in the third decimal place.



How many terms of the Maclaurin series for sinh x are needed to estimate sinh 4
correct to five decimal places? Confirm your answer by subtracting the partial
sum from sinh 4 using your calculator.

The general term of the series is tn =  x2n+1, where n is the term index.

All derivatives of sinh x are either cosh x or sinh x. Both functions are increasing
on the interval [0, 4], with cosh x > sinh x. Thus, the derivatives are all bounded
by cosh 4. Because you are trying to estimate sinh 4, you should not assume that
you know cosh 4 exactly. However, 2 < e < 3, so cosh 4 < 0.5(34 + 2–4) =
40.53125 < 41, which means that the absolute values of the derivatives are
bounded by M = 41.

Note that the exponent is 2n + 3.

To get five-place accuracy, |Rn| should have zeros in the first five decimal places
and no more than 5 in the sixth place. That is, |Rn| < 0.000005. Using the TABLE

feature,
n 41/(2n + 3)! · 42n+3

7 0.001980319...
8 0.000092646...
9 0.000003529...

The 0.000003529... for n = 9 is the first value less than 0.000005. Therefore, you
should use at least 10 terms (because the term index, n, starts at 0).

sinh 4 = 27.289917197... By calculator.
S9 = 27.289917108...

Difference = 0.000000089... , which is considerably less than 0.000005.

For the Maclaurin series for e2 in Example 1, find the approximate value of c for
which the Lagrange form equals the remainder, R10.

From Example 2.

c = ln 1.1965... = 0.1794... ,  which is between 0 and 2.

For the Taylor series for ln x expanded about x = 1, how many terms would be
needed in the partial sum to compute ln 1.4 to five decimal places?
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  EXAMPLE 2

Solution

|Rn| < 42n+3

  EXAMPLE 3

Solution

  EXAMPLE 4

R10 = = 0.00006138...

ec = = 1.1965...
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In 1.4 = (1.4 – 1) – (1.4 – 1)2 + (1.4 – 1)3 – · · ·

= 0.4 – 0.08 + 0.021333... – · · ·

Because this series meets the requirements of the alternating series test,
|Rn|  |tn+1|.

Make  < 0.000005.

  EXAMPLE 5

Figure 12-8b

Solution

n < 9.731... < 10 Solve numerically for n. Because the term index
starts at 1, it  is equal to the term number.

Use ten terms.

As a check, S10 = 0.336469445... , and ln 1.4 – S10 = 0.00000279... , which
checks.

As you saw in Section 12-7, if the terms of a series can be embedded in a
decreasing continuous function, you can use the integral test to estimate the
number of terms needed to get a specified accuracy for a partial sum.

For the convergent p-series S = 

a.  Find upper and lower bounds for R20 using appropriate improper integrals.
Average the upper and lower bounds to find an estimate for R20 and, thus,
an estimate for the limit to which the series converges, S. Find an upper
bound for the error in this estimate of S.

b.  Using the technique of part a, determine the number of terms it would take
to find S correctly to six decimal places (Rn < 0.0000005). By considering
only the upper-bound integral for Rn, how many terms would you have to
use to guarantee that the partial sum itself is correct to six decimal places?

Solution a.  Figure 12-8b shows the terms of the tail after S20 represented as areas of
rectangles with one corner embedded in the continuous decreasing
function f(x) = 1/x1.02. As shown on the left, the integral from 20 to
infinity is an upper bound for R20. The integral from 21 to infinity is a
lower bound, as shown on the right.



R20  0.5(47.092246... + 47.046315...) = 47.069280...
S = S20 + R20  3.509770... + 47.069280...

= 50.579050... Estimate of the limit to
which the series converges.

Error < 0.5(47.092246... – 47.046315...)
= 0.022965... Upper bound for the error.

b. Error < 0.5 

= 25n–0.02 – 25(n + 1)–0.02  0.0000005
n = 762, 698.17... ,  which rounds up to Solve numerically for n.

762,699 terms

Use the upper bound
integral for Rn.

Set 50n–0.02 = 0.0000005
n = (0.0000005/50)–1/  0.02 = (1 × 10–8)–50 = 1 × 10400, which is

unbelievably large!
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Rn < 0.0000005, if  dx < 0.0000005

Quick Review

Problem Set 12-8

Q1.  The radius of convergence of a power series
can be found using the —?— technique.

Q2.  A geometric series converges if and only if —?—.

Q3.  The Maclaurin series for cos x converges for
what values of x?

Q4.  The Taylor series for ln x expanded about x = 1
has what radius of convergence?

Q5.  Write the first four nonzero terms of the
Maclaurin series for tan–1 x.

Q6.  Sketch a partial sum of the Maclaurin series for
sine compared with the actual sine graph.

Q7.  Evaluate the integral:  secx dx

Q8.  Differentiate: y = tan x

Q9.  Evaluate the integral:  sec2x dx
Q10.  Which two people are credited with having

invented calculus?

For Problems 1–4,
a.  Find the indicated partial sum.
b.  Use the Lagrange form of the remainder to

estimate the number of decimal places to
which the partial sum in part a is accurate.

c.  Confirm your answer to part b by
subtracting the partial sum from the
calculator value.

1.  cosh 4 using the sixth partial sum (n = 5) of
the Maclaurin series

2.  sinh 5 using the tenth partial sum (n = 9) of
the Maclaurin series

3.  e3 using the 15th partial sum of the Maclaurin
series

4.  ln 0.7 using eight terms of the Taylor series
expanded about x = 1



Section 12-8:   Error Analysis for Series—The Lagrange Error Bound © 2005 Key Curriculum Press 641

For Problems 5–8, use the Lagrange form of the
remainder to find the number of terms needed in
the partial sum to estimate the function value to the
specified accuracy.

5.  sinh 2 to six decimal places using the

6.  cosh 3 to eight decimal places using the

7.  ln 0.6 to seven decimal places using the Taylor

8.  e10 to five decimal places using the Maclaurin

Maclaurin series

Maclaurin series

series expanded about x = 1

series

S = 

S = 

S = 

1 +  + · · ·

For Problems 9–10, calculate the value of c in the
appropriate interval for which the Lagrange form of
the remainder equals the remainder found by
subtracting the partial sum from the function value
by calculator.

9.  cosh 2 using five terms (S4)

10.  e5 using 20 terms (S19)

For Problems 11–12, show that the hypotheses of
the alternating series test apply to the function,
then find the number of terms needed in the partial
sum to get the specified accuracy.

11.  cos 2.4 to six decimal places using the
Maclaurin series

12.  e–2 to seven decimal places using the
Maclaurin series

13.  p-Series Problem 1: For the convergent p-series
with p = 3,

a.  Find S10. Find the upper and lower bounds
for R10, the remainder after S10, by
comparison with appropriate improper
integrals. Average these bounds to find an
estimate for R10. Use the answer to find an
approximation for S, the number to which
the series converges. What is the maximum
error this approximation could have?

b.  Using the technique of part a, determine the
number of terms you would have to add to
estimate S correctly to five decimal places
(Rn < 0.000005). How does this number
compare with the number of terms you

would have to add if you use only the upper
bound for Rn to ensure that Sn itself is
correct to five decimal places?

14.  p-Series Problem 2: For the convergent p-series
with p = 1.05,

a.  Find S100. Find the upper and lower bounds
for R100, the remainder after S100, by
comparison with appropriate improper
integrals. Average these bounds to find an
estimate for R100. Use the answer to find an
approximation for S, the number to which
the series converges. What is the maximum
error this approximation could have?

b.  Using the technique of part a, determine the
number of terms you would have to add to
estimate S correctly to five decimal places
(Rn < 0.000005). Why does it take more
terms to get a given accuracy with p = 1.05,
as in this problem, than it does with p = 3,
as in Problem 13?

15.  Integral Bound Problem: Given the series

a.  Find the 11th partial sum, S10. Show that the
series converges by comparing the tail
starting at t11 with a convergent p-series.

b.  Find the upper and lower bounds for R10 by
embedding the tail in a continuous
decreasing function and evaluating
appropriate improper integrals. Average the
bounds to find an approximation for S. To
how many decimal places do the upper and
lower bounds guarantee that the
approximation for S is accurate? How many
terms would it take using this method to be
sure that you have four-place accuracy
(Rn < 0.00005)?

16.  p-Series Problem 3: The series

is a p-series. Explain why the method of
Problem 13 is not appropriate for estimating
the remainder of this series.



17.  Geometric Series as an Upper Bound Problem:
In Example 1 of this section you saw that you
could use the Lagrange form of the remainder
to estimate the error in calculating e2 using the
11th partial sum (S10) of the Maclaurin series.
You can also estimate the error by bounding
the tail of the series with a convergent
geometric series that has first term equal to t11
(the first term of the tail) and common ratio
equal to t12/t11. Which method gives a better
estimate of the error, the geometric series or
the Lagrange remainder?

18.  Values of ex from Values of e–x Problem: You
can calculate the value of e2 by first finding the
value of e–2, then taking the reciprocal. After
the first few terms, the series for e–2 meets the
hypotheses for the alternating series test.
Thus, the error for any partial sum is bounded
by the first term of the tail of the series after
that partial sum. Estimate the error in the
estimate of e–2 using the 11th partial sum
(S10). Then estimate e2 by calculating 1/S10. Is
the error in the answer any smaller than the
error in using S10 directly for e2, as in
Example 1 of this section?

19.  Sin x for Any Argument Using a Value of x in
[0, /4] Problem: The Maclaurin series for sin x
converges more slowly the farther x is from 0.
Suppose you wanted to compute sin 250.
a.  The values of sin x repeat themselves with a

period of 2 . Find a number b in [0, 2 ] for
which sin b = sin 250.

b.  Each value of sin x for x in [0, 2 ] is equal to
a value of sin c for some number c in
[– /2, /2] (Figure 12-8c). Find the value
of c for which sin c = sin 250.

Figure 12-8c

c.  Each value of sin x for x in [– /2, /2] is
equal to  sin d or  cos d for some number d
in [0, /4] (Figure 12-8c). Find the value of d
for which sin 250 =  sin d or  cos d.
Demonstrate that your value of d gives the
correct answer for sin 250.

d.  Show that you can use the technique of this
problem to calculate values of sin x correctly
to at least ten decimal places using just six
terms of the appropriate Maclaurin series.
How many terms do you need to calculate
sin 250 to ten places directly from the
series?

e.  Project: Write a program to calculate sin x
correctly to ten decimal places by Maclaurin
series using the technique of this problem.
Programs similar to this are used internally
by calculators to evaluate sines and cosines
efficiently.

20.  The National Bureau of Standards Handbook of
Mathematical Functions lists the value of sin 1
to 23 decimal places as

0.84147 09848 07896 50665 250
(The spaces are used in lieu of commas for ease
of reading.) How many terms of the Maclaurin
series for sin x would have to be used to get
this accuracy? How many terms would it take if
the technique of Problem 19 were used?

21.  Derivation of the Lagrange Form of the
Remainder: Earlier in this section you saw that
the conclusion of the mean value theorem
leads to a special case of the Lagrange form of
the remainder. If function f has derivatives of
all orders, as do exponential, trigonometric,
hyperbolic, and many other functions, then the
mean value theorem applies to each
derivative.
a.  Show that applying the mean value theorem

for some number c between x and a.
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to (x) on the interval [a, x] gives
(x) = (a) + (c)(x – a)
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 f(x) = f(a) + (a)(x – a) +     (c)(x – a)2

 f(x) = f(a) + (a)(x – a) +       (a)(x – a)2

 f(x) = 

the variable. Integrate both sides of the
differential equation in part a with respect
to x. Use the point (a, f(a)) as the initial
condition. Show that you can transform the
answer to

b.  Assume that a and c are constants and x is

c.  You should recognize that the first two
terms of the right side of the equation in
part b are terms in the Taylor series
expansion of f(x) about x = a and the third
term is the Lagrange form of the remainder.
By applying the mean value theorem to 
on the interval [a, x] and integrating twice,
show that there is a number c in (a, x) for
which

d.  Without actually doing the algebra, name
the mathematical technique that you could
use to prove that for any integer n > 0, there
is a number c in the interval (a, x) for which
the Lagrange form of the remainder is
exactly equal to the error in using the partial
sum Sn(x) of the Taylor series as an
approximation for f(x).

22.  A Pathological Function: Figure 12-8d shows
the function

Function f has derivatives of all orders at
x = 0, and each derivative equals zero there.

Figure 12-8d

a.  By equating derivatives, show that the
Maclaurin series for f(x) would be
0 + 0x + 0x2 + 0x3 + · · · .

b.  Show that the Maclaurin series converges for
all values of x, but that it does not converge
to f(x) except at x = 0.

c.  Substitute –x–2 for x in the Maclaurin series
for ex. Write the first four terms of the
power series and simplify.

d.  The resulting power series is called a
Laurent series, the name applied to a power
series in which some powers can have
negative exponents. By finding a partial sum
of the series, make a conjecture about
whether the Laurent series evaluated at
x = 2 converges to f(2).

23.  The Maclaurin Series for ex Converges to ex:
Problem 22 shows that a Maclaurin series can
converge, but not to the target function. Use
the Lagrange form of the remainder to show
that the Maclaurin series for ex does converge
to ex for all values of x by showing that the
remainder of the series approaches zero as n
approaches infinity.

12-9   Chapter Review and Test
In this chapter you have seen how a function can be expanded as a power series.
There are two advantages to doing this. First, it allows you to calculate values of
transcendental functions by doing only the four operations of arithmetic.
Calculators and computers use series internally to calculate values of sines, logs,
and so forth. Second, it allows you to determine how accurate a numerical
integral is. If x is within the interval of convergence, you can get any desired
accuracy by using enough terms of the series.

+     (c)(x – a)3

if x  0
if x = 0



Review Problems

R0.  Update your journal with what you have
learned since the last entry. You should include
such things as
•  The one most important thing you have

learned in studying Chapter 12
•  Which boxes you have been working on in

the “define, understand, do, apply” table
•  How to write from memory some special,

well-known series
•  How you find a power series for a given

function, either by equating derivatives or
by operating on another known series

•  What it means for a sequence or series to
converge

•  How you determine the accuracy of a
function value found by series

•  Any ideas about series that are still unclear

R1.  Let f(x) =  and let

Pn(x) = 9 + 9x + 9x2 + 9x3 + 9x4

+ 9x5 + · · · + 9xn

On the same screen, plot f(x), P5(x), and P6(x).
Sketch the results. For what values of x does
Pn(x) seem to be close to f(x), and for what
values of x does the graph of P bear little
resemblance to the graph of f ? Show that
P6(0.4) is closer to f(0.4) than P5(0.4) is. Show

and (0), respectively. What kind of series is
Pn(x) a subseries of?

R2.  a.  Biceps Problem: You start an exercise
program to increase the size of your biceps.
The first day you find that the circumference
of each bicep increases by 3 mm. You
assume that the amount of increase on each
subsequent day will be only 90% of the
amount of increase the day before. By how
much do you predict your biceps will have
increased after ten days? At the limit, what
will be the total increase in each bicep?

b.  Present Value Problem: You win $10 million
in the state lottery! However, you will receive
only $0.5 million now and $0.5 million a
year for the next 19 years (20 payments).
How much money must the state invest now
so that it will have $0.5 million to pay you at
the beginning of the 20th year? Assume that
the state can get 10% per year in interest,
compounded annually, on the investment.
How much money, total, must the state
invest now to make all 19 future payments?
This amount is called the present value of
your remaining $9.5 million.

R3.  Let P(x) be the power series
c0 + c1x + c2x2 + c3x3 + c4x4 + · · · . Let
 f(x) = 7e3x. By equating derivatives, find the
values of c0, c1, c2, and c3 that make P(0),

R4.  For a–c, show that the fourth partial sum,
S3(0.12), is close to f(0.12).
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that  and  equal (0), (0),

(0), (0), and (0) equal (0), (0),
and (0), respectively.

a.  ex = 1 + x +  + · · ·

b.  cos x = 

c.  sinh x = x +  + · · ·
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gives values close to ln x if x = 1.7, but not if
x = 2.3.

R5.  a.  What is the difference between a Maclaurin
series and a Taylor series?

b.  Write the Maclaurin series for  ln(x + 1) by

for  t cos t2 dt.

F = 

d.  Show that the 20th partial sum of

performing appropriate operations on the
Taylor series for ln x.

c.  Integrate the series in part b to find a
Maclaurin series for  ln(x + 1) dx.

d.  Show that the series in part c is equivalent
to the one you would obtain by finding the
antiderivative of ln(x + 1) and writing that
as a Maclaurin series.

e.  Write the first few terms of a power series

f.  Write tan–1 x as the definite integral of an
appropriate function from 0 to x. Write the
integrand as a Maclaurin series. Then write
the first few terms of the corresponding
Maclaurin series for tan–1 x.

g.  Suppose that f is a function with derivatives
of all orders that are defined for all real
values of x. If f(3) = 5, (3) = 7, (3) = –6,
and (3) = 0.9, write the first four terms
of the Taylor series for f(x) expanded about
x = 3.

R6.  a.  Write the first few terms of .

b.  Find the open interval of convergence and
radius of convergence of the series in part a.

c.  Show that the Maclaurin series for cosh x
converges for all values of x.

d.  Write the first five terms of the Maclaurin
series for e1.2. Then calculate the error in
using the fifth partial sum to approximate
e1.2 by subtracting the partial sum from e1.2

by calculator. How does the error compare
with the value of the first term in the tail of
the series after the fifth partial sum?

e.  On the same screen, plot the graphs of ln x,
the Taylor series expanded about x = 1 for
ln x using 10 terms, and the same series

using 11 terms. Sketch the graphs. Then
write a paragraph stating how the graphs
relate to the interval of convergence.

R7.  a.  Find the tenth partial sum of the geometric
series with t1 = 1000 and common ratio 0.8.

b.  By how much does the tenth partial sum in
part a differ from the limit to which the
series converges?

c.  The rest of the series in part a following the
tenth partial sum is called the —?— of the
series.

d.  The value of the rest of the series, part b, is
called the —?— of the series.

e.  Use appropriate improper integrals to find
the upper and lower bounds for R10, the
remainder after the tenth partial sum, S10,
for the p-series

S = 1 +  + · · ·

Use the result to conclude that the series
converges. Find a reasonable estimate for S.
To how many decimal places can you ensure
that the answer is accurate?

f.  Write the first few terms of the series

Use the limit comparison test, along with the
results of part e, to prove that series F
converges. Explain why the direct
comparison test of series F to series S
would not be sufficient to prove
convergence of series F.

g.  Show that there is a convergent geometric
series that is an upper bound for the tail of
the series 2/1! + 4/2! + 8/3! + 16/4! +
32/5! + · · · after a suitable number of terms.

h.  Show that the alternating harmonic series

1 –  + · · ·

converges conditionally to ln 2, but does not
converge absolutely. Show that you can
rearrange the terms and regroup them so
that the series converges to 0.5 ln 2.

i.  Find an upper bound for the remainder of
the series in part h after 10,000 terms.



j.  Find the complete interval of convergence,
including the endpoints.

i.  

ii.  

k.  State whether each series of constants
converges. Justify your answer.

i.  

ii.  

iii.  

iv.  

v.  

R8.  a.  Use the Lagrange form of the remainder to
estimate the error in using the fourth partial
sum of the Maclaurin series to estimate
cosh 2.

b.  You are asked to calculate e3 using enough
terms of the Maclaurin series to get a
20-decimal-place accuracy. Use the Lagrange

form of the remainder to calculate the
number of terms that you should use.

c.  The Maclaurin series for cosh x converges
for all values of x. Use the Lagrange form of
the remainder to show that the value the
series converges to when x = 4 really equals
cosh 4.

d.  Calculate, approximately, the number c in
the interval (0, 0.6) for which the Lagrange
form is equal to the remainder of the
Maclaurin series for sinh 0.6 after the
fourth partial sum (n = 3).

e.  Use the fact that the Taylor series for ln x is
alternating if x is between 1 and 2 to find
the number of terms of the series needed to
compute ln 1.3 to 20 decimal places.

f.  Use improper integrals to find the upper and
lower bounds for R50, the remainder after
the 50th partial sum, for the p-series

How does your work let you conclude that
the series converges? Find an estimate for S
using S50 and the upper and lower bounds
for R50. To how many decimal places does
your work guarantee that the estimate for S
is accurate?

Concept
Problems
C1.  Series with Imaginary Numbers Problem: If you

substitute ix for x in the Maclaurin series for
cosine and sine, you get some startling results!
In this problem you will see how these results
lead to another similarity between trigonometric
functions and hyperbolic functions.
a.  Substitute ix (where i is ) for x in the

Maclaurin series for cosine. When you
simplify, you should find that cos ix is
real-valued and equals cosh x.

b.  Substitute ix for x in the Maclaurin series for
sine. You should find that each term has i as

a factor. Factor out the i to show that
sin ix = i sinh x.

c.  Substitute ix for x in the Maclaurin series for
ex. Use the result and the answers to parts a
and b to show that the following formula is
true.

 = cos x + i sin x

d.  Show that  = –1. This one short formula
combines four of the most mysterious
numbers of mathematics!
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tan(A + B) = 

 + 9xy = 0

 y =

Set 12-5, Problem 37, you computed  using
the Maclaurin series for tan–1 x to compute /4,
which equals tan–1 1. You made use of the
composite argument property from
trigonometry,

to show that

C2.  Practical Calculation of Pi Problem: In Problem

thus obtaining more accuracy with fewer
terms. Show that the double series

also converges to /4. How many terms of
this series do you need in order to get 
correct to the number of decimal places
reported in William Shaaf’s booklet
Computation of Pi (Yale University Press,
1967), namely,

 = 3.14159 26535 89793 23846 26433
83279 50288 41971 69399 37510...

C3.  Series Solution of a Differential Equation: In
future courses on differential equations you
will learn to solve a differential equation
directly in terms of a power series. This
problem provides a preview of the technique
used. Consider the second-order differential
equation

with initial conditions  = 7 and y = 5 when
x = 0.

a.  Assume there is a power series equal to y.
That is,

= c0 + c1x + c2x2 + c3x3 + c4x4

+ c5x5 + c6x6 + · · ·

Assuming the series can be differentiated
termwise, write equations for  and .

b.  Use the two initial conditions in the
appropriate places to evaluate c0 and c1.

c.  Substituting the series for y and  into the
original differential equation and combining
terms with equal powers of x gives

2c2 + 6c3x + 12c4x2 + 20c5x3

+ 30c6x6 + · · · + 9x(c0 + c1x + c2x2

+ c3x3 + c4x4 + c5x5 + c6x6 + · · ·) = 0
2c2 + (6c3 + 9c0)x + (12c4 + 9c1)x2

+ (20c5 +9c2)x3 + (30c6 + 9c3)x4

+  · · · = 0

The right side of the equation is zero, so
each coefficient on the left side must equal
zero. Use this fact to calculate the values of
c2 through c6.

d.  Use the terms of the series through the sixth
power to compute y when x = 0.3.

e.  Just for fun, see if you can determine
whether the series you found in part d
converges when x = 0.3.

Chapter
Test
PART 1: No calculators allowed (T1–T10)

T1.  Write the first few terms and the general term
of the Maclaurin series for e–x.

T2.  Long divide  to get a Maclaurin power
series. What special name is given to this
particular kind of power series?

T3.  Write the first few terms of the Taylor series
for cos x expanded about x = .

T4.  Write the Lagrange form of the remainder R5
for the series in Problem T2.

T5.  Write a power series for sin (x2). Write the
answer in sigma notation.

T6.  Give an example of a series that converges
conditionally, but not absolutely. Explain what
the “condition” refers to in the name
conditional convergence.



T7.  By equating derivatives, show that the Taylor
series for ln x expanded about x = 1 is

T8.  Show that the geometric series
1000 + 999 + · · · converges, but the geometric
series 0.0001 + 0.0002 + · · · does not
converge.

T9.  Find the open interval of convergence and the
radius of convergence for

T10.  Does the series in Problem T9 converge or
diverge at the endpoints of the interval of
convergence? Justify your answer.

PART 2: Graphing calculators allowed (T11–T20)

T11.  Let f(x) =  dt. Write a power series for f(x).

T12.  Find the complete interval of convergence of
the series in Problem T11.

T13.  Find an approximation for f(0.6) using
20 terms of the series from Problem T11.

T14.  Find an approximation for f(0.6) in
Problem T11 by numerical integration.

T15.  Find f(0.6) in Problem T11 exactly using the
fundamental theorem. To how many decimal
places are the answers to Problems T13 and
T14 correct?

T16.  Demonstrate that the error in the value of
 f(0.6) by series in Problem T13 is less than the
first term in the tail of the series.

T17.  Write a power series for cosh x. Express the
answer in sigma notation.

T18.  Use the Lagrange form of the remainder to find
the number of terms of the series in
Problem T17 needed to estimate cosh 3
correctly to ten decimal places.

T19.  For the series S = 

a.  What special name is given to this series?
b.  Use the integral test to prove quickly that

the series converges.
c.  Find S100, the 100th partial sum.

d.  Find the upper and lower bounds for R100,
the remainder after S100. Use the results to
find a good approximation for S.

T20.  What did you learn as a result of working this
test that you did not know before?

12-10   Cumulative Reviews
In this section are several cumulative reviews that you may consider rehearsals
for your final exam. Each review touches on most of the concepts and
techniques of calculus, particularly those of the second half of the book.

Problem Set 12-10

Cumulative Review No. 1—
The Dam Problem

Suppose you are hired as a mathematician by Rivera
Dam Construction Company, which has been
awarded a contract to build a dam across Scorpion
Gulch. The following questions pertain to your part
in this project. Before Mr. Rivera will allow you to

work on his dams, he must be sure that you know
some of the fundamental definitions, theorems, and
techniques of mathematics. He asks about these in
Problems 1–5.

1.  There are four major concepts of calculus.
Name those concepts, and state their
definitions.
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a.  Continuity of a function at a point
b.  Continuity of a function on an interval
c.  Convergence of a sequence
d.  Convergence of a series
e.  Natural logarithm
f.  The exponential ax where a > 0

The Hoover Dam

3.  Mr. Rivera is satisfied with your knowledge of

a. (x), if f(x) = 

b. (x), if f(x) = ax

c.  (x), if f(x) = xa

d.  (x), if f(x) = xx

e.   e6x cos 3x dx
f.   cosh5 x sinh x dx
g.   sec3 x dx
h.   (sin 5x)–1 cos 5x dx

j.  

i.  

 = 0.2x – 0.3y + 0.3

2.  Define:

definitions and proceeds to quiz you on your
knowledge of various properties. State:

a.  The mean value theorem
b.  The intermediate value theorem
c.  The squeeze theorem
d.  The uniqueness theorem for derivatives
e.  The limit of a product property
f.  The integration by parts formula
g.  The fundamental theorem of calculus
h.  The Lagrange form of the remainder
i.  The chain rule for parametric functions
j.  The polar differential of arc length

4.  To make sure you know enough algebraic
techniques, Mr. Rivera asks you to find the
following limits, derivatives, and integrals.

5.  Mr. Rivera wants to be sure you know graphical
and numerical methods.

a.  Figure 12-10a shows the slope field for

On a copy of the figure, sketch the
particular solution containing (1, 8).

Figure 12-10a

b.  Use Euler’s method with x = 0.5 to
estimate the value of y for the solution in
part a if x = 9. How does your answer
compare with your graphical solution?

You pass your preliminary tests and start to
work on the dam project. At the dam site,
Scorpion Gulch has a parabolic cross section
with a shape of graph y = 0.1x2, where x
and y are in yards. The back face of the dam
(where the water will be) is vertical and lies
in the xy-plane (Figure 12-10b). The front
face slopes in such a way that the thickness



 

is z = 30 yd at the bottom of the gulch
(where y = 0) and z = 10 yd at the top of the
dam. The dam is to be 40 yd high.

Figure 12-10b

6.  Your first project is to analyze the forces that
the water will exert on the vertical back face of
the dam when the lake is full (that is, 40 yd
deep). Assume the water density, k, is in
pounds per cubic yard.
a.  Write an equation for the pressure in terms

of y.
b.  Find the area of the dam’s back face.
c.  Find the force exerted by the water on the

back face of the dam.
d.  Find the first moment of this force with

respect to the x-axis.
e.  Find the center of pressure. This is the point

on the back face at which the entire force
could be concentrated to produce the same
first moment with respect to the x-axis.

7.  Your next project is to determine some of the
physical characteristics of the dam itself.
a.  Find a linear equation expressing the

thickness of the dam, z, in terms of its
altitude, y.

b.  At what y-value will the dam’s horizontal
cross-sectional area be a maximum? A
minimum?

c.  A cement mixer truck holds 5 yd3 of
concrete. How many truckloads of concrete
should you order when it is time to pour the
dam?

d.  Find the length of the joint between the
dam’s back face and the sides of the gulch.

8.  The dam is finished. A speedboat on the lake
behind the dam moves with vector equation

where distances are in feet. How fast is the
boat going when t = 50 s?

9.  The waves from the boat displace the water’s
surface according to the equation z = (sin t)/t.
The average displacement over the time
interval [0, t] involves the sine integral
function,

Write Si t as a power series. Use the ratio
technique to determine the interval of
convergence. Estimate the error in calculating
Si 0.6 using just the first three nonzero terms
of the series. Calculate Si 0.6 by numerical
integration on your grapher.

10.  The drain in the dam has a cross section in the
shape of the polar curve r = 5 + 4 cos , where
r is in feet. Find the area of the drain’s cross
section.

11.  At time t = 0 h, the drain is opened. Initially
water flows out at 5 million gal/h, but the rate
is directly proportional to the amount of water
remaining. There were 300 million gal of water
behind the dam at t = 0. Predict the amount
remaining at t = 10.

Cumulative Review No. 2—
The Ship Problem

After graduation you apply for work at Sinkin Ship
Construction Company. Mr. Sinkin gives you the
following preliminary test to see how much calculus
you know.

1.  Define derivative.
2.  Define definite integral.
3.  State the mean value theorem.
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8.  Write the Maclaurin series for  dx.

9.  Find the open interval of convergence for this
series.

7.  Integrate:  dx

10.  Evaluate the improper integral  x–0.998 dx.

11.  Find the average value of y = x2 on the
interval [3, 9].

12.  Let f(x) = x2. If  = 0.01, is this small enough to
keep f(x) within 0.08 unit of f(4) when x is
within  units of 4? Justify your answer.

Mr. Sinkin is satisfied with your work on these
questions and assigns you to the design team for a
new ship. The hull of this ship is shown in
Figure 12-10c.

Figure 12-10c

13.  The volume of the ship equals the
cross-sectional area times the length. At the
forward end of the ship, the cross-sectional
area varies with x, the distance from the bow.
Write an integral for the volume of the part of
the ship from x = 2 to x = 10. Then evaluate
the integral, approximately, by Simpson’s rule
given the cross-sectional areas shown in the
table. Dimensions are in feet and square feet.

 x Area

2 153
4 217
6 285
8 319

10 343

14.  The propeller will have four blades in the
shape of the four-leaved rose r = 4 sin 2 ,
where r is in feet. Find the area of one blade.

15.  At the stern of the ship, the deck has a shape
similar to the region bounded by the ellipse

between x = 1 and x = 5. Find the area of this
region.

Your next project is to analyze a vertical bulkhead
(a wall) that goes across the ship. The bulkhead has
the shape of the region that lies above the graph of
 y = 0.0016x4 and below the line y = 16.

16.  Find the area of the bulkhead.
17.  The welders who will install the bulkhead

need to know the length of the graph of
 y = 0.0016x4 that forms the edge of the
bulkhead. Find this length.

18.  The bulkhead must be strong enough to
withstand the force of the water if the
compartment on one side of the bulkhead
becomes flooded. Recall that force equals
pressure times area and that the pressure at
any point below the water’s surface is
proportional to that point’s distance from the
surface. The proportionality constant is
62.4 lb/ft3, the density of water. Find to the
nearest 100 lb the force exerted by the water.

A vertical keel is to extend below the bottom of the
ship. When turned upside down, the keel is similar
in shape to the region under the graph of
 y = (ln x)/x for x  1.

19.  Find the limit of y as x approaches infinity.
20.  Find the x-coordinate of the maximum of the

function. Justify your answer.

21.  Find the x-coordinate(s) of all points of
inflection of the graph.

22.  Sketch the graph, consistent with your answers
above.

The radar equipment needs values of natural
logarithms to 20 decimal places.

23.  Show that the Taylor series for ln x expanded
about x = 1 converges for 0 < x  2.

= 1



24.  How many terms of the series do you need to
calculate ln 1.4 to 20 decimal places?

Your last project is analysis of the motion of the ship.

25.  In linear motion the velocity of the ship is
given by a differential equation with a slope
field as shown in Figure 12-10d. Describe how
the velocity would change if the ship started
from v = 0 ft/s at t = 0 min. How would the
velocity differ if somehow the ship were given
an initial velocity of 50 ft/s?

Figure 12-10d

26.  In a sharp turn, the position vector of the ship
is given by  Find the
acceleration vector.

Cumulative Review No. 3—
Routine Problems

Calculus involves four fundamental concepts. In
Problems 1–4, demonstrate that you understand
these concepts.

1.  Demonstrate that you understand the
definition of limit by sketching the graph of a
function that has a limit L as x approaches c
and showing an epsilon neighborhood of L and
a corresponding delta neighborhood of c that
is clearly smaller than is necessary.

2.  Write the formal definition of derivative. Then
give a graphical and a physical meaning of the
derivative.

3.  Write the definition of  f(x) dx.

4.  Write the definition of f(x) dt.

You don’t use the definition of limit to find limits,
so other techniques are developed.

5.  There is a technique for finding interesting
limits of the form 0/0 or / . Name this
technique, and use it to evaluate

The definition of derivative is awkward to use, so
you develop shortcuts.

that allows you to differentiate such composite
functions.

7.  Products and powers can be differentiated
logarithmically. Find  if

 y = (5x – 3)(2x + 7)4(x – 9)
8.  Formulas for derivatives of inverse circular

functions are found by implicit differentiation.
Do this for the inverse tangent function.

In Problems 9–12, you will demonstrate your
knowledge of certain basic techniques and when to
use them. Integrate.

9.  10.  

11.  12.  

Definite integrals are hard to evaluate using the
definition. Fortunately, there is a theorem relating
definite integrals to indefinite ones.

13.  Name and state the theorem that relates
definite and indefinite integrals.

14.  The mean value theorem plays a key role
in the proof of the theorem in Problem 13.
Demonstrate that you understand the mean
value theorem by sketching an appropriate
graph.

You can apply the techniques of calculus to
problems in the real and mathematical worlds.

15.  If f(x) = h(t) dt, find (x).

16.  Given f(x) = xe–x for x  0, find the
x-coordinates of all points of inflection.
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x = 0 to x = 2.

18.  The integral  x–3/4dx is improper.
a.  Show that the integral converges.

erf x = 2 –1/2 dt

17.  Find the length of the graph of y = sin x from

b.  Use the result to find the average value of
 y = x–3/4 from x = 0 to x = 16.

19.  Find the area of the region inside the circle
with polar equation r = 10 cos  from  = 0.5
to  = 1.

20.  A particle travels in the xy-plane in such a way
that its position vector is

At time t = 1, what is its velocity vector? How
fast is it going? Is the particle’s distance from
the origin increasing or decreasing? At what
rate?

21.  The region in Quadrant I bounded by the
coordinate axes and the graph of y = cos x is
rotated about the y-axis to form a solid. Find
its volume.

22.  A rectangle in the first quadrant has one
corner at the origin and the diagonally
opposite corner on the line y = –1.5x + 6.

a.  Show that the rectangle has maximum area
when x = 2.

b.  If the rectangle and line are rotated about
the y-axis to form a cylinder inscribed in a
cone, show that a different value of x
produces the maximum-volume cylinder.

23.  The crew’s compartment in a spaceship has an
irregular shape due to all the equipment in it.
Cross sections at various distances from the
bottom of the compartment have areas as
follows (in feet and square feet):

Distance Area

3 51
5 37
7 41
9 63

11 59

Use Simpson’s rule to estimate the volume of
the crew’s compartment between 3 and 11 ft.

24.  The error function, used in curving grades, is
defined by

a.  Write the first few terms of the Maclaurin
series for the integral in erf x.

b.  Use the ratio technique to prove that the
series for erf x converges for all values of x.
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This section contains an examination that you can consider to be a dress
rehearsal for the exam your instructor will give you. Make the rehearsal as
realistic as possible by putting yourself under simulated test conditions and
giving yourself a two-hour time limit. No answers are provided in the back of
the book.

(x) and one for (c), where c is a particular value of x.

Final Examination

Calculus involves two basic concepts:
a.  Instantaneous rates of change
b.  Products in which one factor’s value depends on the other factor

Both of these are based on the underlying concept of limit. They are linked by
the fundamental theorem, which allows you to calculate limits of Riemann sums
by using antiderivatives. On this test it is your objective to answer the questions
in a way that demonstrates that you understand these concepts and their
relationships.

A Guided Tour Through Calculus
1.  The first problem you encountered in this book involved finding the

instantaneous rate of change of a function at a given point. Find the
approximate derivative of f(x) = sin x at x = 1 by determining how much
sin 1 differs from sin 1.1, sin 1.01, and sin 1.001, and doing the appropriate
division.

2.  Later, you found techniques for calculating derivatives exactly. Find (1) if
 f(x) = sin x. Show that the three approximate values of (1) you calculated
in Problem 1 are converging toward the value of (1) you calculated in this
problem.

3.  The intuitive idea of instantaneous rate of change is made precise by a
formal definition of derivative. Write both forms of this definition, one for

4.  The definition of derivative in Problem 3 involves the concept of limit. The
limit of f(x) as x approaches c is the number you can keep f(x) close to
simply by keeping x close enough to c. Suppose that f(x) = ex. What does
the limit of f(x) equal as x approaches 2? How close would you have to keep
x to 2 for f(x) to be within 0.1 unit of this limit?

5.  The intuitive idea of closeness is made precise in the formal definition of
limit. Write this definition.

6.  The quantities epsilon and delta from the definition of limit appear in
Problem 4. Which one is epsilon, and which is delta?

7.  Your intuitive introduction to variable-factor products came from the
distance = rate × time equation. Draw an appropriate graph showing that
if the rate is constant, you can represent the distance as the area of
a rectangle.



8.  If the rate varies, you can still represent the distance as the area of the
region under a graph. Suppose you have measured the rates shown in the
table at the given times. Plot the graph of rate versus time. Find the
distance traveled between 1.0 and 2.8 by counting squares.

Time (s) Rate (m/s)

1.0 7
1.3 9
1.6 13
1.9 12
2.2 10
2.5 8
2.8 5

9.  More recently, you have learned ways to calculate definite integrals, such as
in Problem 8, without having to draw the graph and count. Find the
distance using Simpson’s rule. Show that it is approximately the same as
the distance you found by counting squares.

10.  In Problems 8 and 9, you knew no equation for rate in terms of time. If you
did know such an equation, there would be other ways to calculate the
distance. Suppose that v(t) = te–t. Find the distance traveled between t = 0
and t = 2 by calculating a Riemann sum with n = 5 increments, taking
sample points at the midpoint of each subinterval.

11.  You now know the fundamental theorem of calculus, which allows you to
calculate limits of Riemann sums exactly using antiderivatives. Find the
exact distance traveled in Problem 10. By what percentage does the
Riemann sum in Problem 10 differ from the exact value?

12.  State the fundamental theorem of calculus.
13.  The proof of the fundamental theorem relies on the mean value theorem.

Show that the mean value theorem does apply to f(x) = x2/3 on the inverval
[0, 1], in spite of f not being differentiable at x = 0. Calculate the point
x = c in the interval [0, 1] at which the conclusion of the mean value
theorem is true. Then plot the graph accurately, and show that the line
through (c, f(c)) with slope (c) really does satisfy the requirements of the
mean value theorem.

14.  To use the fundamental theorem, you must be reasonably good at finding
indefinite integrals. Write an integral that you can evaluate by the given
technique, and evaluate the integral.
a.  Partial fractions
b.  Trigonometric substitution

15.  Sometimes integration by parts results in the same integral appearing on
both sides of the equals sign. Show how you can handle this situation by
evaluating the integral for  sec3 x dx.

16.  In addition to their role in evaluating definite integrals, indefinite integrals
have applications in their own right. For instance, if you know how a
function changes, you can find an equation for the function itself. Suppose
the instantaneous rate of change of y with respect to x is directly
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is equal to its cross-sectional area times its height. Sketch the solid formed
by rotating about the y-axis the region in Quadrant I under the graph of
 y = 4 – x2. Then slice the height in such a way that the cross-sectional area
is (essentially) constant at any point in the slice.

17.  Definite integrals arise from variable-factor products. The volume of a solid

express y in terms of x.

foeride from 100° to 900° C?

Si x =  du

proportional to y. Write the appropriate differential equation and solve it to

18.  Sketch the solid in Problem 17 again, and draw a slice using cylindrical
shells. Show that this method slices the cross-sectional area so that the
height is (essentially) constant at any point in the slice.

19.  Recall that the moment of a quantity is the magnitude of that quantity
times a distance from a reference point, line, or plane. Find the first
moment of area of the region in Problem 17 with respect to the y-axis. Use
the result to find the x-coordinate of the centroid of the region.

20.  Once you understand the concept of variable-factor products, you can
analyze any such problem, even when the quantities are unfamiliar. For
instance, the number of calories needed to warm a substance from
temperature T1 to temperature T2 equals the substance’s heat capacity (in
calories per degree) times the change in temperature, T2 – T1.
Unfortunately, most real substances have heat capacities that vary with
temperature. Assume that calculus foeride (a rare, tough substance!) has a
heat capacity given by

C = 10 + 0.3T1/2

where heat capacity, C, is in calories per degree and temperature, T, is in
degrees Celsius. How many calories would you need to warm the calculus

21.  You can apply definite integrals to the mathematical world. For instance,
you might define a function as a definite integral. The sine-integral
function is defined as

a. Write an equation for Si′ x.

b. Expand the integrand as a Maclaurin series, then integrate to get a
series for Si x.

c. Evaluate Si 0.7 approximately, using the first two nonzero terms of the
series.

d. Find an upper bound for the tail of the series that is left after the first
two terms. Based on this result, how many decimal places can you
guarantee that your answer in part c is correct?

e. Prove that the series for Si x converges for all values of x.

22.  You can use parametric equations to apply calculus to vector functions.
Suppose an object is moving in such a way that its position vector, , is
given by



Plot accurately the path of the object from t = 0 to t = 1. Show the location
of the object when t = 0.5. Calculate the velocity and acceleration vectors
when t = 0.5. Plot these two vectors with their tails at the object. Is the
object speeding up or slowing down? Explain.

23.  You can apply calculus to figures in polar coordinates. Figure FE-1 shows
the polar graph of

r = cos 

from  = 0 to  = /2. Slicing the region as shown gives a wedge of
angle d . Any point on the graph that is within the angle d  has
(essentially) the same radius as at the sample point. The area of the wedge
is approximately equal to the area of a sector of a circle of radius r. The
sector, of course, is d /(2 ) of the area of a circle of radius r. Use this
information to find dA, the area of the wedge, in terms of . Then find the
area from  = 0 to  = /6 by adding the dA’s and taking the limit as d
approaches 0 (that is, definite integrating).

d (r,  )

r

Figure FE-1
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Summary of Properties of
Trigonometric Functions
1.  Reciprocal

cot x =  or  tan x cot x = 1

sec x =  or  cos x sec x = 1

csc x =  or  sin x csc x = 1

2.  Quotient

tan x = 

cot x = 

3.  Pythagorean
cos2 x + sin2x = 1
1+ tan2 x = sec2x
cot2 x + 1 = csc2x

4.  Odd-Even

sin (–x) = – sin x     (odd)
cos (–x) = cos x      (even)
tan (–x) = – tan x    (odd)
cot (–x) = – cot x    (odd)
sec (–x) = sec x      (even)
csc (–x) = – csc x   (odd)

5.  Cofunction

cos (90° – ) = sin ;   cos  = sin x

cot (90° – ) = tan ;   cot  = tan x

csc (90° – ) = sec ;   csc  = sec x

6.  Composite-Argument

cos (A – B) = cos A cos B + sin A sin B
cos (A + B) = cos A cos B – sin A sin B
sin  (A – B) = sin A cos B + cos A sin B
sin  (A + B) = sin A cos B – cos A sin B

tan(A – B) = 

tan(A + B) = 

7.  Double-Argument
sin 2x = 2 sin x cos x

cos 2x = cos2 x – sin2 x
= 1 – 2 sin2 x
= 2 cos2 x – 1

tan 2x = 

cos2 x = (1 + cos 2x)

sin2 x = (1 – cos 2x)

8.  Half-Argument

9.  Sum and Product
2 cos A cos B = cos(A + B) + cos(A – B)
2 sin A sin B = –cos(A + B) + cos(A – B)
2 sin A cos B = sin(A + B) + sin(A – B)
2 cos A sin B = sin(A + B) – sin(A – B)
cos x + cos y = 2 cos (x + y) cos (x – y)

cos x – cos y = –2 sin (x + y) sin (x – y)

sin x + sin y = 2 sin (x + y) cos (x – y)

sin x – sin y = 2 cos (x + y) sin (x – y)

10.  Linear Combination of Sine and Cosine
A cos x + B sin x = C cos(x – D),
where C =  and D = arctan .



Answers to Selected Problems

CHAPTER 1

Problem Set 1-1
1.  a.  95 cm

b.  From 5 to 5.1: average rate  26.34 cm/s
     From 5 to 5.01: average rate  27.12 cm/s
     From 5 to 5.001: average rate  27.20 cm/s
     The instantaneous rate of change of d at t = 5 is
     approximately 27.20 cm/s.
c.  Instantaneous rate would involve division by
     zero

d.  For t = 1.5 to 1.501, rate  –31.42 cm/s. The
     pendulum is approaching the wall: The rate of 
     change is negative, so the distance is decreasing.
e.  The instantaneous rate of change is the limit of
     the average rates as the time interval approaches 
     zero. It is called the derivative.

f.  Before t = 0, the pendulum was not yet moving.
     For large values of t, the pendulum’s motion will 
     die out because of friction.

Problem Set 1-2
1.  a.  Increasing slowly

b.  Increasing fast

3.  a.  Decreasing fast
b.  Decreasing slowly

5.  a.  Increasing fast
b.  Increasing slowly
c.  Decreasing slowly
d.  Increasing fast

7.  a.  Increasing slowly
b.  Increasing slowly
c.  Increasing slowly

9.  a.  Increasing fast
b.  Neither increasing nor decreasing
c.  Increasing fast
d.  Increasing slowly

11.  a.

x = 40: rate  1.1 °/s
x = 100: rate = 0°/s
x = 140: rate  – 0.8° /s

b.  Between 0 and 80 s the water is warming up, but
     at a decreasing rate. 
     Between 80 and 120 s the water is boiling, thus 
     staying at a constant temperature. 
     Beyond 120 s the water is cooling down, rapidly at 
     first, then more slowly.

13.  a.

Increasing at x = 3
Decreasing at x = 7

b.  h(3) = 17, h(3.1) = 17.19
     Average rate = 1.9 ft/s
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c.  From 3 to 3.01: average rate = 1.99 ft/s
     From 3 to 3.001: average rate = 1.999 ft/s
     The limit appears to be 2 ft/s.
d.  The derivative at x = 7 appears to be –6 ft/s.
     The derivative is negative because h(x) is 
     decreasing at x = 7.

15.  a.  Average rate = 529.902... bacteria/h

r(2) is undefined.

c.  The difference between the derivative and r(2.01)
     is 0.04789... . 
     Keep t within 0.002 unit of 2 to keep the average 
     rate within 0.01 unit of the derivative.

17.  a.  i.  –1.0 in./s   ii.  0.0 in./s   iii.   1.15 in./s
b.  1.7 s because y = 0 at that time

19.  a.  Quadratic (or polynomial)
b.  Increasing, because the rate of change from 2.99
     to 3.01 is positive.

21.  a.  Exponential
b.  Increasing, because the rate of change from 1.99
     to 2.01 is positive. 

23.  a.  Rational algebraic
b.  Decreasing, because the rate of change from 3.99
     to 4.01 is negative.

25.  a.  Linear (or polynomial)
b.  Decreasing, because the rate of change from 4.99
     to 5.01 is negative.

27.  a.  Circular (or trigonometric)
b.  Decreasing, because the rate of change from 1.99
     to 2.01 is negative.

29.  Physical meaning of a derivative: instantaneous rate
       of change 
       To estimate a derivative graphically: Draw a tangent 
       line at the point on the graph and measure its slope. 
       To estimate a derivative numerically: Take a small 
       change in x, find the corresponding change in f(x), 
       then divide. Repeat, using a smaller change in x. See
       what number these average rates approach as the 
       change in x approaches zero. 
       The numerical method illustrates the fact that the
       derivative is a limit.

Problem Set 1-3
1.  a.  Approximately 30.8

b.  Approximately 41.8

3.  a.  Approximately 2.0
b.  Approximately 1.0

5.  Distance  680 ft
7.  Derivative = 3.42...

9.  a.

The range is 0  y  32.5660... .
b.  8.6967... s

c.  Distance  150 ft; the concept used is the definite

d.  About 3.1 (ft/s)/s; the concept used is the
     derivative. The rate of change of velocity is 
     acceleration.

11.  About 7.1 cm

13.  See the text for the meaning of definite integral.

Problem Set 1-4

1.  a.

b.  Integral  281,000 ft

c.  The units are (ft/s)(s), which equals feet, so the
     integral represents the distance the spaceship has 
     traveled.
d.  Yes, it will be going fast enough because
     v(30)  27 ,000.

3.  Distance  396 ft; the plane is not in danger of
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b.  r(t) = 

     integral.

The sum overestimates the integral because the
     trapezoids are circumscribed about the region and
     thus include more area.

     running off the deck.



5.  Answers will vary.

7.  a.

b.  T10 = 18.8955

9.  Area  13,808.38... cm2 

11.  n = 10: integral  21.045

13.  If the trapezoids are inscribed (graph concave down),
       the rule underestimates the integral. If the trapezoids 
       are circumscribed (graph concave up), the rule 
       overestimates the integral.

Concave down–inscribed
trapezoids underestimates integral.

Concave up–circumscribed
trapezoids overestimates integral.

Problem Set 1-5
1.  Answers will vary.

Problem Set 1-6
R1.  a.  Approximately 15.4 ft

b.  From 3.9 to 4: average rate  –40.1 ft/s

Instantaneous rate  –34.7 ft/s

c.  Instantaneous rate  70.8
d.  Going up at about 70.8 ft/s
e.  Derivative

R2.  a.  Physical meaning: instantaneous rate of change of
a function
Graphical meaning: slope of a tangent line to a 
function at a given point

c.  From 2 to 2.1: average rate = 43.6547...
     From 2 to 2.01: average rate = 40.5614... 
     From 2 to 2.001: average rate = 40.2683... 
     Differences between average rates and 
     instantaneous rate, respectively: 3.4187... , 
     0.3255..., 0.03239... 
     Yes; the derivative, the limit
d.  t = 2: 3.25 m/s
     t = 18: 8.75 m/s 
     t = 24: 11.5 m/s
     Her velocity stays constant from 6 s to 16 s.
     At t = 24, Mary is in her final sprint toward the 
     finish line.

R3.  Distance  23.2 ft (exact answer is 23.2422...); the

R4.  a.  The graph confirms Figure 1-6c.

b.  Integral  15.0 (exact answer is 15)
c.  T6 = 14.9375
     The trapezoidal sum underestimates the integral
     because the trapezoids are inscribed in the 
     region.
d.  T50 = 14.9991; difference = 0.0009
     T100 = 14.999775; difference = 0.000225 
     Yes; the limit

R5. Answers will vary.

CHAPTER 2
Problem Set 2-1

1.  a.  f(2) = 

No value for f (2) because of division by 0

c.  T10: 0.0045 unit from the exact answer
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b.  x = – 4: Decreasing fast
     x = 1: Increasing slowly 
     x = 3: Increasing fast 
     x = 5: Neither increasing nor decreasing

within 0.01 unit of 18.9 for all n  7.
Tn is getting closer to 18.9 as n increases, so Tn is
T7 = 18.8908... , which is 0.0091... unit from 18.9.
Tn is first within 0.01 unit of 18.9 when n = 7.
T50: 0.00018 unit from the exact answer
T20: 0.001125 unit from the exact answer

the trapezoids are inscribed in the region.
These values underestimate the integral because
T50 = 18.89982
T20 = 18.898875

     The estimate is too low because the trapezoids are
     inscribed within the ellipse. The exact area is
     4400  = 13,823.007... cm2.

       n = 100: integral  21.00045
       n = 1000: integral  21.0000045
       Conjecture: integral = 21
       The word is limit.

     From 4 to 4.1: average rate  –29.3 ft/s

The distance from the water is decreasing, so he is 
going down.

        definite integral



b.
x  f(x)

1.997 2.994
1.998 2.996
1.999 2.998
2 undefined
2.001 3.002
2.002 3.004
2.003 3.006

 f(x) stays close to 3 when x is kept close to 2, but
not equal to 2.

c.  To keep f(x) within 0.0001 unit of 3, keep x within
     0.00005 unit of 2. To keep f(x) within 0.00001 unit
     of 3, keep x within 0.000005 unit of 2. To keep
     f(x) arbitrarily close to 3, keep x within  that 
     distance of 2.
d.  The discontinuity can be “removed” by defining
      f(2) to equal 3.

3.

There is no limit because the graph cycles infinitely
as x approaches 3.

Problem Set 2-2

1.  See the text for the definition of limit .

3.  Has a limit, 3

5.  Has a limit, 3

7.  Has no limit

9.  Has a limit, 7

11.  Has no limit

13.  limx  3 f(x) = 5; for  = 0.5,   0.2, or 0.3

15.  limx  6  f(x) = 4; for  = 0.7,   0.5, or 0.6

17.  limx  5  f(x) = 2; for  = 0.3 ,   0.5, or 0.6

19.  a.  The graph should match Problem 13.
b.  limx  3  f(x) = 5

c.  Maximum  = – sin–1(– 0.25) = 0.25268...
d.  Maximum  = sin–1(  / 2)

21.  a.  The graph should match Problem 15.
b.  limx  6  f(x) = 4

c.  Maximum  = 1 – (2.3 / 3)3 = 0.5493...
d.  Maximum  = 1 – ((3 – ) / 3)3

23.  a.  The graph should match Problem 17.
b.  limx  5  f(x) = 2
c.  Maximum  =  = 0.54772...
d.  Maximum  = 

25.  a.  f(2) = 

The graph has a removable discontinuity at x = 2.
Limit = 22 – 6(2) + 13 = 5

b.  1.951191... < x < 2.051316...
       maximum  = 0.048808...
c.

27.  a.  m(t) = 

b.  The graph has a removable discontinuity at t = 4.
c.  Limit = 24 ft/s
d.  Keep t within 0.04 s of 4 s.
e.  The limit of the average velocity is the exact
     velocity.
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Problem Set 2-3

1.

limx  2   f(x) = 10 , limx  2 g(x) = 4, and limx  2 h(x) = 6

 limx  2   f(x) = limx  2 g(x) + limx  2 h(x), Q.E.D.

x  f(x)

1.97 9.9722...
1.98 9.9810...
1.99 9.9902...
2.00 10
2.01 10.0102...
2.02 10.0209...
2.03 10.0322...

All these f(x) values are close to 10.

3.

The limit is 7 because f(x) is always close to 7, no
matter what value x takes on. (It shouldn’t bother you 
that f(x) = 7 for x  3, if you think of the definition 
of limit for a while.)

5.

limx  1  y1 = 2 , limx  1  y2 = 1.5, and limx  1  y1 · y2 = 3

x  y3 = f(x)

0.997 2.9739...
0.998 2.9825...
0.999 2.9912...
1 3
1.001 3.0087...
1.002 3.0174...
1.003 3.0262...

All these f(x) values are close to 2(1.5) = 3.

7.  limx  3   f(x) = limx  3 x2 – 9x + 5

9.

r(–2) = 

r(x) =  = x – 6 , x  – 2

limx  –2  r(x) = – 8

Proof:
limx  –2  r(x) = limx  –2 (x – 6)

Because x  –2 
= lim x  –2 x + limx  –2 (–6)

11.

 f(–5) = 

 f(x) =  = x2 + 2x + 6 , x  5

limx  5  f(x) = 41

Proof:
limx  5  f(x) = limx  5 (x2 + 2x + 6)
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  limx  1  y1 · y2 = limx  1  y1 · limx  1  y2, Q.E.D.

     = lim x  3 x2 – limx  3 9x + limx  3 5
     Limit of a sum 
     = lim x  3 x · limx  3 x – 9 limx  3 x + 5

Limit of a sum 
= – 2 – 6 = – 8 , Q.E.D. 
Limit of x

Because x  5

     Limit of a product, Limit of a constant
     = (3)(3) – 9(3) + 5 = –13 
     Limit of x

= lim x  5 x2 + limx  5 (2x) + limx  5 6
Limit of a sum 

= lim x  5 x · limx  5 x + 2 limx  5 x + 6
Limit of a product, Limit of a constant 
= 5 · 5 + 2 · 5 + 6 = 41 , Q.E.D. 
Limit of x



13.

 f(– 1) = 

 f(x) =  = x2 – 5x + 3 , x 

–1limx  –1  f(x) = 9

Proof:

limx  –1  f(x) = limx  –1 (x2 – 5x +3) 

15.  f(x) = 

x  f(x)

4.990 40.8801...
4.991 40.8921...
4.992 40.9041...
4.993 40.9160...
4.994 40.9280...
4.995 40.9402...
4.996 40.9520...
4.997 40.9641...
4.998 40.9760...
4.999 40.9880...
5 undefined
5.001 41.0120...
5.002 41.0240...
5.003 41.0360...
5.004 41.0480...
5.005 41.0600...
5.006 41.0720...
5.007 41.0840...
5.008 41.0961...
5.009 41.1081...

The table shows that f(x) will be within 0.1 unit of
limx  5  f(x) = 41 if we keep x within 0.008 unit of 5.

17.  f(x) = 

You cannot find the limit by substituting into the
simplified form because the denominator still  
becomes zero.

19.  a.  5(0)1/2 = 0 = v(0)

b.  a(9)  0.8333101...

c.  a(9) = lim t  9  = lim t  9 

= lim t  9 

= lim t  9 

= , which agrees with the conjecture.

d.  The truck went about 127 ft.

21.  – 0.05994...

23.  Proof:
Anchor:

Problem Set 2-4

1.  a.  Has left and right limits
b.  Has no limit
c.  Discontinuous; has no limit

3.  a.  Has left and right limits
b.  Has a limit
c.  Continuous

5.  a.  Has no left and right limits
b.  Has no limit
c.  Discontinuous; no limit or f(2)
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5(1)1/2 = 5 = v(1)
5(4)1/2 = 10 = v(4)
5(9)1/2 = 15 = v(9)
5(16)1/2 = 20 = v(16)

Because x  – 1
= limx  –1 x2 + limx  –1 (– 5x) + limx  –1 3
Limit of a sum
= limx  –1 x · limx  –1 x – 5 limx  –1 x + 3
Limit of a product, Limit of a constant
= (–1)(–1) + (–5)(–1) + 3 = 9 , Q.E.D.
Limit of x

     Conjecture: a(9) = 0.8333... = 5/6
     Units of a(t): (mi/h)/s

If n = 1, limx  c x1 = c = c1 by the limit of x.
Induction Hypothesis:
Assume that the property is true for n = k.
 limx  c xk = ck

Verification for  n = k + 1:

limx  c xk + 1 = limx  c (xk · x) =
limx  c xk · limx  c x = ck · c = ck + 1

By the induction hypothesis
Conclusion:
 limx  c xn = cn for all integers n  1, Q.E.D.



 

7.  a.  Has left and right limits
b.  Has a limit
c.  Discontinuous; f(1)  limit

9.  a.  Has left and right limits
b.  Has a limit
c.  Discontinuous; no f(c)

11.  Answers will vary. 13.  Answers will vary.

15.  Answers will vary. 17.  Answers will vary.

19.  Answers will vary.

21.  Discontinuous at x = –3

23.  Discontinuous at x =  / 2 + n, where n is an integer

25.  Discontinuous because limx  2  f(x) = 2 and f(2) = 3

27.  Discontinuous because s(x) has no limit as x
       approaches 2 from the left (no real function values to
       the left of x = 2)

29.  Discontinuous because there is no value of h(2)

31.

c     f(c)
x  c–

lim  f ( x) lim  f(x) Continuous?

1 4 2 2 2 Removable
2 1 1 1 1 Continuous
4 5 5 2 None Step
5   None None None None Infinite

33.  a.

b.  limx  2 – d(x) = 3 , limx  2+ d(x) = 3;

continuous35.  a.

b.  limx  2 – m(x) = 9 , limx  2 + m(x) = 7; not continuous
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lim  f(x)
x  c+ x  c



 

37.  k = 2.5 39.  k = – 1 / 2

41.  a.  b – 1 = a
b.  a = – 1  b = 0

c.  For example, a = 1  b = 2.

43.  Let T ( ) = the number of seconds it takes to cross.

 45.  For any value of c, P(c) is determined by addition and
       multiplication. Because the set of real numbers is
       closed under multiplication and addition, P(c) will be
       a unique , real number for any real value x = c. P(c) is
       the limit  of P(x) as x approaches c by the properties
       of the limit of a product of functions (for powers
       of x), the limit of a constant times a function (for
       multiplication by the coefficients), and the limit of a
       sum (for the individual terms). Therefore, P is
       continuous for all values of x.

Problem Set 2-5
1.  limx  –   f(x) = ,     limx  – 3–   f(x) = – 4

limx  – 3+ f(x) = 3,   limx  1   f(x) = – 
limx  2   f(x) = 1,      limx  3–   f(x) = 
limx  3+ f(x) = 2,     limx     f(x) does not exist.

3. 5.

7.  a.

b.  limx  3+ f(x) = ,       limx  3 –   f(x) = – ,
limx  3 f(x), none,      limx    f(x) = 2,
limx  –   f(x) = 2

c.  x = 3   = 3.0102...

 x  f(x)

3.01 102
3.001 1002
3.0001 10002

All these values of f(x) are greater than 100.
limx  3+  f(x) =  means that  f(x) can be kept

d.  x = 1003

 x  f(x)

1004 2.00099...
1005 2.00099...
1006 2.00099...

All these are within 0.001 unit of 2. limx    f(x) = 2

9. a.
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means that you can keep f(x) arbitrarily close to 2
by making the value of x arbitrarily large. y = 2 is
a horizontal asymptote.

arbitrarily far from 0 just by keeping x close 
enough to 3 on the positive side. There is a vertical 
asymptote at x = 3.



b.  limx   r(x) = 2

c.  r(28) = 2.00968... , which is within 0.01 unit of 2.
     r(32) = 2.01723... , which is more than 0.01 unit 
      away from 2.

D = 1000

d.  The line y = 2 is an asymptote. Even though r(x)
     oscillates back and forth across this line, the limit 
     of r(x) is 2 as x approaches infinity, satisfying the 
     definition of an asymptote.
e.  The graph suggests that limx  0 r(x) = 3.

11.  The limit is infinite. y is unbounded as x approaches
       infinity. If there were a number E such that log x < E 
       for all x > 0, then you could let x = 102E  so that
       log x = log 102E = 2E, which is greater than E, which 
       was assumed to be an upper bound.

13.  a.  The definite integral is the product of the
            independent and the dependent variables. Because 
            distance = (rate)(time), the integral represents
            distance in this case.

b.  T9 = 17.8060052...
T45 = 17.9819616...
T90 = 17.9935649...
T450 = 17.9994175...

c.  The exact answer is 18. It is a limit because the
     sums can be made as close to it as you like just by
     making the number of trapezoids large enough 
     (and thus keeping their widths close to zero). The 
     sums are smaller than the integral because each 
     trapezoid is inscribed under the graph and thus
     leaves out a part of its respective strip of the 
     region.
d.  Tn is 0.01 unit from 18 when it equals 17.99. From

part a, this occurs between n = 45 and n = 90. By
experimentation,
T66 = 17.9897900...
T67 = 17.9900158...
Therefore, the approximation is within 0.01 unit of
18 for any value of n  67.

15.  Length = 100 sec x = 100/ cos x
x must be within 0.100167... radian of  / 2.

Problem Set 2-6
1.  The intermediate value theorem applies on [1, 4]

because f  is a polynomial function, and polynomial
functions are continuous for all x.

c  = 1.4349...

3.  a.  For 1  y < 2 or for 5 < y  8, the conclusion
would be true. But for 2  y  5, it would be false
because there are no values of x in [1, 5] that give
these values for f(x).

b.  The conclusion of the theorem is true because
every number y in [4, 6] is a value of g(x) for some
value of x in [1, 5].

5.  Let f(x) = x2.
 f  is a polynomial function, so it is continuous and
thus the intermediate value theorem applies. 
 f(1) = 1 and f(2) = 4, so there is a number c between 
1 and 2 such that f(c) = 3. 
By the definition of square root, c = , Q.E.D.

7.  The intermediate value theorem is called an existence
theorem because it tells you that a number such as

 exists. It does not tell you how to calculate that 
number.

9.  Let f(t ) = Jesse’s speed – Kay’s speed.
 f(1) = 20 – 15 = 5, which is  positive.
 f(3) = 17 – 19 = –2, which is negative.
The speeds are assumed to be continuous, so f  is
also continuous and the intermediate value theorem
applies. So there is a value of t between 1 and 3 for
which f(t) = 0, meaning that Jesse and Kay are going
at exactly the same speed at that time. The existence
of the time tells you neither what that time is nor
what the speed is.

11.  You must assume that the cosine function is
continuous.
c = cos –  1 0.6 =
0.9272...Take the inverse cosine of both sides of the equation.

13.  This means that a function graph has a high point
and a low point on any interval in which the function
is continuous.
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If the function is not continuous, there may be a
point missing where the maximum or minimum
would have been.

Another possibility would be a graph with a vertical
asymptote somewhere between a and b.

Problem Set 2-7
R0.  Answers will vary.

R1.  a.  f(3) = 

Indeterminate form

b.

At x = 3 there is a removable discontinuity.
c.  For 0.01, keep x within 0.0025 unit of 3.
     For 0.0001, keep x within 0.000025 unit of 3. 
     To keep f(x) within  unit of 7, keep x within   
     unit of 3.

R2.  a.  L = limx  c  f(x) if and only if
for any number  > 0, no matter how small
there is a number  > 0 such that 
if x is within  units of c but x  c,
then f(x) is within  units of L.

b.  limx  1  f(x) = 1
limx  2  f(x) does not exist.
limx  3  f(x) = 4
limx  4  f(x) does not exist.
limx  5  f(x) = 3

c.  limx  2  f(x) = 3
Maximum : 0.6 or 0.7

d.  The left side of x = 2 is the more restrictive.
Let 2 +  = 3 – 0.4 = 2.6.
Maximum : 0.64

e.  Let f(x) = 3 – .
2 +  = 3 – 
x = (1 –  )2 + 1
Let  = 2 – ((1 –  )2 + 1) = 1 – (1 – )2 , which is
positive for all positive  < 1.

R3.  a.  See the limit property statements in the text.
b.

The limit of a quotient property does not apply
because the limit of the denominator is 0.
g(x) = x2 – 10x + 2 , x  3
You can cancel the (x – 3) because the definition
of limit says, “but not equal to 3.”
limx  3 g(x) = limx  3 x2 + lim  x  3 (– 10x) + limx  3 2
Limit of a sum
= limx  3 x · limx  3 x – 10 limx  3 x + 2
Limit of a product, Limit of a constant times a
function, and Limit of a constant
= 3 · 3 – 10(3) + 2 = –19 
Limit of x

c.  limx  3   f(x) = 8 ,  limx  3 g(x) = 2
limx  3   f(x) · g(x) = 8 · 2 = 16

 x  p(x)

2.997 15.9907...
2.998 15.9938...
2.999 15.9969...
3 undefined
3.001 16.0030...
3.002 16.0061...
3.003 16.0092...

All these p(x) values are close to 16.

d.  For 5 s to 5.1 s: average velocity = – 15.5 m/s
Average velocity =  = –5(t – 2), for t  5
Instantaneous velocity = limit = – 5(5 – 2) 
= –15 m/s
The rate is negative, so the distance above the
starting point is getting smaller, which means the 
rock is going down. 
Instantaneous velocity is a derivative.
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R4.  a.  f  is continuous at x = c if and only if
1.  f(c) exists
2.  limx  c  f(x) exists
3.  limx  c  f(x) = f(c)
 f  is continuous on [a, b] if and only if f is
 continuous at every point in (a, b) and
limx  a+  f(x) = f(a) and limx  b–  f(x) = f(b).

b.
c     f(c)  

x  c–  x  c+  x  c
Continuous?

1   None    None None None     Infinite
2 1 3 3 3 Removable
3 5 2 5 None     Step
4 3 3 3 3 Continuous
5 1 1 1 1 Continuous

c. i. ii.

iii. iv.

v. vi.

vii.

d.

The left limit is 4 and the right limit is 2, so f  is
discontinuous at x = 2, Q.E.D. 
k = 12

R5.  a.  limx  4  f(x) =  means that f(x) can be kept
arbitrarily far from 0 on the positive side just by
keeping x close enough to 4, but not equal to 4.
limx    f(x) = 5 means that f(x) can be made to
stay arbitrarily close to 5 just by keeping x large
enough in the positive direction.

b.  limx  –   f(x) does not exist.
limx  –2  f(x) = 1
limx  2–  f(x) = 
limx  2+  f(x) = – 
limx    f(x) = 2

c.  x = 9.965
 x  f(x)

10 5.999023...
20 5.999999046...
30 5.99999999907...

All these f(x) values are within 0.001 of 6.

d. x = 10–3

 x  g(x)

0.0009 1.2345... · 106

0.0005 4,000,000
0.0001 1 · 10–8

All these g(x) values are larger than 1,000,000.

e.

n Trapezoidal Rule

50 467.9074...
100 467.9669...
200 467.9882...
400 467.9958...

The limit of these sums seems to be 468.
D = 223

R6.  a.  See the statement of the intermediate value
theorem in the text.
The basis is the completeness axiom. 
See the statement of the extreme value theorem in 
the text. 
The word is corollary.

b.  f(3) = 8, f(4) = – 4
The intermediate value theorem; the continuity
property
The value of x is 3.7553... .
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c.

 f(x) = x + 7 , x  4, so f(– 6) = 1 and  f(– 2) = 5
Pick y = 3, and there is no value of x. This fact
does not contradict the intermediate value
theorem. Function f does not meet the continuity
hypothesis of the theorem.

CHAPTER 3

Problem Set 3-1
1.  The graph is correct.
3.

5.  r(x) = x – 3, x  5
 (5) = 2

The derivative is the velocity of the spaceship,
in km/min.

7.  As you zoom in, the line and the graph appear to be
     the same.

Problem Set 3-2
1.  See the text for the definition of derivative.

3.  a.  (3) = 3.6
b.

c.  and d.

5.   (– 2) = 1

7.  (1) = – 4
9.  (3) = – 0.7

11.  (–1) = 0
13.  The derivative of a linear function equals the slope.
       The tangent line coincides with the graph of a linear
       function.

15.  a.  Find  (1) = 2, then plot a line through point
(1, f (1)) using  (1) as the slope. The line is
 y = 2x – 1.

b.  Near the point (1, 1), the tangent line and the curve
     appear nearly the same.

c.  The curve appears to get closer and closer to the
     line.
d.  Near point (1, 1) the curve looks linear.
e.  If a graph has local linearity, the graph near that
     point looks like the tangent line. Therefore, the 
     derivative at that point could be said to equal the
     slope of the graph at that point.

17.  a.

b.  Difference quotient is m(x) =  .

c.

 x  f(x)

2.997 667.66...
2.998 1001
2.999 2001
3.000 undefined
3.001 –1999
3.002 –999
3.003 –665.66...
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The difference quotients are all large positive
numbers on the left side of 3. On the right side
they are large negative numbers. For a derivative
to exist, the difference quotient must approach the
same number as x gets closer to 3.

19.  a.  (3) = –1, and the tangent line on the graph has a
slope of – 1.

b.

As the x-distance between the point and
3 decreases, the secant lines (solid) approach the 
tangent line (dashed).

c.  The same thing happens with secant lines from
     the left of x = 3. See the graph in part b.
d.

e.  A derivative is a limit. Because the left and right
     limits are unequal, there is no derivative at x = 3.
f.  Conjecture: The numbers are  and – .

Problem Set 3-3
1.  a.

b.  (x) is positive for – 2 < x < 2.
The graph of f is increasing for these x-values.

c.  f(x) is decreasing for x satisfying |x| > 2.
(x) < 0 for these values of x.

d.  Where the  graph crosses the x-axis, the f graph
has a high point or a low point.

e.  See the graph in part a.
f.  Conjecture:  is quadratic.

3.  a.

Conjecture: A seventh-degree function has a
sixth-degree function for its derivative.

c.  (x) = 0 for x = – 2, 1, 2.5
d.  If (x) = 0, the h graph has a high point or a low

point. This is reasonable because if (x) = 0, the
rate of change of h(x) is zero, which would happen
when the graph stops going up and starts going
down or vice versa.

e.  See the graph in part a.
5.  a.

b.  Amplitude = 1,  period = 2  = 6.283...
c.  The graph of  has amplitude 1 and period 2 .
d.

The graphs of f and g are the same shape, spaced
1 unit apart vertically. The graphs of  and are
identical! This is to be expected because the
shapes of the f and g graphs are the same.
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7. 9.

11.  (2.781...x ) = 2.781... x

13.  a.  143.7601  Area  144.2401
The area is within 0.2401 in.2 of the ideal.

b.  Keep the tile dimensions within 0.0008 in. of 12 in.
c.  The 0.02 in part b corresponds to  and the 0.0008
     corresponds to .

15.  a. (1) = 2
b.  Forward: 2.31

Backward: 1.71
Symmetric: 2.01
The symmetric difference quotient is closer to the 
actual because it is the average of the other two,
and the other two span the actual derivative.

c.  (0) = –1
d.  Forward: – 0.99

 Backward: – 0.99

17.  Answers will vary.

Problem Set 3-4

1.  (x) = 20x3

3.  dv/dt = – 0.581t –84

5.  (x) = 0
7.  dy/dx = 0.6x – 8

9.   (13 – x ) = – 1

11.  dy/dx = 2.3x1.3 – 10x –3 – 100
13.  dv/dx = 18x – 24

15.  (x) = 24x2 + 120x + 150
17.  (x) = x – 1
19.  (x) = limh  0 

= limh  0 (28x3 + 42x2 h + 28xh2 + 7h3 ) = 28x3

By formula, (x) = 7 · 4x3 = 28x3 .

21.  (t) = limh  0 

= limh  0  = limh  0 (20t + 10h – 5)

= 20t – 5
By formula, (t) = 10 · 2t – 5 = 20t – 5.

23.  Mae should realize that you differentiate functions,
       not values of functions. If you substitute a value for x

into f(x) = x4, you get f(3) = 34 = 81, which is a new
function, g(x) = 81. It is the derivative of g that
equals zero. 
Moral: Differentiate before you substitute for x.

25.

27.  a.

b.  The graph of  is shown dashed in part a.
c.  There appear to be only two graphs because the
     exact and the numerical derivative graphs almost
     coincide.
d.  f(3) = – 6.2

(3) = 3.8 (by formula)
(3)  3.8000004 (depending on grapher)

The two values of (3) are almost identical.

29.  Increasing by 9/4 y-units per x-unit at x = 4
31.  Decreasing by 1.5 y-units per x-unit at x = 9
33.

High and low points of the f graph are at the
x-intercepts of the  graph.
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35.  Proof:
(x) = limh  0 

= limh  0 

= limh  0         

= k · limh  0 

= k · (x), Q.E.D.
Dilating a function vertically by a factor of k results
in the new function g(x) = k f(x). What has been
shown is that

(k f(x)) = k  f ( x )

That is,  dilating a function vertically by a factor of k
dilates the derivative function vertically by a factor
of k.

37.  Proof:
 (x) = limh  0 

= limh  0 

= limh  0 

= nxn – 1 + 0 + 0 + · · · + 0
= nxn – 1, which is from the second term in the

binomial expansion of (x + h)n, Q.E.D.

39.  a.  f(x) = x3 – 5x2 + 5x
b.  g(x) = f(x) + 13 is also an answer to part a because

it has the same derivative as f(x). The derivative of
a constant is zero.

c.  The name antiderivative is chosen because it is an
inverse operation of taking the derivative.

d.   [g(x)] = [f(x) + C ] =  f(x) + C =  f(x)

The word indefinite is used because of the
unspecified constant C .

Problem Set 3-5

1.  v = 20t3 – 7.2t1.4 + 7
a = 60t2 – 10.08t0.4

3.  x = – t3 + 13t2 – 35t + 27
The object starts out at x = 27 ft when t = 0 s. It
moves to the left to x  0.16 ft when t  1.7 s. It 
turns there and goes to the right to x = 70 ft when 
t = 7 s. It turns there and speeds up, going to the left 
for all higher values of t.

5.  a.  v = – 3t2 + 26t – 35
a = – 6t + 26

b.  t = 1: v(1) = – 12 and a(1) = 20
So x is decreasing at 12 ft/s at t = 1, and the object
is slowing down at 20 (ft/s)/s because the velocity 
and acceleration are in opposite directions when 
t = 1. 
t = 6: v(6) = 13 and a(6) = – 10
So x is increasing at 13 ft/s at t = 6, and the object
is slowing down at 10 (ft/s)/s because the velocity 
and acceleration are in opposite directions when 
t = 6. 
t = 8: v(8) = – 19 and a(1) = – 22 
So x is decreasing at 19 ft/s at t = 8, and the object
is speeding up at 22 (ft/s)/s because the velocity 
and acceleration are in the same directions when
t = 8.

c.  At t = 7, x has a relative maximum. x is never
negative for t in [0, 9].

7.  a.

b.  Velocity is positive for 0  t < 15.
Calvin is going up the hill  for the first 15 s.

c.  At 15 s his car stopped, at a distance of 324 ft.
d.  He'll be back at the bottom when t = 33 s.
e.  The car runs out of gas 99 ft from the bottom.

9.  a.   ( t ) = 18 – 9.8t
 (1) = 18 – 9.8 = 8.2
 (3) = 18 – 9.8 · 3 = – 11.4
 is called velocity in physics.

b.  At t = 1 the football is going up at 8.2 m/s.
At t = 3 the football is going down at 11.4 m/s.
The ball is going up when the graph slopes up and
coming down when the graph slopes down.
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c.  (4) = –21.2, which suggests that the ball is going
down at 21.2 m/s. However, d(4) = – 6.4, which
reveals that the ball has gone underground. The
function gives meaningful answers in the real
world only if the domain of t is restricted to values
that make d(t) nonnegative.

11.

13.  The average rate is defined to be the change in the
dependent variable divided by the change in the
independent variable (such as total distance divided
by total time). Thus, the difference quotient is an 
average rate. The instantaneous rate is the limit of 
this average rate as the change in the independent
variable approaches zero.

15.   = 30x

17.   = 18 + 20x3

19.  (5) = 153.4979...
(10) = 247.2100...

These numbers represent the instantaneous rate of 
change of the amount of money in the account. The
second quantity is larger because the money is  
growing at a rate proportional to the amount of 
money in the account. Because there is more money 
after 10 years, the rate of increase should also be
larger. 

(5) = 14.6299...
(10) = 23.5616...

Both quantities are in units ($/yr)/yr. 
The quantities represent the instantaneous rate of
change of the instantaneous rate of change of the
amount of money in the account. For example, at 
t = 5 yr, the rate of increase of the account 
(153.50 $/yr) is increasing at a rate of 14.63 ($/yr)/yr.

 

21.

Conjecture: = cos (x)

Problem Set 3-6
1.

The graph confirms the conjecture.

5.  Conjecture: (x) = 0.7x –0.3 cos x0.7

The graph confirms the conjecture.

7.  a.  Inside: 3x; outside: sine
b.  Inside: sine; outside: cube
c.  Inside: cube; outside: sine
d.  Inside: cosine; outside: exponential
e.  Inside: tangent; outside: reciprocal
f.  Inside: secant; outside: logarithm

Problem Set 3-7
1.  a.  Let y = f(u), u = g(x).

b.   = (g(x)) · (x)

c.  To differentiate a composite function, differentiate
the outside function with respect to the inside
function, then multiply by the derivative of the 
inside function with respect to x.

3. (x) = – 3 sin 3x

5.  (x) = – 3x2 sin (x3)
7.   = –3 cos2 x sin x
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9.   = 6 sin5 x cos x

11.    = –18 cos 3x

13.  (cos 4 7 x ) = – 28 cos3 7 x sin 7 x

15.  (x) = 160 sin2/3 4x cos 4x

17.   (x) = 35(5x + 3)6

19.   = –72x2(4x3 – 7)–7

21.   = –200x cos99 (x2 + 3) sin (x2 + 3)

23.   = –100 cos 5x

25.  f(x) =  sin 5x + C

27.

The line has the equation y = – 0.5646...x + 5.8205... .

29.  a.  = 4 r 2 (cm3 /cm), or cm2

b.  r = 6t + 10

c.   = 6 cm/min

d.   = 38,400  cm3/min

dV/dr has units cm2 and dr/dt  has units cm/min,

so dV/dt  has units cm2 ·  , which becomes

cm3/min.

e.  V = (6t + 10)3

   = 24 (6t + 10)2

When t = 5,  = 38,400 .

Problem Set 3-8
1.  a.

 y(t) = 25 + 20 cos  (t – 3)

b.   (t ) = – 2  sin   (t – 3)

c.  y(t) is increasing at about 3.7 ft/s.
d.  The fastest that y(t) changes is 2 , or 6.28... ft/s

when the seat is 25 ft above the ground.

3.  a.  f(x) = 0.75 +  x

b.  g(x) = 0.25 +  x – 0.25 cos x

c.   (x) =  +  sin  x

 (9) = 0.1956... ft/ft
Going up at about 0.2 vertical foot per horizontal 
foot 

 (15) = – 0.0820... ft/ft 
Going down at about 0.08 vertical foot per
horizontal foot 
A positive derivative implies g(x) is getting larger
and thus the child is going down. A negative
derivative implies g(x) is getting smaller and thus 
the child is going down.

d.  The steepest upward slope is 0.2531... ft/ft, and
the steepest downward slope is – 0.1395... ft/ft.

5.  Answers will vary.
7.  a.

The limits are all equal to 4.

b.  f(x)  g(x), limx  1  f(x) = limx  1 g(x) = 4, and
 f(x)  h(x)  g(x) for all x in a neighborhood
of x = 1.

c. x  f(x) h(x)  g(x)

0.95 3.795 3.8 3.805
0.96 3.8368 3.84 3.8432
0.97 3.8782 3.88 3.8818
0.98 3.9192 3.92 3.9208
0.99 3.9598 3.96 3.9602
1.00 4 4 4
1.01 4.0398 4.04 4.0402
1.02 4.0792 4.08 4.0808
1.03 4.1182 4.12 4.1218
1.04 4.1568 4.16 4.1632
1.05 4.192 4.2 4.205

d.  From the table,  = 0.01 or 0.02 will work, but 0.03
is too large. All the values of h(x) are between the
corresponding values of f(x) and g(x), and the
three functions all approach 4 as a limit.

9.  a.  The numbers are correct.
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b.
x (sin x)/x

0.05 0.99958338541...
0.04 0.99973335466...
0.03 0.99985000674...
0.02 0.99993333466...
0.01 0.99998333341...

Values are getting closer to 1.
c.-e.  Answers will vary.

11.  See the proof in the text.

13.  a.  The limit seems to be 2.
b.

c.  See the graph in part b. The lines have the
equations g(x) = x + 1 and h(x) = 3 – x.

d.  Prove that limx  1 y  = 2.

Proof:
limx  1 (x + 1) = 1 + 1 = 2
limx  1 (3 – x) = 3 – 1 = 2
For x < 1, g(x)  y  h(x).
 the squeeze theorem applies, and

limx  1– y  = 2.
For x > 1, h(x)  y  g(x).
 the squeeze theorem applies, and

limx  1+ y  = 2.
Both left- and right-hand limits equal 2, so
limx  1 y  = 2, Q.E.D.

e.  The word envelope (a noun) is used because the
small window formed by the two lines "envelops"
(a verb) the graph of the function.

f.  As |x| becomes large, (x – 1) · sin 

=  takes on the form 

as the argument approaches zero. Thus the limit is
1, and y approaches 2 + 1, which equals 3.

Problem Set 3-9
1.  a.  (x) = 60e0.06x

 (1) = 63.7101... $/yr
 (10) = 109.3271... $/yr
 (20) = 199.2070... $/yr

b.  M(0) = $1000
M(1) = $1061.84
M(2) = $1127.50 
M(3) = $1197.22

No, the amount of money in the account does not
change by the same amount each year.

c.  APR for 0 to 1 year: 6.184%
APR for 1 to 2 years: 6.184%
APR for 2 to 3 years: 6.184% 
The APR is higher than the instantaneous rate. 
Savings institutions may prefer to advertise the
APR instead of the instantaneous rate because the
APR is higher.

3.  a.   ( p ) = 

b.  If the pressure is increasing, then the altitude is
decreasing. The altitude is changing at – 2.35

c.  The fact that |  (5)| > |  (10)| means that the
altitude is changing faster at 5 psi than it is at
10 psi.

d.  The pressure of air at sea level is 14.5975... psi.
The fact that A(p) is negative for all values of p
greater than 14.5975... means that if the air 
pressure is above 14.5975 psi,  then the plane must
be beneath sea level.

5.   (x) = 15e3x

7.  (x) = 4(sin x) ecos x

9.   = 8e4x cos (e4x )

11.   (x) = 10/x

13.   = 54/x

15.    = –15 tan 5x
17.    = 3x –0.5 cot x –0.5

19.   (x) = 1

21.   (x) = (ln 3)3x

23.   = –ln 1.6 sin x (1.6cos x)

25.   = –5/x2

27.     = 0.49e–0.7x

29.  f(x) = 6e 2x + C
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Problem Set 3-10

R0.  Answers will vary.
R1.  a.

Average Rate of
 x Change from 2 to x

1.97 = 11.82

1.98 = 11.88

1.99 = 11.94

2.01 = 12.06

2.02 = 12.12

2.03 = 12.18

The derivative of f at x = 2 is approximately 12.

b.  r(x) = 

r(2) is of the form .

limx  2 r(x) appears to be 12.

c.  r(x) = x2 + 2x + 4 if x  2
 limx  2 r(x) = 12

d.  The answers in parts a, b, and c are the same.

R2.  a. (c) = limx  c 

b.  (3) = limx  3  = 1.4

c.  m(x) = 

d.  Line: y = 1.4x + 1.4

e.  The line is tangent to the graph.
f.  Yes, f does have local linearity at x = 3. Zooming

in on the point (3, 5.6) shows that the graph looks
more and more like the line.

R3.  a.

b.  See the graph in part a.
c.  The y1 graph has a high point or a low point at

each x-value where the y2 graph is zero.
d.

Decreasing at about 2.69 psi/h when t = 3
Decreasing at about 1.96 psi/h when t = 6
Decreasing at about 3.69 psi/h when t = 0 
The units are psi/h. 
The sign of the pressure change is negative
because the pressure is decreasing. 
Yes, the rate of pressure change is getting closer
to zero.

R4.  a.  See the text for the definition of derivative.
b.  Differentiate.

c.  If  y = xn, then  = nxn–1.
d.  See the solution to Problem Set 3-4, Problem 35.
e.  See the proof in Section 3-4.
f.   is read “ dy , dx. ”

 (y) is read “ d, dx, of y.”

Both mean the derivative of y with respect to x.

g.  i.  ( x ) =  x4 /  5

ii.   ( x ) = –28 x–5 –  – 1
iii.   (x) = 0

h.   (32) = 201.6 exactly
The numerical derivative is equal to or very close
to 201.6.
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i.

R5.  a.  v = , or  (t)

a =  , or  (t); a =  , or  (t)

b.   means the second derivative of y with

respect to x.
 = 120x2

c.  f (x) = 3x4 + C
 f(x) is the antiderivative of f(x), or the indefinite
integral.

d.  The slope is – 1 at x = 1, 3 at x = 5, and 0 at x = –
1.

e.  i.  v = – 0.03t2 + 1.8t – 25
a = – 0.06t + 1.8

ii.  a(15) = 0.9 (km/s)/s
v(15) = – 4.75 km/s
The spaceship is slowing down at t = 15 because
the velocity and the acceleration have opposite
signs.

iii.   The spaceship is stopped at about 21.8 s and
38.2 s.

iv.  The spaceship touches the surface of Mars when
t = 50. The velocity at that time is – 10 km/s. It

R6.  a.

b.  The graph of the derivative is the same as the sine
graph, but inverted in the y-direction. Thus
(cos x)′ = –sin  x is confirmed.

c.  –sin 1 = – 0.841470984...
Numerical derivative  – 0.841470984

d.  Composite function
(x) = – 2x sin (x2)

R7.  a.   i.  

ii.  f(x) = g(h(x))  (x) = (h(x)) · (x)
iii.   The derivative of a composite function is the

derivative of the outside function with respect
to the inside function times the derivative of the
inside function with respect to x.

b.  See the derivation in the text. This derivation
constitutes a proof.

u must be nonzero throughout the interval.

c.  i.  f(x) = (x2 – 4)3

(x) = 3(x2 – 4)2 · 2x = 6x(x2 – 4)2

ii.  f(x) = x6 – 12x4 + 48x2 – 64
(x) = 6x5 – 48x3 + 96x

Expanding the answer to part i gives
(x)  = 6x5 – 48x3 + 96x.

d.  i.  (x) = – 3x2 sin x3

ii.  (x) = 5 cos 5x

iii.   (x) = – 6 sin x cos5 x
iv.  (x) = 0

e.  (x) = – 36 sin 3x
 f(x) = 4 sin 3x + C

f.  When the shark is 2 ft long, it weighs 4.8 lb and
gains about 2.88 lb/day.
When the shark is 10 ft long, it weighs 600 lb and
gains about 72 lb/day.
The chain rule allows you to calculate dW/dt  by
multiplying dW/dx by dx/dt.

R8.  a.  limx  0 [(sin x)/x] = 1

 x (sin x)/x

–0.05 0.99958338541...
–0.04 0.99973335466...
–0.03 0.99985000674...
–0.02 0.99993333466...
–0.01 0.99998333341...

0.00 undefined
0.01 0.99998333341...
0.02 0.99993333466...
0.03 0.99985000674...
0.04 0.99973335466...
0.05 0.99958338541...
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The two are very close!

 f(x) is the second derivative of f(x).
 f(x) is the antiderivative, or indefinite integral, of
 f(x).

is a crash landing!



      

The values of (sin x)/x approach 1 as x
approaches 0.

b.  See the statement of the squeeze theorem in the
     text. Squeeze (sin x)/x between cos x and sec x.
c.  See the proof in Section 3-8.
d.  cos x = sin ( /2 – x)

x = cos ( /2 – x)(– 1) = – sin x, Q.E.D.

e.  d(t) = 180 + 20 cos  t

( t ) = –  sin  t

At 2, t = 10: (10)  – 1.81 cm/s

R9.  a.  (0) = – 10
 (10) = – 3.6787...
 (20) = – 1.3533... 

 The rates are negative because the amount of
 medication in your body is decreasing.
 The half-life is 6.9314... h.
 After two half-lives have elapsed, 25% of the
 medicine remains in your body.

b.  i.  (x) = 10e2x

ii.  dy/dx = (ln 7)7x

iii.    [ln (cos x)] = – tan x

 iv.   = 

c.  f(x) = 4e3x

d.

 y1 = ex is the inverse of y2 = ln x, so y1 is a
reflection of y2  across the line y = x.

CHAPTER 4

Problem Set 4-1
  1.  (x) = – 3 sin x, (x) = 2 cos x

3. 

 q is the cotangent function.
  (2) = – 1.8141...
 q(x) is decreasing at x = 2. 

 (2)/ (2) = 3.2775...  (2)

5.

x = – 0.54466..., y = – 0.16618...
dy/dx    y/  x = 0.3051... 

Problem Set 4-2
1. (x) = 3x2 cos x – x3 sin x

3.  (x) = 1.5x0.5e2x + 2x1.5 e2x

5.  dy/dx = x6 (2x + 5)9 (34x + 35)
7.   = (1/x) sin 3x + 3 ln x cos 3x
9.  = (6x + 11)3(5x – 9)6 (330x+ 169)

11.   = 10x(x2 – 1)9(x2 + 1)14(5x2 – 1)
13.  (t) = 12 cos 3t cos 5t – 20 sin 3t sin 5t

15.    = –3 sin (3 sin x) cos x

17.  d2y/dx2 = –36e6x sin e6x – 36e12x cos e6x

19.    = 3x2(5x – 2)4 sin 6x + 20x3 (5x – 2)3 sin 6x +
6x3(5x – 2)4 cos 6x

21.  Proof:
 y = uvw = (uv)w
 = (uv) ′ w + (uv)  = ( v + u )w + (uv)

= vw + u w  + uv , Q.E.D.

23.   = 5x4 cos6 x sin 7x – 6x5 cos5 x sin x sin 7x +
7x5 cos6 x cos 7x

25.   = 4x3(ln x)5 sin x cos 2x + 5x3 (ln x)4 sin x cos 2x +
x4(ln x)5 cos x cos 2x – 2x4 (ln x)5 sin x sin 2x
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At 3, t = 15: (15)  – 2.09 cm/s
At 7, t = 35: (35)  1.05 cm/s
At the 2 and 3, the tip is going down, so the
distance from the floor is decreasing, which is
implied by the negative derivatives.
At the 7, the tip is going up, as implied by the 
positive derivative.

At t = 2,  =  = 0.3051... , which agrees

with the difference quotient. Also, from the graph in 
Problem 4, the slope of a line tangent to the graph at
the point where t = 2 would be positive and less than
1, which agrees with the value of 0.3051... for the
difference quotient.



      

27.  a.  v(t) = e–0.1t[– 0.3 cos ( t) – 3  sin ( t)]
b.  v(2) = 0.2456... , so there is not a high point at

t = 2. v(t) = 0 when t = 1.9898..., so there is a 

high point when t = 1.9898.
29.  Proof:

For any function, the chain rule gives
  f(– x) = (– x) (– 1) = – (– x).

For an odd function,   f(– x) =  (– f (x)) = – (x).
 – (– x) = – (x) or (– x) = (x),

and the derivative is an even function.
For an even function,   f(– x) =   f(x) = (x).
 – (– x) = (x) or (– x) = – (x),

and the derivative is an odd function, Q.E.D.
31.  Proof (by induction on n):

If n = 1, then f1(x) = x1, which implies that
 f1 ′ (x) = 1 = 1x0, which anchors the induction. Assume
that for some integer n = k > 1, fk ′ (x) = kxk – 1.
For n = k + 1, fk+ 1(x) = xk + 1 = (xk )(x). By
thederivative of a product property,

 fk + 1′ (x) = (xk)′ (x) + (xk)(x)′ = (xk) ′ (x) + xk.
Substituting for (xk)′ from the induction hypothesis,
 fk + 1′ (x) = (kxk – 1)(x) + xk = kxk + xk = (k + 1)xk =
(k + 1)x(k + 1)– 1, completing the induction.
  fn ′ (x) = nxn– 1 for all integers  1, Q.E.D.

33.  a.

b. (x) = 3x2 sin x + x3 cos x
The graph in part a is correct.

c.  The numerical derivative graph duplicates the
     algebraic derivative graph, as in part a, thus 
     showing that the algebraic derivative is correct.

35.  a.  

b.  At t = 4, dA/dt = 7.132... , so A is increasing.
At t = 5, dA/dt = – 4.949... , so A is decreasing.

Problem Set 4-3

1.  ( x ) = 

3.  ( x ) = 

5.   = 

7.   = 

9.  

11.  = 

13.  (60x –4/3) = – 80x–7/3

15.   ( x ) =  = –36x–4

17.   (x ) = 

19.  (x) =  = –x –2

21.  (x) = 150x2 (x3 – 1)4

23.  (x) = sec2 x (“T ” is for “tangent function.”)
25.   (x) = – csc x cot x (“C  ” is for “cosecant function.”)
27.  a.  v(1) = 500 mi/h

v(2) = 1000 mi/h
v(3) = 1000/0. No value for v(3).

b.  a(t) = 

a(1) = 250 (mi/h)/h
a(2) = 1000 (mi/h)/h 
a(3) = 1000/0. No value for a(3).

c.  Units are (mi/h)/h, or mi/h2.

d.  Range is 0  t < 1.585... .

29. (x) = 

(4) = 0.005917159...
For 4.1, the difference quotient gives 0.005827505... .
For 4.01, the difference quotient gives 0.005908070... . 
For 4.001, the difference quotient gives 0.005916249... . 
Difference quotients are approaching (4).

31.  Proof:
Let n = – p, where p is a positive integer.

 y = x– p = 

  =  because p is a positive

= –  = –pxp – 1 – 2p = –px – p – 1

Replacing – p with n gives  = nxn – 1, Q.E.D.
33.  Answers will vary.
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integer.



         

Problem Set 4-4
1.  (x) = 5 sec2 5x
3.   = 7x6 sec x7 tan x7

5.  (x) = –11e11x csc2(e11x)
7.  (x) = – cot x
9.  (d/dx)(y) = 20 tan4 4x sec2 4x

11.  (d/dx)(sec x tan x) = sec x tan2 x + sec3 x
13.   = sec2 x – csc2 x
15.   = sec x tan x

17.  = 

19.   = 3 sec2(sin 3x) · cos 3x
21.  (x) = 0
23.  (x) = 2x cos x2

25.  (x) = 2 sin x cos x

27.  d2y/dx2 = 2 sec2 x tan x

29.  y = cot x =  

 = 

=  = – csc2 x

or:

 y =  = (tan x)–1 

 = –1 · (tan x) –2 · sec2 x = – csc2 x
31.  a.  See the graph in part b.

b.  f(x) = tan x  (x) = sec2 x

The predicted graph should be close to the actual
one.

c.   = 3.42646416...

 1 = sec2 1 = (1/ cos 1)2 = 3.42551882...
The difference quotient is within 0.001 of the
actual value.

33.  a.  y / 10 = tan x  y = 10 tan x, Q.E.D.
b.  At x = 1, y is increasing at about 34.3 ft/radian,

which is 0.5978... ft/degree.
c.  At y = 535, y is increasing at about

28,632.5 ft/radian.
35.  a.  y = sin x + C

b.  y = –  cos 2x + C

c.  y =  tan 3x + C

d.  y = –  cot 4x + C

e.  y = 5 sec x + C

Problem Set 4-5
1.  See Figure 4-5d in the text.

3.  See Figure 4-5d in the text.
5.  The principal branch of the inverse cotangent

function goes from 0 to  so that the function will be
continuous.

7.  sin (sin–1 0.3) = 0.3
9.  y = sin–1 x  sin y = x  cos y ·  = 1 

 = , Q.E.D.

[Because sin y = (opposite leg)/(hypotenuse), put x
on the opposite leg and 1 on the hypotenuse.
Adjacent leg = , and
cos y = (adjacent)/(hypotenuse).]

11.  y = csc–1 x  csc y = x  – csc y cot y ·  
 = –  if x > 0

If x < 0, then y is in Quadrant IV. So both csc y and
cot y are negative, and thus their product is positive.

  = – , Q.E.D.

[Because csc y = (hypotenuse)/(opposite leg), put x
on the hypotenuse and 1 on the opposite leg. 
Adjacent leg = , and csc y = x and
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cot y = (adjacent)/(opposite).]



  

13.   = 

15.  = 

17.  = 

19.  = 

21.  (x) = 2 sin–1 x · 

23.   = sin–1 x. The surprise is that you now have seen
a formula for the antiderivative of the inverse sine
function.

25.  a.  tan  = x / 100, so  = tan–1 (x / 100), Q.E.D.

b.  

c.  The truck is going 104 ft/s  71 mi/h.
27.

Numerical Algebraic
 x Derivative* Derivative

–0.8 –1.666671... –1.666666...
–0.6 –1.250000... –1.25
–0.4 –1.091089... –1.091089...
–0.2 –1.020620... –1.020620...

0 –1.000000... –1
0.2 –1.020620... –1.020620...
0.4 –1.091089... –1.091089...
0.6 –1.250000... –1.25
0.8 –1.666671... –1.666666...

*The precise value for the numerical derivative

29.  a.  y = sin–1 x  sin y = x  cos y ·  = 1   
 = , Q.E.D.

b.  =  = 1.25

 =  = 1.25, Q.E.D.

c.  y = f –1(x)  f(y) = x  ( y) · (y) = 1   

( y) =     ( f –1(x)) = , Q.E.D.

d.  If f(x) = 10, then x = 2. So h(10) = 2.

Because h(x) = f –1(x) and (x) = 3x2 + 1,
(10) =  .

Problem Set 4-6
1.  Continuous

3.  Neither

5.  Neither

7.  Both

9.  Neither

11.  Continuous

13.  a.

b.  Equations will vary.

15.  a.

b.  Equations will vary.

17. 
a.

b.  Equations will vary.

19.  a.

b.  Equations will vary.
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will depend on the tolerance to which the
grapher is set.



21.  Continuous

23.  Both

25.  a = – 1.5, b = 2.5

27.  a = –0.5, b = 16

29.  a = 0.5671... , b = 1.7632...

31.  a.  a = – 3, b = – 1.25, c = 0, d = 0
b.  k = – 1.1875

33.  (x) = 

Taking the left and right limits gives
limx  2–  (x) = 2 · 2 = 4

Thus  f  is not differentiable at x = 2, even though the
right and left limits of (x) are equal to each other. 
The function must be continuous if it is to have a 
chance of being differentiable.

35.  a.  y = mx + b  = m, which is independent of x.

b.  y = ax2 + bx + c   = 2ax + b , which exists for

c.   y = 1/x = x –1   = –x–2, which exists for all

d.  y = x   = 1, which is independent of x.

e.  y = k   = 0, which is independent of x.

Problem Set 4-7

1.  
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secant 
slope 
becomes 
infinite

Using the definition of derivative, taking the limit
from the left, (x) = limx  2–  ,which is

infinite. The same thing happens from the right. As
this graph shows, the secant lines become vertical as
x approaches 2 from either side.

limx  2+  (x) = 2 · 2 = 4

             linear functions are differentiable for all x.
             linear functions are continuous for all x.

     all x by the closure axioms.
      quadratic functions are differentiable for all x.
      quadratic functions are continuous for all x.

     x  0 by closure and multiplicative inverse axioms.
      the reciprocal function is differentiable for all
     x  0.
      the reciprocal function is continuous for all
     x  0.

      the identity function is differentiable for all x. 
      the identity function is continuous for all x.

      constant functions are differentiable for all x. 
      constant functions are continuous for all x.



3.  a.
 t  x  y

–3 –1 –6
–2 0 –1
–1 1 2

0 2 3
1 3 2
2 4 –1
3 5 –6

b.

c.  If t = 1, dy/dx = – 2 and (x , y) = (3, 2).
     The line through the point (3, 2) with slope –2 is
     tangent to the graph. See part b.
d.  y = 3 – (x – 2)2

     This is the Cartesian equation of a parabola
     because only one of the variables is squared.

e.  By direct differentiation, dy/dx = – 2(x – 2).
     At (x , y) = (3, 2), dy/dx = – 2, which agrees with
     part c.

5.  a.  The grapher confirms the figure in the text.

b.  

c.  If t = /4,  (x , y ) = (3 /2, 5 /2) and
dy/dx = – 5/3.

The line is tangent to the graph.
d.  False. The line from (0, 0) to (2.1... , 3.5...) does not
     make an angle of 45° with the x-axis. (This shows 
     that the t in parametric functions is not the same
     as the  in polar coordinates.)
e.  The tangent line is horizontal at (0, 5) and (0, – 5).
     The tangent line is vertical at (3, 0) and (– 3, 0). See
     the graph in part c.

f.  (x / 3)2 + (y / 5)2 = 1, which is a standard form of
    the equation of an ellipse centered at the origin
    with x-radius 3 and y-radius 5.

7.  a.

b.  dy/dx = – cot t
c.  dy/dx = 0 if t = 0.5 , 1.5 , 2.5 , . . . .
     dy/dx is infinite if t = 0 , , 2 , . . . . 
     At a point where dy/dx is infinite, dx/dt  must be 
     0. Because this happens where
     t = /2 + n , dy/dx = 5 cos t = 0 at those points.

d.   = 1

e.  This is an equation of a circle centered at (6, 3)
with radius 5.
The 6 and 3 added in the original equations are the 
x- and y-coordinates of the center, respectively. 
The coefficients, 5, for cosine and sine in the 
original equations are the x- and y-radii,
respectively. Because the x- and y-radii are equal, 
the graph is a circle.

9.  a.  The grapher confirms the figure in the text.

b.  

c.  Cusps occur where both dx/dt  and dy/dt = 0.
A graphical solution shows that this occurs at
t = 0 , 2  / 3 , 4  / 3 , 2 , . . . . (A cusp could also 
occur if dx/dt  and dy/dt = 0, but, for this figure,
there is no such place.)

horizontal. At t = 2 /3, 4 /3, 8 /3, 10 /3, . . . , 
there appears to be a tangent line but not a 
horizontal one.
dy/dx approaches – 1.732... as t approaches 2 /3.

11.  a.  The grapher confirms the figure in the text.
b.  dx/dy = tan t
c.  At t = , dy/dt = tan  = 0.

The string will be pointing straight up from the
x-axis. The diagram shows that the tangent to the 
graph is horizontal at this point.
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dy/dx is
infinite
here

At t = 0, 2 , . . . , the tangent appears to be



13.  Answers will vary.

15.  a.  The grapher confirms the figure in the text.
b.

If n is an even number, the graph comes to
endpoints and retraces its path, making two
complete cycles as t goes from 0 to 2 .
If n is an odd number, the graph does not come to
endpoints. It makes one complete cycle as t goes
from 0 to 2 .

c.  i.

ii.

d.  If n = 1, the graph is a circle.

If n = 2, the graph is a parabola.

e.  Jules Lissajous (1822–1880) lived in France.
Nathaniel Bowditch (1773–1838) lived in
Massachusetts.

Problem Set 4-8

1.   = 

3.  = 

5.  = 

7.  = y0.5/x0.5

9.  = 

11.  = 

13.  = 

15.  = 

17.  = sec y

19.  = –sin y tan y

21.  = 

23.  = 

which is the answer obtained using the derivative of a
power formula, Q.E.D.

25.  a.  At (– 6, 8), (–6)2 + 82 = 100, which shows that
(– 6, 8) is on the graph, Q.E.D.

b.  dy/dx = – x/y. At (– 6, 8), dy/dx = 0.75.
A line at (– 6, 8) with slope 0.75 is tangent to the
graph, showing that the answer is reasonable.

c.  

At x = – 6, t = cos–1(– 0.6)

sin [cos–1(– 0.6)] = 0.8
  = 0.75 ,

which agrees with part b, Q.E.D.
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 = 



27.  a.  dy/dx = – x2/y2

At x = 0, dy/dx = 0, so the tangent line is
horizontal.
At x = 2, dy/dx = – 0.2732... , so the tangent line
has a small negative slope.
At x = 4, dy/dx is infinite, so the tangent line is
vertical.
These values are all consistent with the graph.

b.  dy/dx = – 1
c.  As x approaches infinity, dy/dx approaches – 1.
d.  The name comes from analogy with the equation

of a circle, such as x2 + y2 = 64.

Problem Set 4-9

1.  

 = 0.6366... mm/h when r = 3 mm.

 varies inversely with the radius.

3.  The length of the major axis is decreasing at
12/   cm/s.

5.  Let y = Milt’s distance from home plate and x = Milt’s
displacement from third base.

At x = 45,   –8.9 ft/s (exact: –4 ).

At x = 0,  = 0 ft/s, which is reasonable because

Milt is moving perpendicular to his line from home
plate.

7.  a.  Let L = length, W = width, and H = depth
(in meters).

b.  The depth is increasing at 0.02 m/s.
9.  a.  Let x = distance from the bottom of the ladder to

the wall, y = distance from the top of the ladder to
the floor, and v = velocity of the weight.

b.  v = –0.6123... ft/s (exact: – / 4)
c.  v  is infinite.

11.  a.  16.2  = 50.8938...  50.9 m3/h

b.  i.  =  = –0.1105...  – 0.11 m/h

   0.00807 radian/day

ii.  – 
c.  i.  

ii.  – 0.2 m3/h
iii.   – 0.4317...  – 0.43 m/h

13.  a.  Let  = angular velocity in radians per day.

b.  The period is 778.7422...  778.7 days.
The planets are at their closest position 779 days
later, on October 14, 2005 (or October 15 if the
planets were aligned later than about 6:11 a.m. 
back on August 27, 2003).

c.  D =  million miles
d.  Answers will vary depending on today’s date.
e.  No. The maximum occurs at   0.8505... , or

48.7...°.
f.

It is not a sinusoid.
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Problem Set 4-10

R0.  Answers will vary.
R1.  a.  x = g(t) = t3   (t) = 3t2

 (t)  (t) · (t), Q.E.D.

 y = h(t) = cos t  (t) = – sin t
 If f(t) = g(t) · h(t) = t3 cos t, then, for example,

(1) · (1) = 3(12) · (– sin 1) = – 2.5244... .
(1) = 0.7794... by numerical differentiation.

b.  If f(t) = g(t) / h(t) = t3/ cos t, then, for example,
(1) = 8.4349... by numerical differentiation. 
(1) / (1) = 3(12) / (– sin 1) = 3.5651... .

c.  y = cos t
x = t3  t = x1/3  y = cos (x1/3 )

At x = 1,  = – 0.280490... .

If x = 1, then t = 11/3 = 1.

  = – 0.280490... ,

which equals dy/dx, Q.E.D.

R2.  a.  If y = uv, then  = v + u .
b.  See the proof of the product formula in the text.
c.  i.  (x) = 7x6 ln 3x – x6

ii.  (x) = cos x cos 2x – 2 sin x sin 2x
iii.   (x) = 15(3x – 7)4 (5x + 2)2(8x – 5)

iv.  (x) = – e–x(x8) + 8e –xx7

d.  f(x) = (3x + 8)(4x + 7)
i. (x) = 3(4x + 7) + (3x + 8)(4) = 24x + 53
ii.  f(x) = 12x2 + 53x + 56

(x) = 24x + 53

R3.  a.  If y = u/v, then  = 

b.  See the proof of the quotient formula in the text.

c.  i. ( x ) = 

ii.   (x ) = 

iii.   (x) = – 1500x2(100x3 – 1) –6

d.  y = 1/x10

As a quotient:

=  

As a power:
 y = x–10  = –10x–11

e.  (x) = sec2 x
(1) = 3.4255...

f.  m(x) = 

 x m(x)

0.997 3.40959...
0.998 3.41488...
0.999 3.42019...
1 undefined
1.001 3.43086...
1.002 3.43622...
1.003 3.44160...

The values get closer to 3.4255... as x approaches
1 from either side, Q.E.D.

R4.  a.  i.  = 7 sec2 7x
ii.  = – 4x3 csc2 (x4 )
iii.   = ex sec ex tan ex

iv.  = – csc x cot x
b.  See the derivation in the text for x = sec2 x.
c.

The graph is always sloping upward, which is
connected to the fact that x equals the square
of a function and is thus always positive.

d.  (t) = 7 sec t tan t
 (1) = 20.17...
 (1.5) = 1395.44...
 (1.57) = 11038634.0... 

 There is an asymptote in the secant graph at 
 t =  / 2 = 1.57079... . As t gets closer to this value, 
 secant changes very rapidly!

R5.  a.  i.   = 

ii. 

iii.   (x) = 
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   (t)  (t) / (t), Q.E.D.



b.

(0) = , which agrees with the graph.

(1) = , which is infinite.

 The graph becomes vertical as x approaches 1
 from the negative side.

(2) is undefined because f(2) is not a real number.

R6.  a.  Differentiability implies continuity.
b.  i.

ii.

iii.   No such function

iv.

c.  i.

ii.  f is continuous at x = 1 because right and left
limits are both equal to 2, which equals f(1).

iii.   f is differentiable. Left and right limits of
(x) are both equal to 2, and f is continuous at

x = 2.
d.  a = 1, b = 0

R7.  a.  

b.  

Where the graph crosses the positive x-axis,
t = 0 , 2 , 4 , 6 , . . . . 
If t = 6 , then x = 6 and y = 0. 
 (6 , 0) is on the graph. 

If t = 6 , then dy/dx = 6 . 
So the graph is not vertical where it crosses the 
x-axis. It has a slope of 6  = 18.84... .

c.  x = 20 sin 

y = 25 + 20 cos 

R8.  a.  y = x8/5  y5 = x8  
5y4 = 8x7   = 

Using the power rule directly:

 y = x8/5   = 

b.  

c.  i.  At (2, 2), dy/dx = 2.
At (2, –2), dy/dx = – 2.
Lines at these points with these slopes are
tangent to the graph.

ii.  At (0, 0), dy/dx has the indeterminate form 0/0,
which is consistent with the cusp.

iii.   x = 4

R9.  The glass was moving 1.3 cm/s slower than Rover.

690 © 2005 Key Curriculum Press Answers to Selected Problems

When t = 0, dy/dt = 5.0832... , so the Ferris wheel
is going up at about 5.1 ft/s.
When t = 0, dx/dt = 3.6931... , so the Ferris wheel
is going right at about 3.7 ft/s.
dy/dx is first infinite at t = 8 s.



CHAPTER 5

Problem Set 5-1

1.  f(1000) = 24 $/ft
 f(4000) = 84 $/ft
 The price increases because it is harder and slower to
 drill at increasing depths.

3.  R6 = 143750, so the cost is about $143,750. R6 is
close to T6.

5.  g(x) = 20x + (0.000004)x3 + C
g(4000) – g(1000) = 144000, which is approximately

Problem Set 5-2
1.  y = 21.6x – 48.6

x = 3.1: Error = 0.11042
x = 3.001: Error = 0.0000108...
x = 2.999: Error = 0.0000107...

3.  a.  y = 2x – 1
The graph shows zoom by factor of 10.

Local linearity describes the property of the
function because if you keep x close to 1 (in the
“locality” of 1), the curved graph of the function 
looks like the straight graph of the tangent line.

b.  x  f(x)  y Error,  f(x) – y

0.97 0.9409 0.94 0.0009
0.98 0.9604 0.96 0.0004
0.99 0.9801 0.98 0.0001
1 1 1 0
1.01 1.0201 1.02 0.0001
1.02 1.0404 1.04 0.0004
1.03 1.0609 1.06 0.0009

The table shows that for x-values close to 1 (the
point of tangency), the tangent line is a close 
approximation to the function values.

5.  a.  Let A be the number of radians in  degrees.
By trigonometry, tan .
Because 1 radian is 180/   degrees,

, Q.E.D 

b. 

x = 0: d  = 0.5729... dx
x = 10: d  = 0.5672... dx 
x = 20: d  = 0.5509... dx

c.  The error is 0.1492...°, which is about 1.3%.
d.  0.5729... is approximately 0.5, so multiplying by it

is approximately equivalent to dividing by 2.
For a 20% grade: 10°; compared with the actual
angle of 11.309...°, an error of about 11.6%
For a 100% grade: 50°; compared with the actual
angle of 45°, an error of about 11.1%

7.  a.  0.8219... , or about 82 cents

b.  dm = 6000(0.05/365) e(0.05/365)t  dt
For t = 0 and dt = 1: dm = 0.8219... , the same as
part a
For t = 0 and dt = 30: dm = 24.6575...  $24.66

c.  t = 1: m = 0.8219... , almost exactly equal to dm
t = 30:  m = 24.7082... , about 5 cents higher
than dm
t = 60:  m = 49.5182... , about 20 cents higher 
than dm
As t increases, t dm is a less accurate
approximation for m.

9.  dy = 21x2 dx

11.  dy = 28x3(x4 + 1)6 dx
13.  dy = (6x + 5) dx

15.  dy = – 1.7e–1.7x dx
17.  dy = 3 cos 3x dx

19.  dy = 3 tan2 x sec2 x dx
21.  dy = (4 cos x – 4x sin x) dx

23.  dy = (x – 1/4) dx

25.  dy = 

27.  y = 5x4 + C
29.  y = – (1/4) cos 4x + C

31.  y = (2/7)(0.5x – 1)7 + C
33.  y = tan x + C

35.  y = 5x + C

37.  y = 2x3 + 5x2 – 4x + C

39.  y = (1/6) sin6 x + C

41.  a.  dy = 6(3x + 4)(2x – 5)2(5x – 1) dx
b.  dy = – 60.48
c.  y = – 60.0218...
d.  – 60.48 is close to – 60.0218... .
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the conjectured value of the definite integral! 
Another name for antiderivative is indefinite integral.

For t = 0 and dt = 60: dm = 49.3150...  $49.32



Problem Set 5-3

1.  

3.  

5.  sin x + C

7.  

9.  

11.  

13.  

15.  

17.  

19.  

21.  

23.  

25.  esec x + C
27.  tan x + C

29.  

31.  

33.  D(t ) = 40t + 

D(10) = 505.4092...  505 feet

35.  Proof:
Let h(x) =  f(x) dx +  g(x) dx.
By the derivative of a sum property,

(x) =  f(x) dx +  g(x) dx.
By the definition of indefinite integral applied twice
to the right side of the equation,

 (x) = f(x) + g(x).
By the definition of indefinite integral applied in the
other direction,
h(x) =   [ f(x) + g(x)] dx.
By the transitive property, then,
 [ f(x) + g(x)] dx =  f(x) dx +  g(x) dx, Q.E.D.

37.  a.  Integral  50.75
b.  Integral  50.9375
c.  As shown in Figures 5-3c and 5-3d, the Riemann

sum with six increments has smaller regions
included above the graph and smaller regions

excluded below the graph, so the Riemann sum
should be closer to the integral.

d.  Conjecture: The exact value is 51.
By the trapezoidal rule with n = 100, integral 
51.00045, which agrees with the conjecture.

e.  The object traveled 51 ft.
Average velocity = 17 ft/min

Problem Set 5-4
1.  R6 = 20.9375

3.  R8 = 23.97054...

5.  R5 = 0.958045...

7.  U4 = 1.16866... , M4 = 0.92270... , T4 = 0.95373... ,
L4= 0.73879...
  M4 and T4 are between L4 and U4 , Q.E.D.

9.   ln x dx is underestimated by the trapezoidal rule
and overestimated by the midpoint rule.

11.  a.  x = 1,  / 2, 2, 3, 4, and 6
b.  x = 0, 1, 3, 4, 3 /2, and 5
c.  U6 = 21.71134... , L6 = 14.53372...

13.  a.  The program should give the values listed in
the text.

b.  L100 = 20.77545 , L500 = 20.955018
Ln seems to be approaching 21.

c.  U100 = 21.22545, U500 = 21.045018
Un also seems to be approaching 21.
 f is integrable on [1, 4] if Ln and Un have the same
limit as n approaches infinity.

d.  The trapezoids are circumscribed around the
region under the graph and thus contain more
area (see figure on the left). For rectangles, the 
“triangular” part of the region that is left out has
more area than the “triangular” part that is
included because the “triangles” have equal bases
but unequal altitudes (see figure on the right).
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15.  To evaluate  dx, find an upper sum using the
sample points 

Problem Set 5-5
1.  See the text statement of the mean value theorem.

3.

c = 2
The tangent at x = 2 parallels the secant line.

5.

c = 0.69010...
The tangent at x = 0.69010... parallels the secant line.

7.

c = 0.86033...
The horizontal line at x = 0.86033... is tangent.

9.

[0, 6]
c = 3
The horizontal line at x = 3 is tangent.

11.  a.  $74, 357.52. Surprising!
b.  Average rate  1, 467.15 $/yr
c.  (0)  86.18 $/yr

(50)  6, 407.96 $/yr

d.  t   32.893... yr
This time is not halfway between 0 and 50.

13.  See Figure 5-5d.

15. 17.

19.  f(1) = –3  0
The conclusion is not true.

(2) = 0, but 2 is not in the interval (0, 1).

21.  f(2) = – 4  0
The conclusion is not true.

(2) = 0, but 2 is not in the open interval (0, 2).

23.  f(3) = – 3  0
The conclusion is true.

(2) = 0 and 2 is in the interval (0, 3).
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The average of these is 3,247.07 $/yr, which does
not equal the average in part b.



25.  f(0) does not exist.
The conclusion is not true.

(x) never equals 0.

27.  f is not differentiable at x = 3.
The conclusion is not true.

(x) never equals 0.

29.  g is discontinuous at x = 2. Thus, the hypotheses of
the mean value theorem are not met. The conclusion
is not true for [1, 3] because the tangent line would
have to contain (2, g(2)), as shown in the left figure.
The conclusion is true for (1, 5), because the slope of
the secant line is 1, and (x) = 1 at x = 3, which is in
the interval (1, 5). See the figure on the right.

31.  a.  f(x) = 

b.  f is continuous at x = 3 because the right and left
 limits both equal 6.
 f is not differentiable at x = 3 because the left
  limit of (x) is 1 and the right limit of (x) is 3.

c.  f is not differentiable at x = 3, which is in (1, 6).
The secant line has slope 11/5. The tangent line
has slope either 1 or 3, and thus is never 11/5.

d.  f is integrable on [1, 6]. The integral equals 41.5,
the sum of the areas of the two trapezoids shown
in the figure below.

33.  a.  The grapher graph agrees with Figure 5-5l.

b.  (x) = – 2x2 + 10x – 8  sin [2 (x – 5)] (5) = 0
Because the derivative at x = 5 is 0, the tangent
line at x = 5 is horizontal. This is consistent with 
x = 5 being a high point on the graph.

c.

 x m(x)  x m(x)

3.0 2 5.5 –16.5
3.5 6.8333... 6.0 –1
4.0 1 6.5 –6.833...
4.5 16.5 7.0 –2
5.0 undefined

The difference quotient is positive when x is less
than 5 and negative when x is greater than 5.

d.  In the proof of Rolle’s theorem, the left limit of the
 difference quotient was shown to be positive or
 zero and the right limit was shown to be negative
 or zero. The unmentioned hypothesis is 
 differentiability on the interval (a, b). The function
 f is differentiable. There is a value of (5), so both
 the left and right limits of the difference quotient 
 must be equal. This number can only be zero, 
 which establishes the conclusion of the theorem.
 The conclusion of Rolle’s theorem can be true 
 even if the hypotheses aren’t met. For instance,
 f(x) = 2 + cos x has zero derivatives every  units

35.  The hypotheses of the mean value theorem state that
 f should be differentiable in the open interval (a, b)
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 of x, although  f(x) is never equal to zero.



and continuous at x = a and x = b. If  f is
differentiable in the closed interval [a, b], it is
automatically continuous at x = a and x = b, because
differentiability implies continuity.

37.  By the definition of antiderivative (indefinite
integral), g(x) =  0 dx if and only if (x) = 0. Any
other function f for which  (x) = 0 differs from g(x)
by a constant. Thus, the antiderivative of zero is a 
constant function, Q.E.D.

39.  The hypotheses of Rolle’s theorem say that f is
differentiable on the open interval (a, b ).
Differentiability implies continuity, so f is also
continuous on (a, b). Combining this fact with the
hypothesis of continuity at a and b allows you to
conclude that the function is continuous on the 
closed interval [a, b ].

41.  Answers will vary.

Problem Set 5-6
1.  a.  I = 10/ 3 = 3.33333...

The +C  and –C  add up to zero.
b.

c.  U5 = 3.80673199... , L5 = 2.92710236...
Average = 3.36691717...
The average overestimates the integral, 3.33333... . 
This is because the graph is concave up, and thus  
the area above each lower rectangle is less than 
half the difference between each upper rectangle
and lower rectangle.

d.    M10= 3.32911229...
 M100 = 3.33329093...

3.  See the text statement of the fundamental theorem.
5.  See the text proof of the fundamental theorem.

7.  Distance =  (100 – 20(t + 1)1/2) dt = 453  feet
9.  a. b.

c. d.

e. f.

Problem Set 5-7
1.  21

3.  125

5.  1116
7.  30

9.  10

11.  4

13.  8

15.  (7/6)  – 1/2 = 1.52072...
17.  7.5

19.   (sin4 2 – sin4 1) = 0.045566...

21.   (sin 0.6 – sin 0.3) = 0.0897074...

23.  20

25.  No value

27.  Integral = – (area)

29.  Integral  area
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The sums are converging to 10/3, the exact value
M1000 = 3.33333290...

of I.



31.  –7

33.  25

35.  Cannot be evaluated

37.

39.  Converse: “If  f(x) dx <  g(x) dx,
then f(x) < g(x) for all x in [a, b].”
The converse can be shown to be false by any
counterexample in which the area of the region
under the g graph is greater than the area under
the f graph, but in which the g graph touches or
crosses the f graph somewhere in [a, b]. One
counterexample is f(x) = 1.5 and g(x) = 2 + cos x
on [0, 2  ].

Problem Set 5-8

1.  a.

dy = (55 + 12t0.6) dt

b.   (55 + 12t0.6) dt = 62.5 mi

 (55 + 12t0.6) dt   70.2 mi

c.   (55 + 12t0.6) dt = 132.735... , which equals the
sum of the two integrals above.

d.  Approximately 4.134 h
e.  At the end of the trip you are going about

83 mi/h.

3.  a.

b.  dA = y dx = 10e0.2xdx
c.  50e0.4 – 50
d.  24.59123...

The region is approximately a trapezoid with
height 2 and bases 10 and y(2) · y(2) = 12.2809... , 
so the area of the trapezoid is 2/2(10 + 14.9182...) = 
24.9182... .

5.  a.  dA = [x + 2 – (x2 – 2x – 2)]dx
The top and bottom of the strip are not horizontal,
so the area of the strip is slightly different from 
dA. As dx approaches zero, the difference 
between dA and the area of the strip gets smaller.

b.  125/6 = 20.8333...
c.  R100 = 20.834375 (checks)

7.  a.

b.  dW = 0.6x dx
24.3 inch-pounds

c.  The region under F from x = 0 to x = 9 is a
triangle with base 9 and height F(9) = 5.4. So the
area is 1/2 · 9 · 5.4 = 24.3.

d.  Inch-pounds

9.  a.

b.  dD = [20 – 12 cos 2 (x – 0.1)] dx
c.  7.75482...  7.75 degree-days
d.  From noon to midnight: 12.24517... 

12.25 degree-days
From one midnight to the next: 20 degree-days
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t =  a t = b

 f(3) =7

 y = f(x)

 y = f ′( x)



11.  a.

b.  dC = (100 + 0.06x2) dx
C = 100b + 0.02b3

c.  0 m to 100 m: $30,000
100 m to 200 m: $150,000
0 m to 200 m: $180,000

,
which shows that the sum of integrals with the
same integrand applies.

13.

A = 
15.

A = 
17.

A = 
19.

A = 

21.

A =  (2e0.2x – cos x) dx = 10e – sin 5 – 10 = 18.1417...
23.

A = 
25.

A = 
27.  You can always tell the right way because the height

of the strip should be positive. This will happen if
you take (larger value) – (smaller value). In this case,

Note that if you slice horizontally, it would be curve
minus line.

29.
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if you slice vertically it’s line minus curve (see graph).
For curve minus line, you’d get the opposite of the
right answer.



A = 

Area of rectangle = 2h(ah2) = 2ah3

 , Q. E. D.

Area of region =  (20)(60) = 800

31.  A = 20   = 20.8333...
  R10 = 20.9375
 R100 = 20.834375 
R1000 = 20.83334375 
The Riemann sums seem to be approaching the exact
answer.

Problem Set 5-9
1.  a.  dV = x2dy = (9 – y) dy

b.  V = 40.5  = 127.2345...
c.  R100 = 127.2345...
d.  The volume of the circumscribed cylinder is

9(  · 32) = 254.4690... . Half of this is 127.2345... ,
which is equal to the volume of the paraboloid.

3.  a.  dV = y2dx = 9 e–0.4x dx
b.  V = – 22.5 e –2 + 22.5  = 61.1195...

The midpoint Riemann sum R100 gives 61.1185... ,
which is close to the answer found using
integration.

c.  Slice perpendicular to the axis of rotation, so slice
vertically if rotating about the x-axis and
horizontally if rotating about the y-axis.

5.  V = 1640  = 5152.2119...

7.  V =  = 1753.8654...

9.  V = (22.25 – 1.25e2.4) = 26.6125... ft3

The midpoint Riemann sum R100 gives 26.6127... ,
which is close to the answer found using integration.

11.  V =   = 0.5325...

13.  a.  V = 5.76  = 18.09557...
b.

Values are getting closer to V = 5.76 .
15.  V = 70.4  = 221.168...

17.

V = 320 cm2

The circumscribed rectangular box has volume 960,
so the pyramid is one-third the volume of the 
circumscribed rectangular box, Q.E.D.
The volume of a pyramid is one-third the volume of 
the circumscribed rectangular box, just as the volume 
of a cone is one-third the volume of the 
circumscribed cylinder.

19.  a.  dV = y2 dx = x1.2 dx

b.  V =  · 42.2 = 4.7982...

The midpoint Riemann sum R100 gives 4.7981... ,
which is close to the answer found using integration.

c.  The volume would double, to 9.5964... .

21.  V =  = 0.9237...

23.  a.  y =  x

b.  z = 
c.  dV = y · 2z · dx = (36 – x2)1/2(x dx)

V = 72 in.3

25.  A cone of radius r and altitude h can be generated by
rotating about the x-axis the line y =  x from x = 0 to h.

dV = y2 dx = x2 dx

V = , Q.E.D.

27.  A sphere can be generated by rotating the circle
x2 + y2 = r2 about the y-axis.
Slicing perpendicular to the y-axis gives
dV = x2 dy = (r2 – y2 )dy.
V = 

= , Q.E.D.

29.  V = 

V   S20 = 1 ,647 ,388.8...  1 ,647 ,389 yd3

Cost  $19,793,324

Problem Set 5-10
1.  cos x dx  0.6899295233...

3.  2x dx  10.09886529...
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dV = (2x)2dy = 64  dy

  R10 = 5.7312
 R100 = 5.75971...
R1000 = 5.7599971...



5.  = sin 1.4 – sin 0.3 =
0.6899295233...
For the ten digits of the answer shown by calculator,
there is no difference between this solution and the
solution to Problem 1.

7.

 sin2 x dx = 4.9348...
We cannot compute this integral algebraically
because we do not know an antiderivative for sin2 x.

9.  a.

b.  1
c.  Answers will vary depending on the grapher used.

The TI-83 gives Si 0.6 = 0.58812881 using TRACE or
0.588128809608 using TABLE. Both of these values 
are correct to as many decimal places as the NBS 
values.

d.  Si x seems to approach a limit of about 1.57.
e.

The graph of f(x) is positive, and greatest when x
is between –  and , which agrees with the large
positive slope of the Si x graph in this region. Each
place where the Si x graph has a high or low point,
the graph of f(x) has a zero, corresponding to the
zero slope of the Si x graph.

11.  a.  Distance = 3.444...  3.4 nautical miles
b.  T6 = 3.7333 ...   3.7 nautical miles
c.  The answer by Simpson’s rule should be closer,

because the graph is represented by curved
segments instead of straight ones.

13.  a.

b.  Work = 132.8333...  132.8 inch-pounds
15.  a.  Simpson’s rule will give a more accurate answer

because the function y = sin x is approximated
better by quadratic functions than by straight lines.

b.  S4 = 2.0045...
T4= 1.8961 ...
I = 2
S4 is closer to 2 than T4 .

17.  Using a Simpson’s rule program, the mass of the
spleen is 171.6 cm3.

19.  a.

As x varies, the area beneath the curve y = 1/t
from t = 1 to t = x varies also.

b.  Using the power formula on .
Division by 0 is undefined, so this approach does
not work.

c.

The graph resembles y = ln x. The value of f(x) is
negative for x < 1 because for these values the
lower limit of integration is larger than the upper
limit, resulting in negative values for dx.

d.  f(2) = 0.6931...
 f(3) = 1.0986...
 f(6) = 1.7917...
 f(2) + f(3) = f(2 · 3)

Problem Set 5-11
R0.  Answers will vary.
R1.  a.  T3 = 2[22 + 2(26.9705...) + 2(30.7846 ...) + 34] =

343.0206...

Answers to Selected Problems © 2005 Key Curriculum Press 699

Force (lb)

Distance (in.)

 This is a property of logarithmic functions.



T3 underestimates the integral because v(t) is concave
down, so trapezoids are inscribed under the curve.

b.  R3 = 344.4821...
This Riemann sum is close to the trapezoidal rule sum.

c.  T50 = 343.9964... , T 100 = 343.9991...
Conjecture: The exact value of the integral is 344.

d.  g(16) – g(4) = 344
This is the value the trapezoidal rule sums are
approaching.

R2.  a.  l(x) = – x + 

As you zoom in, you see that f(x) is very close to
the line l(x) for values near x = 1.
x = 1.1: Error = 0.0051...
x = 1.001: Error = 5.1677... × 10 –9

b.  i.  dy = – 10 csc5 2x cot 2x dx
ii.  dy = (x4 + x–4 ) dx
iii.   dy = – 12(7 – 3x)3 dx
iv.  dy = – 1.5e–0.3x

dxv.  dy = 4/x dx
c.  i.  y = sec x + C

ii.  y =  (3x + 7)6 + C

iii.   y = 5x + C

iv.  y = – e –0.2x +
Cv.  y =  + C

d.  i.  dy = (2x + 5)–1/2 dx
ii.  dy = 25–1/2 · 0.3 = 0.06
iii.   y = 0.059644...
iv.  0.06 is close to 0.059644... .

R3.  a.  See the text definition of indefinite integral.
b.  i.  7.2x5/3 + C

ii.   sin7 x + C

iii.   x3– 4 x2 + 3 x + C

iv.  4e3x + C
v.    + C

R4.  a.  See the text definition of integrability.
b.  See the text definition of definite integral.
c.  i.  U6 = 2.845333...

ii.  L6 = 1.872703...

iii.   M6 = 2.209073...
iv.  T6 = 2.359018...

d.

e.

R5.  a.  The hypothesis is the “if ” part of a theorem, and
the conclusion is the “then” part.

b.  1.12132...  1.12 s
c.  [0, 4], c = 1

At x = 0, (0) takes the form 1/0, which is infinite.
Thus, g is not differentiable at x = 0. 
However, the function need not be differentiable at 
the endpoints of the interval, just on the open 
interval.

d.  For a function to be continuous on a closed
interval, the limit needs to equal the function
value only as x approaches an endpoint from 
within  the interval. This is true for function f at 
both endpoints, but not true for function g at 
x = 2. The graphs show that the conclusion of the 
mean value theorem is true for f, but not for g.

e.  See the text derivation of Rolle’s theorem.
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3.  P(20) = 2718.2818... , P(0) = 1000

The graph resembles an exponential function.

Problem Set 6-2
1.  = 1/x

3. (x) = 5/x

5.  (x) = –12/x
7.  (t) = 3/t

9.   = (1/x)(ln 4x + ln 6x) or 

11.  = 

13.  = (cos x)(ln x) + (sin x)(1/x)

15.  = –sin (ln x) · (1/x)

17.  = –tan x (Surprise!)

19.  (x) = sec2 (ln x) · (1/x)

21.  = –3(3x + 5)–2

23.  = 4x3 ln 3x + x3

25.  = –1/x

27.  7 ln |  x| + C

29.   ln |  x |  + C

31.   ln |  x3 + 5 |  +

C33.  –  ln | 9 – x6 | + C

35.  ln |1 + sec x| +
C37.  ln |sin x| +
C39.  ln 8 = 2.0794...

41.  ln 30 = 3.4011...

43.   (ln 28 – ln 9) = 0.7566...

45.   (ln x)6 + C

47. (x) = cos 3x

49.  tan3 x
51. (x) = 2x · 3x2

53.   (x) = 3

55.  Fundamental theorem:
5 ln 3 – 5 ln 1 = 5 ln 3 = 5.493061...
Midpoint Riemann sum: M100 = 5.492987...
Trapezoidal rule: T100 = 5.493209...
Numerical integration: 5.493061...

57.  a.

b.  (2) = – 4
59. (1/P ) dP = ln N – ln 1000

N  1649 people
61.  a.  a = – 35.934084... , b = 9.050741...

d( f ) = – 35.9340... + 9.0507... ln f
b.

 f d( f ) cm (part c)

53 0 0.1707...
60 1.1227... 0.1508...
70 2.5197... 0.1292...
80 3.7265... 0.1131...

100 5.7461... 0.0905...
120 7.3962... 0.0754...
140 8.7914... 0.0646...
160 10.0 0.0565...

Measured distances will vary. The measured
distances should be close to the calculated
distances.

c.  ( f ) = 9.0507... /f. See table in part b.
d.  ( f ) is in cm/10 kHz.
e.  ( f ) decreases as f gets larger; this is consistent

with the spaces between the numbers getting
smaller as f increases.

63.  Answers will vary.

Problem Set 6-3

1.  ln 6 + ln 4 = 3.17805...
ln 24 = 3.17805...

3.  ln 2001 – ln 667 = 1.09861...
ln (2001/667) = 1.09861...

5.  3 ln 1776 = 22.44635...
ln (17763) = 22.44635...

7.  See the text proof of the uniqueness theorem.
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9.  Proof:
Let f(x) = ln (x/b), g(x) = ln x – ln b for x, b > 0.
Then (x) = (b/x)(1/b) = 1/x, and

(x) = (1/x) – 0 = 1/x.
 (x) = (x) for all x > 0.

 f(b) = ln (b/b) = ln 1 = 0
g(b) = ln b – ln b = 0
 f(b) = g(b).
 f(x) = g(x) for all x > 0 by the uniqueness theorem.
 ln (x/b) = ln x – ln b for all x > 0.
 ln (a/b) = ln a – ln b for all a > 0 and b > 0, Q.E.D.

11.  Proof:
ln (a/b) = ln (a · b– 1 ) = ln a + ln b– 1

= ln a + (–1) ln b = ln a – ln b
 ln (a/b) = ln a – ln b, Q.E.D.

13.  ln x = 

15.  (x) = 1/(x ln 3)
(5) = 0.182047...

The graph shows that the tangent line at x = 5 has a
small positive slope.

17.  (x) = 40/x

19.  (x) = (cot x)/(ln 5)

21.  (x) = (2 ln x)/(x ln 5)

23. (x) = 3/x – cot x

25.  (ln x 3x) = 3 ln x + 3

27.  a.  dy/dx = 7(– 0.9x)(ln 0.9)
x = 0: dy/dx = 0.737... mi/h
x = 1: dy/dx = 0.663... mi/h
x = 5: dy/dx = 0.435... mi/h
x = 10: dy/dx = 0.257... mi/h
The lava is slowing down.

b.  x = (1/ ln 0.9)[ln (2 – y/7)]

c.  

 y = 10: dx/dy = 2.372... h/mi
d.  x = 10: dx/dy = 3.888651...
e.  3.888... is the reciprocal of 0.257... , the value of

dy/dx when x = 10, not when y = 10.
29.  The intersection point is at x = 2.7182818... , which is

approximately e.

Problem Set 6-4

1.  a.  a = 60000, k = 1.844...
R(t) = 60000e1.844...t

b.  Approximately 607 million rabbits
c.  About 5.6 yr earlier, or in about 1859

3.  a.  (t) = 1000 (1.06)t (ln 1.06)
(0) = 58.27 $/yr
(5) = 77.98 $/yr
(10) = 104.35 $/yr

b.  m(0) = $1000.00
m(5) = $1338.23
m(10) = $1790.85
The rates are increasing. $338.23 is earned
between 0 and 5 yr; $452.62 is earned between 5
and 10 yr. This agrees with the increasing
derivatives shown in part a.

c.  (t)/ m(t) = ln 1.06, a constant
d.  m(1) = 1060.00, so you earn $60.00. The rate

starts out at only $58.27/yr, but has increased
enough by year’s end to make the total for the year
equal to $60.00.

5.  e = 
When you substitute  for n in the first equation,
you get the indeterminate form 1 . When you
substitute 0 for n in the second equation, you also
get the indeterminate form 1 .

n (1 + 1/n )n

100 2.70481...
1000 2.71692...

10000 2.71814...

n (1 + n )1/n

0.01 2.70481...
0.001 2.71692...

0.00001 2.71826...

7.   = –2001e–3x

9.  (x) = x– 7 ex (– 6 + x)

11.  (t) = et tan t + et sec2 t
13.   = 0

15.   = 

17.   = –7ecos xsin x
19.  = 20

21.  = –20x
23.  (x) = 42

25.  = ex + e–x

27.  = 40x4 ex5
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29. (x) = 10–0.2x(– 0.2 ln 10)

31.  (x) = 1000(1.03x) ln 1.03
33.  (x) = 5x · x7 (ln 5 + 7/x)

35. ′  = 2 ln x · xln  x– 1

37.  = (cos 2x)3x [3 ln (cos 2x) – 6x tan 2x]

39.  = 

41.  

43.  ln x

45.  2x (ln cos x2)

47.  49e7x

49.   e7x+ C

51.   + C

53.  5e0.2x + C
55.  etan x + C
57. 150x2 + C

59.  – (1 – e4x)101 + C

61.  Fundamental theorem:
e2 – e–2 – e–1 + e1 = 9.604123...
Numerically: integral  9.604123... (checks)

63.  Answers will vary.

Problem Set 6-5

1.  Limit = 10/3

3.  Limit = 1

5.  Limit = 1/2

7.  Limit = 

9.  Limit = 0

11.  Limit = e/5

13.  Limit = – 26.4329...

15.  Limit = 

17.  Limit = 3/4
19.  Limit = 1/4

21.  Limit = 1

23.  Limit = 1

25.  Limit = 1

27.  Limit = e3 = 20.0855...
29.  Limit = 1/2

31.

Where secant and tangent are defined, the
Pythagorean properties tell us that f(x) = 1.

33.  Limit = ek

The graph is a horizontal line y = ek defined
for x > 0.
By the definition of a power,
 f(x) = xk/(ln x) = (xk )1/  ln  x = (ek ln  x )1/  ln  x =
ek

35.  a.  For yearly compounding, m(t) = 1000(1 + 0.06)t.
For semiannual compounding,
m(t) = 1000(1 + 0.06/2)2t  because there are two
compounding periods per year, each of which gets
half the interest rate.

b.  m(t) = 1000(1 + 0.06/n)nt

Limit = 1000e0.06t
When interest is compounded continuously,
m(t) = 1000e0.06t .

c.  5 yr: $11.63
20 yr: $112.98
50 yr: $1665.38

d.  m(t) = 1000e0.07t

37.  Answers will vary.

Problem Set 6-6
1.  = 3/(3x + 4)
3.  = 3

5.  = –5 tan x
7.  = –tan (tan x) sec2 x

9.  = – (1/x) sin (ln x)
11.  = 7e7x
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13.   = 5x4

15.  = –ex sin ex

17.  = 5x4ex5

19.   = 

21.  = 1/x

23.  = 1/x

25.  = 2x ln 2
27.  = 2x

29.  = xx (ln x + 1)
31.  = xex

33.  = (ex + e–x)
35.  = 5x ln 5
37.  =  (– 7 ln x + 1)

39.  = e– 2x(– 2 ln 5x + 1/x)
41.  = 1/x

43.  = 1/x

45.  = 

47.  = esin x cos x

49.  = 0

51.  = cos x

53.  = –csc x cot x
55.  = sec2 x

57.   e4x + C

59.   ex 4 + C

61.  (ln x)6 + C

63.   + C

65.  ln x

67.   + C

69.  3 ln |x| + C

71.  (ln x)10 + C

73.   x2 + C

75.  C

77.  ln |sec 2x + tan 2x| + C

79.  ln |sin 4x| + C

81.  Limit = 0

83.  Limit =  / 2

85.  Limit =  = 20.8333...

87.  Limit = 1

89.  Limit = e–3 / 2 = 0.2231...

Problem Set 6-7
R0. Answers will vary.

R1.  a.  dM/dt = 0.06M  (1/M) dM = 0.06 dt
When t = 0, M = 100, and when t = 5, M is
unknown.

 

b.  x  134.9858...
c.  $34.99

R2.  a.  Integrating x –1 by the power rule results in
division by zero: (1/0)x0 + C .

b.  If g(x) =  f(t) dt and f(x) is continuous in a
neighborhood of a, then (x) = f(x).
ln x = 

c.  i.  = (3/x)(ln 5x)2

ii.  (x) = 9/x
iii.   = –csc (ln x) cot (ln x) · (1/x)
iv. (x) = 2x csc x2

d.  i.  ln |sec x| + C
ii.  10(ln 3 – ln 2) = 4.0546...

iii.   ln |x3 – 4| + C

e.

f.  i.  y(100)  70 names; 70% remembered
 y(1) = 1 name; 100% remembered

ii.  (100) = 0.505 name/person
 (1) = 1 name/person

iii.  Assume that Paula has not forgotten any names
as long as x – y < 0.5. After meeting 11 people
she remembers about 10.53...  11 names, but
after meeting 12 people she remembers about
11.44...  11 names.

R3.  a.  i.  See the text definition of logarithm.
ii.  See the text definition of ln x as a definite

integral.
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iii.   See the text statement of the uniqueness
theorem.

iv.  See the text proof.
v.  See the solution to Problem 10 in Lesson 6-3.

b.  i.  e = 

ii.  logb x = 

c.  i.   = 

ii.   ( x ) = – 

iii.    = log5 9

R4.  a.  i.

ii.

iii.

b.  i.  (x) = 1.4x0.4 e5x + 5x1.4 e5x

ii.  (x) = – 2e–2x cos (e–2x)

iii.   (e ln x) = 1

iv.   = (ln 100) 100x

v.  (x) = 0.74 ln 10 · 100.2x

vi.  ( t ) = 

c.   = (120x – 90)(5x – 7)2 (3x + 1)4

d.  i.  – 5e–2x + C
ii.  – ecos x + C
iii.   – 10e–0.2 + 10e0.2 = 4.0267...
iv.   + C

e.  i.  The exposure is the product of C(t) and t, where
C(t) varies. Thus, a definite integral must be used.

ii.  E(x) = 937.5(– e–0.16x + 1)
E(5) = 516.2540... ppm · days
E(10) = 748.2220... ppm · days

As x grows very large, E(x) seems to approach
937.5.

iii.   (x) = 150e–0.16x

(5) = 67.3993... ppm (or ppm · days per day)
(10) = 30.2844... ppm

f.  i.  The maximum concentration is about 150 ppm
at about 2 h.

ii.  (1)  58.7 ppm/h
(5)  24.2 ppm/h

The concentration is increasing if (t) is
positive and decreasing if it is negative.

iii.   For about 6 h, from t  0.2899... to t  6.3245...
iv.  The concentration peaks sooner at a lower

concentration and stays above 50 ppm for a
much shorter time.

R5.  a.  Limit = – 2/5
b.  Limit = 3
c.  Limit = 0
d.  Limit = e–2/  = 0.529077...
e.  Limit = 48
f.  Limit = 1
g.  Examples of indeterminate forms:

0/0, / , 0 ·  , 00, 1 , 0,  – 
R6.  a.  i.   = 4(1/sin 7x) · cos 7x · 7 = 28 cot 7x

ii.   = x–4e2x (2x – 3)
iii.    = –sin (2x) · 2x ln 2
iv.   = 

b.  i.  (–1/1.7) e–1.7x + C
ii.  (1/ ln 2) 2sec x + C

iii.   ln (5 + sin x) + C  (No absolute value is needed.)
iv.  ln 5

c.  i.  Limit = 
ii.  Limit = e–3 = 0.0497...

Problem Set 6-8
1.  (3) = 5.5496...

2.  g(x) dx  200
3.  L =  f(x) if and only if

for any  > 0 there is a  > 0 such that if x is within 
units of c but not equal to c, f(x) is within  units of L.

4.

706 © 2005 Key Curriculum Press Answers to Selected Problems



5.  (x) = limh  0 

or (c) = limx  c 

6.  f(x) = x3

(x) = limh  0 

= limh  0 

= limh  0 (3x2 + 3xh + h2 ) = 3x2, Q.E.D.

7.  (5) = 75
x = 0.01: (5)  75.0001
x = 0.001: (5)  75.000001

The symmetric differences are getting closer to 75 as
x gets closer to zero.

8.  (7) = 3/8

9.  A line with slope 3/8 is tangent to the graph at x = 7.

10.  a.   = 2e2x cos 3x – 3e2x sin 3x

b.  (x) = 

c.  (5x) = (ln 5)25x

11.  a = 1/2 and b = – 5

12.  U6 = 24.875

13.  M10 = 20.9775, M100 = 20.999775
The sums seem to be approaching 21.

14.  a.  –  cos6 x + C

b.  ln |x| +
Cc.  – ln |cos x| +
Cd.  ln |sec x + tan x| + C

e.  (3x – 5)3/2 + C
15.  Integral = 21, as conjectured in Problem 13.

16.  If f is differentiable on (a, b) and continuous at x = a
and x = b, then there is a number x = c in (a, b) such
that ( x ) =  .

17.  y7 = x9

7y6 = 9x8

= 

This answer is the same as the answer found using
the derivative of a power formula.

18.  If x–1 were the derivative of a power, then the power
would have to be x0. But x0 = 1, so its derivative
equals 0, not x–1. Thus, x–1 is not the derivative of a
power, Q.E.D.

19.  (x) = cos (3 tan x) · sec2 x

20.  f(x) =  dt   (x) = 1/x, Q.E.D.

21.  Proof:
Let f(x) = ln xa and g(x) = a ln x.
Then (x) =  · axa– 1 = a ·  and

(x) = a ·  .
  (x) = (x) for all x > 0.

 f(1) = ln (1a) = ln 1 = 0 and
 g(1) = a ln 1 =
0 f(1) = g(1)
 f(x) = g(x) for all x > 0, and thus

ln xa = a ln x for all x  0, Q.E.D.

22.   cot t

23.  At t = 2,  cot 2 = 0.2745...
The graph shows that a line with slope 0.27...
at point (– 2.08..., 2.72...) (the point at which t = 2) is
tangent to the curve.

24.  v = 

a = – 

25.  Limit = 3/5
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26.  L = limn  0 (1 + n)1/n  1
ln L = limn  0    · 0
= limn  0 
= limn  0  = 1
 L = e1 = e, Q.E.D.

27.   = –8.9442... ft/s
The distance z is decreasing.

28.  Integral = 556

29.  dv = y2 =  x2 dx

 V = 

 r2h, Q.E.D.

30.  Answers will vary.

CHAPTER 7

Problem Set 7-1
1.  D(0) = 500

D(10) = 895.42
D(20) = 1603.57

3.  R(0) = 0.0582689081...
R(10) = 0.0582689081...
R(20) = 0.0582689081...

5.  f(x) = a · bx  (x) = a · (ln b) · bx =
(ln b)(a · bx) = (ln b) · f(x)
So, (x) is directly proportional to f(x).

Problem Set 7-2
1.  a.  B = number of millions of bacteria; t = number of

hours
dB/dt = kB   dB/B =  k dt
B = C1ekt

b.  B = 5e(1/3) ln(7/5)t  = 5e0.112157...t  or 5
c.

d.  About 74 million
e.  t = 47.2400...

About 47 h after start

3.  a.  F = number of mg; t = number of minutes
dF/dt = kF

F = 50e– 0.025541...t = 50(0.6)t/20

b.

c.  10.8 mg
d.  t = 347.4323...

About 5 h 47 min

5.  a.  dC/dt = kC
b.  C = 0.00372e – 0.0662277...t

c.  Either C = 0.015  t = – 21.05... , which is before
the poison was inhaled, or t = – 20  C = 0.0139... ,
which is less than 0.015.
 the concentration never was that high.

d.

e.  t = 10.4661...
About 10.5 h

7.  dM/dt = kM  M = Cekt, where C is the initial
investment.  M varies exponentially with t.
Let i = interest rate as a decimal.
dM/dt = Ck · ekt

At t = 0, dM/dt = Ci
 Ci = Ck · e0  k = i  M = Ceit

Examples:
$1000 at 7% for 5 yr: $1419.07
$1000 at 7% for 10 yr: $2013.75
$1000 at 14% for 5 yr: $2013.75
$1000 at 14% for 10 yr: $4055.20
Leaving the money twice as long has the same effect
as doubling the interest rate. Doubling the amount
invested obviously doubles the money at any
particular time. But doubling either the time or the
interest rate will always eventually yield more than
doubling the investment, once t is high enough. For
example, at an interest rate of 7%, doubling the time
or interest rate will yield more than doubling the
investment after 9 years 11 months.

9.  dy/dx = 0.3y
  = 0.3  dx

ln | y| = 0.3x + C

| y| = e0.3x + C = e0.3x · eC

 y = ±eC · e0.3x = C1 e0.3x – 4 = C1 e0  C1 = – 4,
showing that C1 can be negative.

 y = – 4e0.3x
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11.  dy/dx = ky   dy/y =  k dx  ln | y| = kx + C1

| y| = ekx+C1  y = Cekx  y(0) = Cek·0  C = y(0)
 y = y0ekx , Q.E.D.

Problem Set 7-3

1.  a.  dM/dt = 100 – S
b.  S = kM  dM/dt = 100 – kM

c.  M = (1 – e  –kt )

e.

f.  t = 30: $2255.94 ($3000 in, $744.06 spent)
t = 60: $3494.03 ($6000 in, $2505.97 spent)
t = 90: $4173.51 ($9000 in, $4826.49 spent)

g.  t = 365: M = 4996.622...  $4996.62 in the account
dM/dt = 0.06755...
M is increasing at about $0.07 per day.

h.  lim t   M = 5000

3.  a.  E = RI + L(dI/dt )

b.  I =  [1 – e  – (R/L)t  ]

d.  i.  t = 1: I = 4.3281...  4.33 amps
ii.  t = 10: I = 10.9258...  10.93 amps
iii.   t = : I = 11 amps

e.  t = – 2 ln 0.05  6 s

5.  a.   = kV 1/2

b.  V = 

V varies quadratically with t.
c.  V = (t – 14)2

d.  False. Because dV/dt = 2t – 28, the water flows
out at 28 ft3/min only when t = 0. For instance, at
t = 5, dV/dt = –18, which means water flows out
at only 18 ft3/min. So, it takes longer than 7 min to
empty the tub.

e.  The tub is empty at t = 14 min.
f.

g.  See Problem Set 7-7, C4.

7.  a.  n = 1, k = 1, C = – 3: y = ±0.04978...ex

b.  n = 0.5, k = 1, C = – 3: y = (x – 3)2

(Note: x  3 because y0.5 is a positive number.)
c.  n = – 1, k = 1, C = – 3: y = ±
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n = – 2, k = 1, C = – 3  y =  

d.  For n > 1,  = kyn   y–ndy = k  dx
 –  = kx + C because n > 1

so y = ,

which has a vertical asymptote at x = – C/k
because the denominator = 0 for this point.
Note that the radical will involve a ± sign when the
root index is even (for example, when n is odd).
For n = 2, k = 1, C = – 3: y = – (x – 3)–1

For n = 3, k = 1, C = – 3: y = 

e.  n = 0, k = 1, C = –3: y = x – 3, which is a linear
function.

9.  T   70 + 102.26...(1 – e–0.02933...t )
Answers will vary.

Problem Set 7-4

1.  a.  At (3, 5), dy/dx = 3/10 = 0.3
At (– 5, 1), dy/dx = – 5/2 = – 2.5
On the graph, the line at (3, 5) slopes upward with
a slope less than 1. At (– 5, 1), the line slopes
downward with a slope much steeper than – 1.

b.  The figure looks like one branch of a hyperbola
opening in the y-direction. (The lower branch
shown on the graph is also part of the solution,
but you are not expected to find this graphically.)

c.  See the graph from part b. The figure looks like
the right branch of a hyperbola opening in the
x-direction. (The left branch is also part of the
solution, but you are not expected to find this
graphically.)

d.  x2 – 2y2 = 23
This is the particular equation of a hyperbola
opening in the x-direction, which confirms the
observations in part c.

3.  a.  At (3, 2),  =  = – 0.75
At (1, 0),  =  , which is infinite.

b.  See graph from part a. The figures resemble
half-ellipses.

c.  y = –  (Use the negative square root
because of the initial condition.)
The graph agrees with part b.
The equation can be transformed to 0.5x2 + y2 =1.5,
which is the equation of an ellipse because x2 and
 y2 have the same sign but unequal coefficients.
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5.

7.

9.  a.

d.   = – 0.2xy

Evidence: At (1, 1) the slope was given to
be – 0.2, which is true for this differential
equation. As x or y  increases from this point, the
slope gets steeper in the negative direction, which
is also true for this differential equation. In
Quadrants I and III the slopes are all negative, and
in Quadrants II and IV they are all positive.

11.  a.  Initial condition (0, 2)

b.  See graph in part a with initial condition (4, 2).
The graph is the same as that in part a, but shifted
over 4 months. This behavior is to be expected
because dP/dt depends only on P, not on t, and
both initial conditions have the same value of P.

c.  See graph in part a with initial condition (0, 18).
The population is decreasing to the same
asymptote, P = 10.5, as in parts a and b.

d.  The asymptote at P = 10.5 indicates that the
island can sustain only 1050 rabbits. If the
population is lower than that, it increases. If the
population is higher than that, it decreases. The
number 10.5 is a value of P  that makes dP/dt
equal zero. Note that there is another asymptote
at P = 0, which also makes dP/dt  equal zero.

13.  a.  ma = By hypothesis.

Divide by m; a = .

Chain rule.

v =  (r = distance).

Divide by v.

b.   (5, 2) = – 1.2488

(1, 10) = – 6.244

(10, 4) = –0.1561

These slopes agree with those shown.
c.  Initial condition (1, 10)

The spaceship is about 4 earth-radii, or about
25,000 km, above the surface.

d.  See graph in part c with initial condition (1, 12).
The graph levels off between 4 and 5 km/s.

e.  See graph in part c with initial condition (1, 18).
The graph levels off at v  14 km/s. Here the
spaceship loses about 4 km/s of velocity, whereas
it loses 7 or 8 km/s when starting at 12 km/s.
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Both cases lose the same amount of kinetic
energy, which is proportional to v2 (the change in
v2 is the same in both cases).
The precise value of v can be found.

f.  See graph in part c with initial condition (2, 10). The
graph levels off at about 6 km/s, so the spaceship
does escape. Alternatively, note that the solution
through (2, 10) lies above the solution through (1, 12).

Problem Set 7-5
1.  a.  For (1, 3): dy = – (1/3)(0.5) = – 0.1666... , so

 y  3 – 0.1666... = 2.8333... at x = 1.5.
For (1.5, 2.8333...): dy = –(1.5/2.8333...)(0.5) =
–0.2647..., so y  2.8333... – 0.2647... = 2.5686...
at x = 2.

x  y

0 3.2456...
0.5 3.1666...
1 3
1.5 2.8333...
2 2.5686...
2.5 2.1793...
3 1.6057...

The Euler’s y-values overestimate the actual values
because the tangent lines are on the convex side of
the graph, and the convex side is upward. As x
gets farther from 1, the size of the error increases.

b.  y =  (Use the positive square root.)
The particular solution stops at the x-axis because
points on the circle below the x-axis would lead to
two values of y for the same value of x, making
the solution not a function.
At x = 3, Euler’s solution overestimates the actual
value by 0.6057... .

3. x dy/dx dy  y

2 3 0.6 1
2.2 5 1.0 1.6
2.4 4 0.8 2.6
2.6 1 0.2 3.4
2.8 –3 – 0.6 3.6
3 –6 –1.2 3.0
3.2 –5 –1.0 1.8
3.4 –3 –0.6 0.8
3.6 –1 –0.2 0.2
3.8 1 0.2 0.0
4 2 0.4 0.2

You cannot tell whether the last value of y is an
overestimate or an underestimate because the convex
side of the graph is downward in some places and
upward in other places.

5.  Answers will vary.

7.  a-b.

9.  a.

The graph with dr = 0.6 shows that velocity
changes from positive to negative between r = 13
and r = 14.

b.  See graph in part a with dr = 0.1.
c.  v = 

When r = 20, v   5.0362...
Because the graph is concave up (convex side
down), the Euler’s solution underestimates the
actual velocity. The first increment, where the
graph is steep, makes a large error that
accumulates as the iterations continue, putting the
graph into a region of the slope field from which
the spacecraft would not escape Earth’s gravity.

d.  Let v1 be the initial velocity at r = 1. Solving for C
gives

0.5v1
2  = 62.44 + C

C = 0.5v1
2 – 62.44

If v1 < , then C  is negative, making
v =  an imaginary number when r
is large enough. If v1 > , then C  is
positive, making v a positive real number for all
positive values of r. (The asymptote is at v = .)
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11.  a.  For x  5, the radicand 25 – x2 is nonnegative,
giving a real-number answer for y. For x > 5, the
radicand is negative, giving no real solution.

b.  The slope field shows that the graph will be
concave up (convex side down), making the Euler’s
tangent lines lie below the graph, leading to an
underestimate.
At x = 4.9, y = – 0.6  = –0.5969...
The Euler’s solution at x = 4.9 is – 0.8390... ,
which is an underestimate because – 0.8390...
< – 0.5969... , but is reasonably close to the actual
value.

c.  The Euler’s solutions for the given points are

x  y

5.1 –0.3425...
5.2 0.1935...
5.3 –0.7736...
6.6 26.9706...

From 5.1 to 5.2, dy = 0.5360... , indicating that the
graph is still  taking upward steps.
From 5.2 to 5.3, dy = – 0.9672... , indicating that
the graph takes a relatively large downward step.
The sign change in dy happens whenever the prior
Euler’s y-value changes sign. The graph starts over
on another ellipse representing a different
particular solution. At x = 6.6, Euler’s method
predicts a very large upward step.

d.  Euler’s method can predict values that are outside
the domain, which are inaccurate.

Problem Set 7-6

1.  a.  dB/dt  is proportional to B, which means that the
larger the population is,  the faster it grows. But
dB/dt is also proportional to (30 – B)/30, which
means that the closer B is to 30, the slower it
grows. When 0 < B < 30, dB/dt is positive because
B is positive and (30 – B) is positive. When B > 30,
dB/dt is negative because B is positive and
(30 – B) is negative.

b.

For the initial condition (0, 3), the population
grows, leveling off at B = 30. For the initial
condition (10, 40), the population drops because it
is starting out above the maximum sustainable
value (carrying capacity).

c. t B

0 3
10 13.8721...
20 26.4049...
30 29.5565...
40 29.9510...

See the graph in part b. Euler’s points and the
graphical solution are close to each other.

d.  B = 
At t = 20, B =  = 26.4326... .
The Euler’s value, B  26.4049... , is very close to
this precise value.

e.   = –0.014B + 30(0.007)
Derivative = 0 if – 0.014B + 30(0.007) = 0, which is
true if and only if B = 15.
This value is halfway between B = 0 and B = 30.
The “point of inflection” is (10.4629... , 15).

3.  a.  k =  = 0.0529..., M = 178
Ajax expects to sell 178,000 CDs based on this
mathematical model.

b.

The slope field has horizontal slope lines at about
 y = 178, thus confirming M = 178.

c.  y = 
See the graph in part b. The graph follows the
slope lines.

d.  At x = 50, y = 81.3396...
At x = 51, y = 83.6844...
They expect to sell about 2354 CDs on the 51st day.

e.  Ajax will have sold 89,000 CDs at the point of
inflection, which occurs at x  53.2574... , or on
the 54th day.
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5.  a.  At t = 5.5, F   1.7869...  2 fish left.
At t = 5.6, F   – 11.0738... , meaning no fish are
left.

The fish are predicted to become extinct in just
over 5.5 yr.

b.  See the graph in part a, with initial condition
(3, 1200). The graph shows that the fish
population will decrease because the initial
condition is above the 1000 maximum sustainable,
then level off at 1000.

c.  See the graph in part a, with initial condition
(0, 300). The graph shows that the population
rises slowly at first, then faster, eventually slowing
down as the population approaches the 1000
maximum sustainable.

d.  F =  + 200
See the graph in part a. The graph shows that the
sketch from part c reasonably approximates this
precise algebraic solution.

7.  a-b. Year P P/  t ( P/ t)/P
1940 131.7
1950 151.4 2.38 0.01571...
1960 179.3 2.59 0.01444...
1970 203.2 2.36 0.01161...
1980 226.5 2.275 0.01004...
1990 248.7

You can’t find P/ t for 1940 and 1990 because
you don’t know values of P both before and
after these values.

c.  ( P/ t)/P  0.02802596... – 0.0000792747...P
The correlation coefficient, r, is greater for a
linear function than for a logarithmic,
exponential, or power function.

d.   = P(0.02802596... – 0.0000792747...P)

e.

f. Year  t Euler Actual*

1890 –50 44.6... 62.9
1900 –40 56.9... 76.0
1910 –30 71.7... 92.0
1920 –20 89.2... 105.7
1930 –10 109.3... 122.8
1940 0 131.7 131.7
1950 10 155.4... 151.4
1960 20 180.1... 179.3
1970 30 204.7... 203.2
1980 40 228.2... 226.5
1990 50 249.9... 248.7
2000 60 269.3... 281.4
2010 70 286.1...
2020 80 300.2...
2030 90 311.8...
2040 100 321.1...
*Data from The World Book Encyclopedia

g.  Predicted ultimate population  353.5 million
Differential equation: P = 353.5... makes
dP/dt = 0.
Slope field: P =353.5... is a horizontal asymptote.

h.  See graph in part e. Data do follow the solution.
i.  Answers will vary.
j.  Actual data are given in the table in part f.

Answers will vary.
k.  The predicted population for 2010 from part f is

286.1... million. Using 486.1 million as an initial
condition in 2010 gives the following predictions:

Year t Euler

2010 70 446.1...
2020 80 444.5...
2030 90 417.7...
2040 100 399.7...
2050 110 387.1...

The logistic model predicts that the population
will drop, approaching the ultimate value of
353.5 million from above. This behavior shows
up in the slope field of part e because the slopes
are negative for populations above 353.5.
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9.   = k1dt  ln |R | = k1t + C
 |R| = eCek1t  R = C1ek1t

R is increasing because k1 > 0.

11.   = k 1R – k3RF

 = –k2F + k4 RF

13.   = 0.4017...

15.  The populations vary periodically, and the graph is
cyclical. The fox population reaches its maximum 1/4
cycle after the rabbit population reaches its maximum.

17.   = –0.5357...

19.  The populations now spiral to a fixed point. The
rabbit population stabilizes at the same value as in
Problem 16, R = 40(4000 rabbits), which is surprising.
The stable fox population decreases from 25 to 15.

21.  Initial condition (70, 15)

23.  See graph in Problem 21 with initial condition (70, 30).
With this many foxes and hunters chasing rabbits, the
rabbits become extinct. At this point the foxes have
been reduced to just 5. After the rabbits become
extinct, the foxes decrease exponentially with time,
eventually becoming extinct themselves.

Problem Set 7-7

R0.  Answers will vary.
R1. t P(t) (t) (t)/P(t)

0 35 –0.7070...         –0.2020...
10 28.5975... –0.5777...         –0.2020...
20 23.3662... –0.4720...         –0.2020...

 = 35(0.98t) = ln 0.98 = – 0.2020... , which is a
constant, Q.E.D.

R2.  a.  V = speed in mi/h, t = time in s

b.  

ln |V | = kt + C  |V | = ekt+ C  = eC  · ekt  V = C1 ekt

C1 can be positive or negative, so the absolute
value sign is not needed for V . In the real world,

V is positive, which also makes the absolute value
sign unnecessary.

c.  V = 400e0.005578...t

d.  t = 112.68...  113 s
R3.  a.  y = (3x + C )2

b.  y = (3x – 4)2

c.

d.  dy/dx = 12
See graph in part c.
A line through (2, 4) with slope 12 is tangent to the
graph.

e.  i.  dN/dt = 100 – kN
N = 2210.6...(1 – e–0.045236t  )

ii.  About 1642 names
iii.   Her brain saturates at about 2211 names.
iv.  t   27 days

R4.  a.  At (2, 5), dy/dx = – 1.75
At (10, 16), dy/dx = 0.675
The slopes at points (2, 5) and (10, 16) agree with
these numbers.

b.

The solution containing point (1, 8) crosses the
x-axis near x = 7, converges asymptotically to the
y-axis as x approaches zero, and is symmetric
across the x-axis. The solution containing (1, 12)
goes to infinity as x goes to infinity.

c.  See the graph in part b with initial condition
(1, 10). The solution containing (1, 10) behaves
more like the one containing (1, 12), although a
slight discrepancy in plotting may make it seem to
go the other way.
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R5.  a. x  y( x = 1)  y( x = 0.1)

1 9 9
2 7.227... 7.707...
3 6.205... 6.949...
4 5.441... 6.413...
5 4.794... 5.999...
6 4.200... 5.662...
7 3.616... 5.377...
8 3.007... 5.130...
9 2.326... 4.910...

10 1.488... 4.712...
11 0.2185... 4.529...
12 –8.091... 4.359...
13 4.199...
14 4.045...
15 3.896...
16 3.750...
17 3.604...
18 3.457...
19 3.306...
20 3.150...

.

28.9 0.1344...
29 –0.3810...

b.  See the table in part a, x = 0.1. See the graph in
part a. Each shows a different pattern.

c.  The accuracy far away from the initial condition is
very sensitive to the size of the increment. For
instance, in part a the first step takes the graph so
far down that it crosses the x-axis before running
off the edge of the grid. The greater accuracy with

x = 0.1 shows that the graph actually crosses the
x-axis after x = 20.

d.  Continuing the computations in part c, the graph
crosses the x-axis close to x = 28.9. See the table
in part a.

R6.  a.

The population is decreasing because it is above
the maximum sustainable, 900 beavers ( y = 9). By
Euler’s method, y  9.3598... , or about 936
beavers, at x = 3 years.

b.  See the graph in part a. The graph shows that the
population is expected to increase slowly, then
more rapidly, then more slowly again, leveling off
asymptotically toward 900. This happens because
the initial population of 100 is below the
maximum sustainable.

c.  
The population increases fastest at
x = 6.4657...  6.5 years.

d.  
dy = 0 when x = 6 and dx = 0 when y = 7.
So the stable point is (6, 7), corresponding
to the present population of 600 Xaltos natives
and 7000 yaks.

e.  Initial condition (9, 7)

Suddenly there are too many predators for the
number of prey, so the yak population declines.
Because y is decreasing from (9, 7), the graph
follows a clockwise path.

f.  See the graph in part e with initial condition
(19, 7). The graph crosses the x-axis at x  14.4,
indicating that the yaks are hunted to extinction.
(The Xaltos would then starve or become
vegetarian!)

g.  See the graph in part e with initial condition
(15, 7). The graph never crosses the x-axis, but
crosses the y-axis at y  2.3, indicating that the
yak population becomes so sparse that the
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predators become extinct. (The yak population
would then explode!)

Problem Set 7-8

1.  v(t) dt represents the distance traveled in time dt.

2.  Definite integral

3.  1280 mi

4.  M100 = 1280.0384, M 1000 = 1280.000384
The Riemann sums seem to be approaching 1280 as
n increases. Thus, the 1280 that was found by purely
algebraic methods seems to give the correct value of
the limit of the Riemann sum.

5.

6.  Any Riemann sum is bounded by the corresponding
lower and upper sums. That is,  Ln  Rn  Un .
By the definition of integrability, the limits of Ln and
Un are equal to each other and to the definite
integral. By the squeeze theorem, then, the limit of Rn
is also equal to the definite integral.

7.  Definition:  f(x) dx = 
provided that the two limits are equal.
Fundamental theorem: If  f  is integrable on [a, b] and
g(x) =  f(x) dx, then  f(x) dx = g(b) – g(a).
Or: If F(x) =  f(t) dt, then (x) = f(x).

8.  Numerically, the integral equals 1280.
By counting, there are approximately 52 squares.
Thus, the integral  52(25)(1) = 1300.

9.  t = 0.1: (4)  – 19.9 (mi/min)/min
t = 0.10: (4) – 19.9999 (mi/min)/min

10. (c) =  or

(x) = 

11.  (4) = – 20

12.  Slowing down
(4) < 0  velocity is decreasing.

13.  Draw a line with slope – 20 through point (4, 208).
The line is tangent to the graph.

14.  Acceleration

15.  (t) = 0  t = 3.041... or 10.958...
So the maximum is not at exactly t = 3.

16.  (t) = 6t – 42

17.  At x = 2,  = –0.9e–1 = –0.3310...
 y is decreasing at about 0.33 units per second.

18.  At x = 2,  = –0.04391...
z is decreasing at about 0.044 unit per second.

19.   = km

20.   = k  dt  ln |m| = kt + C 

|m | = ekt + C   m = C1ekt

21.  Exponentially

22.  General

23.  m = 10,000(1.09)t

24.  False. The rate of increase changes as the amount in
the account increases. At t = 10,
m = 10 ,000(1.09)10  23,673.64.
The amount of money would grow by $13,673.64, not
just $9,000.

25.  Integral  1022

26.  By symmetric difference quotient,   1.75
27.  See the text statement of Rolle’s theorem.

28.
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29.

30.

Step discontinuity at x = 1

31. (x) = x–2/3 (4x – 1)
(0) is undefined because 0–2/3 takes on the form

1/02/3 or 1/0.

32.  x = 3.0952... or x = 7.5606...
A = 0.8787...

33.  V = 8.0554...
34.  Initial conditions (0, 3) and (10, 4)

35.  See the graph in Problem 34. Any initial condition for
which y = 0.5x, such as (2, 1), gives the asymptote.

36.  x2 – 4y2 = 36 or y = ± 0.5
37.  y = 4.30842...

38.  At (10, 4),  = 0.625.
Using x = 0.5, y(10.5)  4.3125, which is close to
the exact value of 4.30842... .

39.  

40.  dy/dx = – sec t = – y

41.  – ln |4 – 3x| + C

42.  (x) = 5x ln 5

43.  Limit = – 4.5

44.  There is a removable discontinuity at (0, – 4.5).

45.  Answers will vary.

46.  Answers will vary.

CHAPTER 8

Problem Set 8-1

1.  (x) = 3x2 – 12x + 9

(x) = 3x2 – 12x + 15

(x) = 3x2 – 12x + 12

Positive derivative  increasing function
Negative derivative  decreasing function

718 © 2005 Key Curriculum Press Answers to Selected Problems



Zero derivative  function could be at a high point or
a low point, but not always.

3.  (x) = (d/dx)(3x2 – 12x + 15) = 6x – 12
(x) = (d/dx)(3x2 – 12x+ 12) = 6x – 12

All the second derivatives are the same!
5.  Points of inflection occur where the first derivative

graph reaches a minimum.
Points of inflection occur where the second derivative
graph crosses the x-axis.

Problem Set 8-2

1.

3.

5.

7.

9.

11.

13.

15.
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min

no p.i.

undef.

undef.

no max./min.

p.i.

no max /min.

no p.i.

undef.

min.                 max.                     min.

max.                  min.            max.

p.i.                       p.i.

max.               plateau

no p.i.                   p.i.

no p.i.

undef.

max

no p.i.

plateau

p.i.

zero

zero



17.

19.

21. (2) = 0  critical point at x = 2
(2) = – 7.3890... < 0

 local maximum at x = 2

23. (2) = 0  critical point at x = 2
(2) = 2 > 0

 local minimum at x = 2

25. (2) = 0  critical point at x = 2
(2) = 0, so the test fails.
(x) goes from positive to positive as x increases

through 2, so there is a plateau at x = 2.

27.  a.  Critical points for f(x): x = – 1, 0,  1
Critical points for (x): x = 0, ± 

b.  The graph begins after the f-critical point at
x = – 1; the -critical point at x = –  is shown,
but is hard to see.

c.  (x) is negative for both x < 0 and x > 0.

29.  a.  Critical points for f(x): x = 1
Critical points for (x): x = 2

b.  Because f(x) approaches its horizontal asymptote
(y = 0) from above, the graph must be concave up
for large x; but the graph is concave down near
x = 1, and the graph is smooth; somewhere the
concavity must change from down to up.

c.  No. e–x  0 for all x, so xe–x = 0  x = 0.
31.  a.  Critical points for f(x): x = – 2, 0

Critical points for f(x): x = 1 ( (0) is undefined,
so  has no critical point at x = 0.)

b.  The y-axis (x = 0) is a tangent line because the
slope approaches –  from both sides.

c.  There is no inflection point at x = 0 because
concavity is down for both sides, but there is an
inflection point at x = 1.

33.  a.

Max. (2.5, 7.6); min. (0.8, 4.9); p.i. (1.7, 6.3)
No global maximum or minimum

b. (x) = – 3x2 + 10x – 6
(x) = 0  x =  = 2.5485... or 0.7847...
(x) = – 6x + 10; (x) = 0  x =  = 1.6666...

c. (0.7847...) = 5.2915... > 0, confirming local
minimum

d.  Critical and inflection points occur only where f ,
, or  is undefined (no such points exist) or is

zero (all such points are found above).

35.  a.

Max. (– 3, 82), (– 1, 50), (2, 77);  min. (– 2, 45),
(1, 18); p.i. (– 1.5, 45.7),  (0.2, 32.0)
Global maximum is (– 3, 82), global minimum
is (1, 18).
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 b.  (x) = 12(x + 2)(x – 1)(x + 1)
 (x) = 0  x = – 2, – 1, 1
 (x) is undefined  x = – 3, 2
 (x) = 12(3x2 + 4x – 1)
 (x) = 0  x =  = 0.2152... or
 –1.5485...
 (x) is undefined  x = – 3, 2

 c.  (– 2) = 36 > 0, confirming local minimum
 d.  Critical and inflection points occur only where f,

 , or is undefined (at endpoints) or is zero (all
 such points are found above).

37.  (x) = 6ax + 2b  (x) = 0 at x = – b/(3a)
 Because the equation for (x) is a line with nonzero
 slope, (x) changes sign at x = – b/(3a), so there is a
 point of inflection at x = – b/(3a).

39.  f(x) = 

41.  a. (– 0.8) = 1.92
(– 0.5) = 0.75
(0.5) = 0.75
(0.8) = 1.92

 b.  The slope seems to be decreasing from – 0.8
 to – 0.5; (x) = 6x < 0 on – 0.8  x  – 0.5, which
 confirms that the slope decreases.
 The slope seems to be increasing from 0.5 to 0.8;

(x) = 6x > 0 on 0.5  x  0.8, which confirms

 

 that the slope increases.
 c.  The curve lies above the tangent line.

43.  a.

 b.

c.

d.

e.

45.  f(0) = 1 and g(0) = 1
(0) = 0.06 and (0) = 0.06
(0) = 0.0036 and (0) = 0.0036
(0) = 0.000216 and (0) = 0.000216

But f(10) = e0.6 = 1.822...  g(10) = 1.816;
(10) = 0.109...  (10) = 0.1068

47.  Answers will vary.

Problem Set 8-3
1.  Width: 150 ft;  length: 100 ft

3.  a.  20  x  93.3333...
b.  A(x) = 22500 – 450x + 4.25x2

c.  The graph shows a maximum at endpoint
x = 93.3333... , so the greatest area  17 , 522 ft2.
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5.  a.  6.32 cm square by 3.16 cm deep
b.  Conjecture: An open box with square base of side

length x and fixed surface area A will have
maximum volume when the base length is twice
the height, which occurs when x = 

7.  The minimum cost is $523.47.
Justifications will vary.

9.  The closest point to the origin is
(x, y)  (– 0.4263, 0.6529).
Justifications will vary.

11.  The shortest ladder has length   11.18 ft.
Justifications will vary.

13.  The maximum volume occurs with rectangle 400 mm
wide (radius) and 200 mm high.

15.  a.  V = 141.2185  = 443.6510... cm3

b.  A = 2 (141.2185r–1 + r2 )
c.  Minimum at r =  = 4.1332...

h = 2  = 8.2664...
So radius  4.1 cm, and height  8.3 cm.
Because altitude = 2  radius, height = diameter.
So the minimal can is neither tall and skinny nor
short and fat.

d.  The normally proportioned can is taller and
thinner than the minimal can.
1.465...  1.5% of metal would be saved

e.  The savings is about $6.4 million!

17.  a.  r =  = 3.5236... , h =  = r
The minimal cup has r  3.52 cm, h  3.52 cm.

b.  d:h = 2r:h = 2:1
c.  The savings is about $754,000/yr. Proposals will

vary.
d.  r2h = V  h = (V/ )r–2

Minimize A(r) = r2 + 2 rh = r2 + 2Vr– 1 .
(r) = 2 r – 2Vr– 2 = 0 at r = 
(r) = 2  + 4Vr– 3 > 0 for all r > 0, so this is

a minimum.
Minimal cup has r =  ,
h = (V/  )(V/ )–2/3 =  = r

19.  Maximum area = 1.1221... at x  0.8603...
21.  a.  Limit = 1/2

b.  Maximum area does not exist, but the area
approaches a limit of 1/2 as x approaches 0.

23.  a.  The maximum rectangle has width =  and
length = 6.
Justifications will vary.

b.  The maximum rectangle has width = 2 and
length = 8.
Justifications will vary.

c.  No. The maximum-area rectangle is  by 6. The
maximum-perimeter rectangle is 2 by 8.

25.  a.  V(x) = 2 x2

b.  The maximal cylinder has radius =  = 8.1649... ,
height =  = 11.5470..., and volume =  =
2418.39... .
Justifications will vary.

c.  Height = radius · 
27.  a.  The maximum lateral area occurs at radius

x = 2.5 cm.

b.  The maximum total area is with the degenerate
cylinder consisting only of the top and bottom,
radius 5 and altitude 0.
Justifications will vary.

29.  Maximum volume = 32   174.1 m3;
radius =    3.27 m; height =   5.20 m
Justifications will vary.

31.  a.  If f(c) is a local maximum, then f(x) – f(c) = 0 for
x in a neighborhood of c.
For x to the left of c, x – c < 0.
Thus   0 and
 (c) =   0.
For x to the right of c, x – c > 0.
Thus   0 and
 (c) =  = 0.
Therefore, 0  (c)  0.
Because (c) exists, (c) = 0 by the squeeze
theorem, Q.E.D.

b.  If f is not differentiable at x = c, then (c) does
not exist and thus cannot equal 0.

c.  The converse would say that if (c) = 0, then f(c)
is a local maximum. This statement is false because
 f(c) could be a local minimum or a plateau point.

33.  Answers will vary.

Problem Set 8-4

1.  a.  dV = 2 (4x – x3) dx
b.  V = 8  = 25.1327...
c.  V = 8  = 25.1327... , which is the same answer.

3.  V = 85.5   268.6061...
Circumscribed cylinder has volume 329.8... , which is
a reasonable upper bound for the calculated volume.

5.  V = 64   201.0619...
Circumscribed cylinder has volume 301.5... , which is
a reasonable upper bound for the calculated volume.

7.  V = 11.6   36.4424...
Circumscribed cylinder has volume 65.9... , which is a
reasonable upper bound for the calculated volume.

9.  V = 69.336   217.8254...
Circumscribed cylinder has volume 226.1... , which is
a reasonable upper bound for the calculated volume.
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11.  V = 145    458.1489...
Circumscribed cylinder has volume 769.6... , which is
a reasonable upper bound for the calculated volume.

13.  V = 51   161.5676...
Circumscribed cylinder has volume 376.9... , which is
a reasonable upper bound for the calculated volume.

15.  V = 124.2   390.1858...
Circumscribed cylinder has volume 1055.5... , which
is a reasonable upper bound for the calculated
volume.

17.  V   163.8592...
Circumscribed cylinder has volume 316.1... , which is
a reasonable upper bound for the calculated volume.

19.  V = 11.6   36.4424... , which agrees with the
answer to Problem 7.

21.  V = 19.2  = 60.3185789...
R8 = 19.3662109...  = 60.8407460...
R100 = 19.2010666...  = 60.3219299...
R1000 = 19.2000106...  = 60.3186124...
Rn  is approaching 19.2   as n increases.

23.  a.  dV = 180  cos2 t sin t dt
V = 60  = 188.4955...

b.  V = 60    188.4955... , which agrees with the
volume found in part a.

c.  V = 210 2  2072.6169...

Problem Set 8-5

1.  a.

b.  L  6.7848...
c.  L  6.7886...

3.  a.

b.  L  14.4394...
c.  L  14.4488...

5.  a.

b.  L  15.8617...
c.  The low point is (2.5, –3.25). Chords from (1, – 1)

to (2.5, – 3.25) and from (2.5, – 3.25) to (6, 9) have
combined length 15.4... , which is a reasonable
lower bound for L.

7.  a.

b.  L  18.2470...
c.  Chords from (– 1, 15) to (0, 16) and from (0, 16) to

(2, 0) have combined length 17.5... , which is a
reasonable lower bound for L.

9.  a.

b.  L  7.6043...
c.  Chords from x = 0.1 to x = 1 and from x = 1 to

x = e have combined length 7.3658... , which is a
reasonable lower bound for L.

11.  a.

b.  L  14.4488...
c.  The distance between the endpoints is 14.1809... ,

which is a reasonable lower bound for L.
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13.  a.

b.  L = 30
c.  Circle of radius 5 has circumference 31.4152... ,

which is close to the calculated value of L.

15.  a.

b.  L = 40
c.  The maximum/minimum values of x and y are

± . A circle of radius   has circumference
32.6483... , which is close to the calculated value
of L.

17.  a.

b.  L = (1453/2 – 1)  32.3153...
c.  The chord connecting the endpoints has length

32.2490... , which is a reasonable lower bound for L.

19.  a.

b.  L =   11.4470...
c.  Distance between endpoints is  = 11.4017... ,

which is a reasonable lower bound for L.

21.  y = 

L  4372.0861...  4372 feet

23.  Outer ellipse: L  692.5791...  692.6 m
Inner ellipse: L  484.4224...  484.4 m

25.  L =  = 4.6666...

27.  The spiral is generated as t goes from 0 to 7 .
L  77.6508...

29. A L

0 6.283185... (= 2 )
1 7.640395...
2 10.540734...
3 13.974417...

Doubling A doubles the amplitude of the sinusoid.
However, it less than doubles the length of the
sinusoid, for much the same reason that doubling
one leg of a right triangle does not double the
hypotenuse. In the limit as A approaches infinity,
doubling A approaches doubling the length.

31.  The function y = (x – 2)–1 has a vertical asymptote at
x = 2, which is in the interval [1, 3]. So the length is
infinite. Mae’s partition of the interval skips over the
discontinuity, as shown in the graph.

33.  Answers will vary.

Problem Set 8-6
1.  a.  S =  dx  64.1361...

b.  The inscribed cone has lateral surface area
50.9722... , which is a reasonable lower bound for S.

c.  S =  = 64.1361... , which agrees with
the answer to part a.

3.  S = 9.0242...

5.  S = 15.5181...

7.  S = 77.3245...

9.  S = (1.253/2 – 0.125) = 5.3304...

11.  S =  = 14.4685...

13.  S = 49.5  = 155.5088...

15.  S = 101  = 318.1735...

17.  a.  dS = 10  dx
b.   i.  S0,1 = 10

ii.  S1,2 = 10
iii.   S2,3 = 10
iv.  S3,4 = 10
v.  S4,5 = 10

c.  The two features exactly balance each other.
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19.  Pick a sample point in the spherical shell at radius r
from the center. The surface area at the sample point
is 4 r2. The volume of the shell is approximately
(surface area)(thickness).
dV = 4 r2 · dr
V = , Q. E. D

21.  S = 

23.  S = 
 165.7930...

Using the Cartesian equation,
dL = 
At x = ±5, dL involves divison by zero, which makes
it difficult to use the Cartesian equation for finding
the arc length of an ellipse.

25.  A circle of radius L has area L2 and circumference
2 L. The circumference of the cone’s base is 2 R.
The arc length of the sector of the circle of radius L
must be equal to this, so the sector is
(2 R)/(2 L) = R/L of the circle and has surface area
S =  L2(R/L) = RL , Q.E.D.

Problem Set 8-7

1.  a.  A = 50   157.0796...
b.  The calculated area is twice the area of the circle

because the circle is traced out twice as 
increases from 0 to 2 . Although r is negative for

 <  < 2  , dA is positive because r is squared.

3.  a.  The calculator graph confirms that the text figure
is traced out once as  increases from 0 to 2 .

b.  A = 20.5   64.4026...
c.  L  28.8141...

5.  a.  The calculator graph confirms that the text figure
is traced out once as  increases from 0 to 2 .

b.  A = 53.5   168.0752...
c.  L  51.4511...

7.  a.  The calculator graph confirms that the text figure
is traced out once as  increases from 0 to 2 .

b.  A = 37.5   117.8097...
c.  L = 40

9.  a.  The graph makes one complete cycle as 
increases from 0 to .

b.  A = 0.25   0.7853...
c.  L  6.6824...

11.  Right loop: – /4    /4
Area of both loops: 49

13.  Intersections:  = cos–1(2/3) = ±0.8410... + 2 n
A = 26 cos–1(2/3) – (4/3)   18.8863...

15.  a.  L  89.8589...

b.  A =   3 = 25.1925...

17.  a.

L  31.0872...
b.

A(1) = A(2) = A(3) = 12.5
In general, A(  ) = 12.5, which is independent of
the value of  .

19.  Answers will vary.

21.  a.  Slope  – 1.5
b.  

At  = 7, dy/dx = – 1.54338... , which confirms the
answer found graphically.

Problem Set 8-8
R0.  Answers will vary.
R1.  a.

b.  (x) = 3x2 – 18x + 30, (x) = 6x – 18
(x) = 3x2 – 18x + 27, (x) = 6x – 18
(x) = 3x2 – 18x + 24,  (x) = 6x – 18

c.  h(x) has (x) = 0 at x = 2 and x = 4.
At x = 2 there is a local maximum.
At x = 4 there is a local minimum.
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d.  g(x) has a horizontal tangent at x = 3, but no
maximum or minimum.

e.  Each function has a point of inflection at x = 3,
where the second derivative, 6x – 18, equals zero.

R2.  a.

b.

c.  i.  ( x ) = 

ii.  Zooming in shows that there is a local minimum
cusp at (0, 0) and a local maximum with zero
derivative at x  0.3.

(x) = 0 at x = (2/3)3 = 8/27, and  (x) is
undefined at x = 0, thus locating precisely the
minimum and maximum found by graph.
Because there are no other critical values of x,
there are no other maximum or minimum
points.

iii.   (x) is undefined at x = 0, and  (x) < 0
everywhere else;   never changes sign, so there
are no inflection points.

iv.  f(0) = 0, f(8/27) = 4/27, f(5) = – 2.0759...
Global maximum at (8/27, 4/27)
Global minimum at (5, – 2.0759...)

d.  Local minimum at (0, 0), local maximum at
(2, 0.5413...), and points of inflection at
(0.5857... ,  0.1910...) and (3.4142... ,  0.3835...)

R3.  a.  The optimal battery has cells  = 2.4152...
cm wide and 10  = 4.1403... cm long, giving
a battery of overall dimensions about 14.5 in. by
4.1 in., which is longer and narrower than the
typical battery. Minimal wall length does not seem
to be a major consideration in battery design.

b.  The maximum rectangle has x =  = 1.4736...
and y = 4.8.

R4.  a.  V = 0.4   1.2566...
b.  V = 0.4   1.2566... , which is the same.
c.   i.  V = 8   25.1327...

ii.  V = 51.2   160.8495...
iii.   V = 55   174.2536...
iv.  V = 64   201.0619...

R5.  a.  L =  dx  6.1257...
b.  L = (21.253/2 – 1) = 28.7281...

Distance between the endpoints is
 = 27.8567..., so the answer is

reasonable.
c.  L  25.7255...

R6.  a.  S =  (1453/2 – 1) = 203.0436...
The disk of radius 8 has area 64  = 201.0619... ,
so the answer is reasonable.

b.  S = 2 (tan x + 1)   20.4199...
c.  S   272.0945...

R7.  a.  L  32.4706...
b.  A =  3 = 38.7578...
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CHAPTER 9

Problem Set 9-1
1.  V = 3.5864...
3.   (x) dx =  x cos x dx +  sin x dx

5.  V = 2 – 2

7.  The method involves working separately with the
different “parts” of the integrand. The function
 f(x) = x sin x was chosen because one of the terms in
its derivative is x cos x, which is the original
integrand. See Section 9-2.

Problem Set 9-2
1.  –x cos x + sin x + C

3.  

5.  

7.  

9.  x2ex – 2xex + 2ex + C
11.  x ln x – x + C

Problem Set 9-3

1.  

3.  – x4 cos x + 4x3 sin x + 12x2 cos x – 24x sin x
– 24 cos x + C

5.  

7.  

9.  

11.  

13.  

15.  

17.  

19.  5x ln x – 5x + C

21.  

23.  

25.  

27.  

29.  

31.  

33.  – cos x + C

35.  – ln |csc x + cot x | + C

37.  – ln | cos x | + C
39.  For the first integral, Wanda integrated cos x and

to differentiate  cos x dx and integrate 2x, effectively
canceling out what she did in the first part. She will
get  x2 cos x dx = x2 sin x – x2 sin x +  x2 cos x dx,
which is true, but not very useful!

41.  After two integrations by parts,  ex sin x dx =
–ex cos x + ex sin x –  ex sin x dx, but after two more
integrations,  ex sin x dx = – ex cos x + ex sin x +
ex cos x – ex sin x +  ex sin x dx. Two integrations
produced the original integral with the opposite sign
(which is useful), and two more integrations reversed
the sign again to give the original integral with the
same sign (which is not useful).

43.

Maximum at x = 1
A = – 4e–3 + 1 = 0.8008...

45.  V = 5 (ln 5)2 – 10  ln 5 + 8  = 15.2589...

47.  For integration by parts,  u dv = uv –  v du.
Applying limits of integration gives

The quantity (bd – ac) is the area of the “L-shaped”
region, which is the area of the larger rectangle
minus the area of the smaller one. Thus, the integral
of u dv equals the area of the L-shaped region minus
the area represented by the integral of v du.
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49.  

Problem Set 9-4

1.  

3.  

5.  

7.  

9.  

11.  

13.  

15.  

17.  

19.  a.  y = cos x is on top; y = cos3 x is in the middle;
 y = cos5 x is on the bottom.

b.  For y = cos x, area  2.0000...
For y = cos3 x, area  1.3333...
For y = cos5 x, area  1.06666...

c.  A1 = 2, A3 = 4/3, A5 = 16/15

d.  Based on the graphs, the area under cos x should
be greater than that under cos3 x, which in turn is
greater than the area under cos5 x. This is exactly
what happens with the calculated answers:
A1 > A3 > A5.

e.

f.  

21.  

The answer is half the derivative of secant plus half
the integral of secant.

23.  

= sin3 ax

Problem Set 9-5

1.  

3.  

5.  

7.  

9.  

11.  

13.  

15.  

17.  

19.  

21.  

23.  (sec10 20) x + C

25.  
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27.  – cot x + C

29.  

31.  a.  

b.  

Because the integral finds the area above minus
the area below, this calculation shows the two
areas are equal.

33.  V =  2/2
35.   = 29.1012... , which agrees

with the numerical answer.

37.  Answers will vary.

Problem Set 9-6

1.  

3.  

5.  

7.  

9.  

11.  

13.  

15.  

17.  a.  

b.  

, which agrees with part a. Moral:
Always check for an easy way to integrate before
trying a more sophisticated technique!

19.  

21.  

23.  50 sin–1 0.8 + 25 sin (2 sin–1 0.8) – 50 sin–1(– 0.3)
– 25 sin [2 sin–1(– 0.3)] = 99.9084...
Numerical integration: 99.9084...

25.   = 75.3828...

Numerical integration: L = 75.3828...

27.

29.  Rotating about the y-axis: V = 

Rotating about the x-axis: V = 

31.  

33.  A = ab, as in Problem 28.
With this method, you get  sin2 t dt directly. With
trigonometric substitution in Problem 28, you get

 t dt, indirectly.

35.  For the sine and tangent substitution, the ranges of
the inverse sine and inverse tangent make the
corresponding radical positive. For the secant
substitution, the situation is more complicated, but
still  gives an answer of the same algebraic form as if
x had been only positive.

Problem Set 9-7

1.  4 ln |x – 1| + 7 ln |x – 2| + C

3.  

5.  – 7 ln |x + 5| + 7 ln |x + 2| + C

7.  2 ln |x + 1| + 3 ln |x – 7| + 4 ln |x + 2| + C

9.  –ln |x + 3| + 2 ln |x + 1| + 3 ln |x – 2| + C

11.  

13.  

15.  ln |x + 5| + 3 ln |x + 1| + 2(x + 1)–1 + C

17.  

19.  a.  

b.  y(1) = 69.4531...  69 students
 y(4) = 967.8567...  968 students
 y(8) = 999.9888...  1000 students
Everyone knows by the end of the day!

c.  The rumor was spreading fastest when
t =  ln 99 = 2.2975... h, when 500 students had
heard the rumor.

d.

The curve follows the slope-field pattern.
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21.  

 + 5 in 6 (I’Hospital’s rules)

= 5 ln 6 = 8.9587... ,
so the area does approach a finite limit.

23.  a.  

b.  

c.  

d.  Each can be transformed to ln 

Problem Set 9-8

1.  

3.  

5.  

7.  
Numerical integration gives 3.4478... . The answers
are the same to at least 4 decimal places.

9.  Both methods give A = 1.

Problem Set 9-9

1.

3.  (x) = 3 tanh2 x sech2 x

5.   cosh6 x + C

7.  (x) = – csch x coth x sin x + csch x cos x

9.   tanh 4x + C

11.  (x) = 3x2 coth x – x3csch2 x

13.  ln (cosh 3) – ln (cosh 1) = 1.875547...

15.  (x) 

17.  cosh 1 – sinh 1 = e–1 = 0.36787...

19.  

21.  

23.  

25.  a.  The horizontal force is given by the vector (h, 0)
and the vertical force is the vector (0, v), so their
sum, the tension vector, is the vector (h, v), which
has slope . Because the tension vector points
along the graph, the graph’s slope, , also
equals .

b.  v = weight of chain below (x, y ) = s · w

c.  

d.  

e.  C = 0
f.  

g.  

27.  a.  

 y(0) = 87.3307...  87.3 ft
b.  L = 1000 sinh 0.3 = 304.5202...  304.5 ft

Weight = 243.6162...  243.6 lb
c.  The maximum tension is at the ends, at 150 ft.

T(150) = 400 cosh 0.3 = 418.1354...  418.1 lb
d.  h = 901.3301...  901.3 lb

29.  a.  S = 5.07327...  5.07ft2

b.  Cost = $578.35
c.  V = 1.25317...  1.253 ft3

31.  a.  (1) = – csch 1 coth 1 = – 1.1172855...
b.  (1)  – 1.11738505...

The answers differ by 0.0000995... , which is about
0.0089% of the actual answer.

33.  By parts:  sinh 2x + C
By transforming to exponential form: 
Transforming to exponential form is easier!
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35.  a.  

b.  

 1 – tanh2 x = sech2 x

c.  

 coth2 x – 1 = csch2 x

37.  a.  On the circle, L = 

On the hyperbola, L = cosh 2 – 1 = 2.762... . So the
length of the curve is greater than 2, Q.E.D.

b.  The area of the triangle that circumscribes the
sector is 0.5(2 sinh 2 cosh 2) = sinh 2 cosh 2. The
area of the region between the upper and lower
branches of the hyperbola from u = 1 to u = cosh 2
is 
Thus the area of the sector is cosh 2 sinh 2 –
11.644958... = 2, Q.E.D.

c.  By definition of the circular functions, x is the
length of the arc from (1, 0) to (cos x sin x). So the
total arc has length 2x. The circumference of a
unit circle is 2   and its area is . Thus
Asector = 

d.  Area of circumscribing triangle = cosh x sinh x
Area between branches = sinh x cosh x – x
Area of the sector = cosh x sinh x –
(sinh x cosh x – x) = x, Q.E.D.

Problem Set 9-10

1.  a.  It might converge because the integrand
approaches zero as x approaches infinity.

b.  The integral converges to .

3.  a.  It might converge because the integrand
approaches zero as x approaches infinity.

b.  The integral diverges.

5.  a.  It might converge because the integrand
approaches zero as x approaches infinity.

b.  The integral diverges.

7.  a.  It might converge because the integrand becomes
infinite only as x approaches zero.

b.  The integral converges to 1.25.

9.  a.  It might converge because the integrand
approaches zero as x approaches infinity.

b.  The integral converges to /2.

11.  a.  It might converge because the integrand becomes
infinite only as x approaches 0 or 1.

b.  The integral diverges.
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13.  a.  It might converge because the integrand
approaches zero as x approaches infinity.

b.  The integral converges to 2.5e–0.8 = 1.1233... .
15.  a.  It does not converge because the integrand is

undefined for x < 0.

b.  Not applicable

17.  a.  It might converge because the integrand seems to
approach zero as x approaches infinity.

b.  The integral converges to 1.

19.  a.  It diverges because the integrand does not
approach zero as x approaches infinity.

b.  Not applicable

21.  As b   ,  cos x dx oscillates between – 1 and 1
and never approaches a limit. Similarly,  sin x dx
oscillates between 0 and 2.

23.  a.  A   , The area does not approach a finite limit
because the improper integral diverges.

b.  The volume converges to .
c.  The volume diverges, because  2  dx =  .

d.  False. The volume could approach a constant as in
part b or become infinite as in part c.

25.  a.  f(1) = 1, f(2) = 2, f(3) = 6
b.  Conjecture:

 f(4) = 4f(3) = 24 = 4!
 f(5) = 5f(4) = 120 = 5!
 f(6) = 6f(5) = 720 = 6!

c.  f(x) = x f(x – 1), Q.E.D.
d.  Part a shows that f(1) = 1 = 1!.

Part c shows that f(n) = n f(n – 1) =
n(n – 1)f(n – 2) = n(n – 1)(n – 2) . . . (2)(1) = n!, Q.E.D.

e.   t3e–t dt < 0.000001 for b  24.
f.  0.5!  t0.5e–tdt   t0.5e–t dt  0.886227311...

From the graphs, t0.5e–t  < t3 e–t  for x  24.
The error in 0.5! from stopping at b = 24 is the
area under the “tail” of the graph from b = 24.
Error =  t0.5e–t dt <  t3e–t dt < 0.000001
The difference between the tabulated value of 0.5!
and the value calculated here is 0.8862269255 –
0.866227311... = – 0.000000386, which is less in
absolute value than 0.000001. Note, however, that
the difference is negative because the calculated
value is larger than the tabulated value. This
observation means either that the tabulated value
is incorrect or that there is more inaccuracy in the
numerical integration algorithm than there is in
the error caused by dropping the tail of the integral.

g.  1.5! = 1.5(0.5!) = 1.3293...
2.5! = 2.5(1.5!) = 3.3233...
3.5! = 3.5(2.5!) = 11.6317...

h.  0! =  t0e–t dt = 1, Q.E.D.
i.  (– 1)! = 0!/0, which is infinite. So (– 2)! and (– 3)!,

which equal (– 1)!/(– 1) and (– 2)!/(– 2), are also
infinite. However,
(– 0.5)! = 0.5!/(0.5) = 1.77245...
(– 1.5)! = (– 0.5)!/(– 0.5) = – 3.54490...
(– 2.5)! = (– 1.5)!/(–1.5) = 2.36327... ,
all of which are finite.

j.  0.5! =  = 0.886226925...

27.  a.  

b.  
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c.  The integral converges to 6/ln 2 = 8.6561... .
d.  The integral is defined by dividing the interval into

Riemann partitions and adding the subintervals.
But the Riemann partitions may be chosen so that
the discontinuities are at endpoints of
subintervals. Then the subintervals corresponding
to each continuous piece may be added separately.

e.  False. Some discontinuous functions (notably,
piecewise continuous functions) are integrable.

Problem Set 9-11

1.   = 3 sec 3x tan2 3x + 3 sec3 3x

3.  

5.  (x) = –3(3x + 5)–2

7.  

9.  (x) = 20 tan4 4x sec2 4x

11.  

13.  

15.  6x – 23 ln |x + 2| + C

17.  

19.  

21.   = 3x2ex + x3ex = x2ex (3 + x)

23.  x3ex – 3x2 ex + 6xex – 6ex + C

25.  (x) = (1 – x2)–1/2

27.  

29.  

31.  

33.  (x) = sech2 x

35.  ln | cosh x | + C

37.   = e2x(2 cos 3x – 3 sin 3x)
39.  

41.  (x) = x2(3 ln 5x + 1)

43.  

45.  

– (x + 4)–1]

47.  – ln |x + 2|+ 3 ln |x + 3|– 2 ln |x + 4|+ C

49.   = –3 cos2 x sin2 x + cos4 x

51.  

53.  

55.  

57.  (x) = 12x3(x4 + 3)2

59.  

61.  

63.  

65.  (x) = (x4 + 3)3

67.  e2 = 7.3890...

69.  (x) = xex + ex

71.  

73.  

75.  

77.  

79.  

81.   cosbx + C  (for a, b

not both 0); x + C (for a = b = 0)

83.  

85.   (for c, d not both 0); C (underfined for

c = d = 0)

87.  

89.  

91.  

93.  (x) = 2x sin ax + ax2 cos ax

95.   cos ax + C  (for a  0);

C (for a = 0)

97.   cosh ax + C  (for a  0); C  (for a = 0)

99.  

a = 0)

101.  
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103.  

105.  

107.  a.  Substitute t = x/2.
b.  Multiply the right side of each equation by

, and simplify.

c.  Substitute x = 2 tan–1 u into each equation.
d.  

e.  tan (x/2) + C

109.  – cot (x/2) + C
111.  – cot (x/2) – x + C

Problem Set 9-12
1.  Answers will vary.

Problem Set 9-13
R0.  Answers will vary.

R1.  (x) = cos x – x sin x

= sin 4 – 4 cos 4 – sin 1 + cos 1 = 1.5566...
Numerically,  x sin x dx  1.5566...

R2.  

R3.  a.  

b.  

c.  

d.  

R4.  a.  

b.  

c.  

R5.  a.  

b.  

c.  

d.  

e.  (tan9 32) x + C

f.  A = 

R6.  a.  

b.  

c.  

d.  A = 25(sin–1 0.8 – sin–1 0.6) = 7.0948...
R7.  a.  ln |x + 1| + 5 ln |x – 4| + C

b.  3 ln |x – 1| + 4 ln |x + 2| – 2 ln |x – 3| + C
c.  

d.  

e.  

R8.  a.

b.  

c.  

d.  A = 1
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R9.  a.

b.

c.  (x) = – x2 sech x tanh x + 2x sech x

d.  

e.  

f.  

g.  cosh2 x – sinh2 x

= 1, Q.E.D.

h.  

 y(10) = 68.5961...
 y = 20  x = ±6.6324...

R10.  a.  The integral converges to 5.
b.  The integral diverges.
c.  The integral converges to 6.

d.  The integral converges to  = 3.333... .

e.   dx converges if p > 1; otherwise, it diverges.

R11.  a.  

b.  

c.  ex sech2 ex

d.  

e.  (x) = – x(1 – x2)–1/2

f.  

g.  

h.  

R12.  For (9 – x2)–1/2x dx, the x dx can be transformed to
the differential of the inside function by multiplying by
a constant, ,
and thus has no inverse sine.
For (9 – x2)–1/2 dx, transforming the dx to the
differential of the inside function, – 2x dx, requires
multiplying by a variable. Because the integral of a
product does not equal the product of the two
integrals, you can’t divide on the outside of the
integral by – 2x. So a more sophisticated technique
must be used, in this case, trigonometric substitution.
As a result, an inverse sine appears in the answer:

CHAPTER 10

Problem Set 10-1

1.  5.3955...  5.40 min

3.  100.0231...  100.0 ft upstream
5.  

Problem Set 10-2
1.  a.  Positive on [0, 2); negative on (2, 6]

b.  [0, 2): 14  ft; (2, 6]: 26  ft

c.  Displacement = – 12 ft; distance = 41  ft

d.  Displacement = 14  + (–26  ) = – 12 ft;
distance = 14  + 26  = 41  ft

e.  – 4 (ft/s)/s
3.  a.  Positive on (8, 11]; negative on [1, 8)

b.  [1, 8): – 4.9420...  4.94 km;
(8, 11]: 4.7569...  4.76 km

c.  Displacement = – 0.1850...  – 0.19 km;
distance = 9.6990...  9.70 km

d.  Displacement = – 4.9420... + 4.7569... = – 0.1850...
 –0.19 km; distance = –(–4.9420...) + 4.7569...

= 9.6990...  9.70 km
e.  0.1851...  0.19 (km/h)/h

5.  ;

distance = 

7.  v(t) = – 6 cos t – 3; displacement
= –9.4247...  –9.42 km; distance
= 13.5338...  13.53 km

9.  a.  4 s
b.  Displacement = 1  ft
c.  Distance = 4 ft
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11.  a.  Displacement = 300 ft
b.  Distance = 500 ft

13.  a.  tend aav vend vav  send
s (mi/h)/s mi/h mi/h mi

0 — 0 — 0
5 2.95 14.75 7.375 0.0102...

10 3.8 33.75 24.25 0.0439...
15 1.75 42.5 38.125 0.0968...
20 0.3 44 43.25 0.1569...
25 0 44 44 0.2180...
30 0 44 44 0.2791...
35 0 44 44 0.3402...
40 –0.2 43 43.5 0.4006...
45 –0.9 38.5 40.75 0.4572...
50 –2.6 25.5 32 0.5017...
55 –3.5 8 16.75 0.525
60 –1.6 0 4 0.5305...

b.  At t = 60, vend = 0,  the train is at rest.
c.  The train is just starting at t = 0; its acceleration

must be greater than zero to get it moving, even
though it is stopped at t = 0. Acceleration and
velocity are different quantities; the velocity can
be zero but changing, which means the
acceleration is nonzero.

d.  Zero acceleration means the velocity is constant,
but not necessarily zero.

e.  0.5305...  0.53 mi between stations

15.  a.  a =  when

t = 0  C = v0  v = v0 + at

b.  ;

Problem Set 10-3
1.  a.  y av = 41

b.  The rectangle has the same area as the shaded
region.

c.  c = 3.4028...

3.  a.  yav = 2.0252...
b.  The rectangle has the same area as the shaded

region.

c.  c = 3.7053...

5.  a.  yav = 

b.  The rectangle has the same area as the shaded
region.

c.  c = 

7.  yav = 

9.  yav = 

11.  v(25) = 120 ft/s; displacement = 2500 ft;
vav = 100 ft/s

13.  Consider an object with constant acceleration a, for a
time interval [t0, t1 ].
v(t) =  a dt = at + C
At t = t0, v(t) = v0  v0 = at0 + C  C = v0 – at0 .

 v(t) = at + v0 – at0 = v0 + a(t – t0) vav =

= v0 +  a(t1 – t0 )

The average of v0 and v1 is

 (v0 + v1 ) =  (v0 + v0 + a(t1 – t0 ))

= v0 +  a(t1 – t0 )

 vav = the average of v0 and v1 , Q.E.D.
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15.  a.  yav = 52, or $52,000; cost of inventory = $260.00
b.  At x = 12 they may have had a large sale, dropping

the inventory from $70,000 to $40,000. There is
no day on which the inventory is worth $52,000.

17.  yav = 12.875  12.9° C (by the trapezoidal rule)
The average of the high and low temperatures is 14° C,
which is higher than the actual average. Averaging
high and low temperatures is easier than finding the
average by calculus, but the latter is more realistic for
such applications as determining heating and
air-conditioning needs.

19.  Average = ; A = 55  = 172.78... V; The average
value of one arc of y = sin x is ,
and y = sin x has a maximum value of 1. A horizontal
stretch does not affect the average value. Write a
proportion to find the maximum of a sinusoidal curve
with an average value of 110: , so m = 55 .

Problem Set 10-4

1.  Ann should swim toward a point about 21.8 m
downstream.

3.  The pipeline should be laid 600 m along the road
from the storage tanks, then straight across the field
to meet the well.

5.  a.  For the minimal path, x = 

b.  For the minimal path, x = 400.

7.  

She should swim 100 – 72 = 28 m, then dive.
The algebraic solution is easier than before because
no algebraic calculus needs to be done.
Mathematicians seek general solutions to find
patterns that allow easier solution of similar
problems.

9.  A graph or table of times for paths close to the
optimum shows that a near miss will have virtually
no effect on the minimum cost.

11.  47.8809...  47.9 yd from the perpendicular line
from the ship to the shore

13.  

For the minimal path,  = 0. Thus,

15.  Answers will vary.

Problem Set 10-5

1.  Minimum is D(1) = 2, or 2000 mi; maximum is
D(3) = , or about 3333 mi

3.  x = 0.5

5.  a.

b.  Fran should study for 3 h.
c.  i.  G(4) is about 1 point less.

ii.  G(2) is about 1 or 2 points less.

7.  a.

b.  Maximum V : r = 6  in., h = 2 in.;
maximum A: r = 10 in., h = 0 in.
The maximum volume and maximum area do not
occur at the same radius.

9.  – 0.1286...  0.129 m/min
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11.  a.  w = 1000 + 15t (lb); p = 0.90 – 0.01t ($/lb)
A = 900 + 3.5t – 0.15t2 ($)

b.  (11 ) = 0
A at t = 11  is a maximum, not a minimum,
because  goes from positive to negative there.

c.  $920.42

Problem Set 10-6

1.

3.  a.  (1) = – 0.8186...  + 3.7560...
x is decreasing at approximately 3.84 cm/s.

b.  2.43 cm; 2.78 cm
c.   = (– 2et sin t )  + (2et cos t )

5.  a.  (t) = (6 cos 0.6t)  + (– 4.8 sin 1.2t)
 (t) = (–3.6 sin 0.6t)  + (– 5.76 cos 1.2t)

b.  (0.5) = 2.9552...  + 3.3013...
(0.5) = 5.7320...  – 2.7102...
 (0.5) = – 1.0638...  – 4.7539...

These vectors make sense because the head of  is
on the graph,  is tangent to the graph, and 
points to the concave side of the graph.

c.  The object is speeding up, because the angle
between  and  is acute.

d.   (0.5) · (0.5) = 6.7863... , so the angle is acute.
 t(0.5) = 0.9676...  – 0.4575...
 n(0.5) = – 2.0314...  – 4.2964...

See the graph in part b.
e.  The object is speeding up at

1.0703...  1.07 (ft/s)/s.
f.  (7) = – 8.7157...  – 2.0771...

(7) = – 2.9415...  – 4.1020...
 (7) = 3.1376...  + 2.9911...

See the graph in part b.

The object is slowing down, because the angle
between  and  is obtuse.

g.  (0) · (0) = 0, so (0) and (0) are
perpendicular. This means the object is neither
slowing down nor speeding up at t = 0.

7.  a.

b.  See the graph in part a.

c.  For  + , show that ,
which is the equation of an ellipse.

d.  See the graph in part a.
e.  See the graph in part a. The direction of each

acceleration vector is the opposite of the
corresponding position vector and thus directed
toward the origin.

9.  a.  (x) = x  + x2 ; (x) = 

b.  (2) = – 3  – 12
Speed = | (2)| =   12.4 cm/s

c.

This is reasonable because (2) points along the
curve to the left, indicating that x is decreasing.

d.  (x) = 18  ; (2) = 18
See the graph in part c.

e.  t(2) = 4.2352...  + 16.9411...
n(2) = – 4.2352...  + 1.0588...

See the graph in part a.
t(2) is parallel to the curve. n(2) is normal to

the curve and points inward to the concave side.
f.  The object is slowing down, when x = 2 because

the angle between (2) and (2) is obtuse, as
shown by the graph and by the fact that the dot
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product is negative. Also, t(2) points in the
opposite direction of (2).

g.  

11.  12.0858... ft

13.  a.  (t) = – 130  – 32
b.  (t) = (– 130t + 60.5)  + (– 16t2 + 8)
c.  The ball reaches the plate at t = 60.5/130  0.46 s.

The ball passes 4.5346... ft above the plate, which
is slightly above the strike zone.

d.  At t = 0, dx/dt = 200 cos 15°, dy/dt = 200 sin 15°;
(t) = (200t cos 15°)  + (–16t2 +200t sin 15 ° + 3)

e.  Phyllis will make the home run because the ball is
about 41.6 ft above the wall when x = 400.

15.  a.  d = 90 + 150 cos t
b.  (1) = – 212.1270...  – 13.7948... ;

speed = 212.5750...  212.6 cm/s
c.  (1) = 76.2168...  – 348.5216...

t(1) = 53.3266...  + 3.4678...
n(1) = 22.8902...  – 351.9894...

Annie is slowing down at 53.4392...  53.4 cm/s.
17.  a.  (t) = (5 – 12 cos t)  + (– 12 sin t) ;

(t) = (12 sin t)  + (– 12 cos t)
b.  (2.5) = 14.6137...  – 7.1816... ;

(2.5) = 7.1816...  + 9.6137...

c.  t(2.5) = 1.9791...  – 0.9726... ;
n(2.5) = 5.2024...  + 10.5863...

d.  (2.5) is reasonable because its graph points
along the path in the direction of motion. (2.5) is
reasonable because it points toward the concave
side of the path. The roller coaster is traveling at
| (2.5)| = 16.2830... ft/s. Its speed is increasing at
2.2052... ft/s2 because the scalar projection of

(2.5) onto (2.5) = 2.2052... .
e.   (0 + 2 n) = 0  – 12 , which points straight

down.
(  + 2 n) = 0  + 12 , which points straight up.

f.  78.7078...  78.7 ft

19.  (1) = (8 cos 0.8)  + (– 6 sin 0.6)  + 3 ;
(1) = (– 6.4 sin 0.8)  + (– 3.6 cos 0.6)  – 1.5
(1) · (1) = – 20.0230... , so the object is slowing

down because the dot product is negative.

Problem Set 10-7

R0.  Answers will vary.

R1.  Popeye’s velocity becomes positive at t = 9 s. They
have moved 9 ft closer to the sawmill.
From t = 0 to t = 25: displacement = ; distance
= 

R2.  a.  i.

ii.  Displacement = – 3.8022...  – 3.8 cm
iii.   Distance = 10.8853...  10.9 cm

b.  aav = (aend + abegin )/2; vend = vbegin + aav · 5 s

t a aav vend

0 2 — 30 speeding up
5 8 5 55 speeding up

10 1 4.5 77.5      speeding up
15 0 0.5 80 neither
20 –10 –5 55 slowing down
25 –20 –15 –20 slowing down

R3.  a.  i.  vav = 2/  = 0.6366...
ii.  vav =
0iii.   vav =

0b.  i.  The average on [0, 6] is 18.
ii.  The rectangle has the same area as the shaded

region.

iii.   The average of the two values of f(x) at the
endpoints is zero, not 18.

R4.  a.  Turning at a point about 467 ft from the
intersection of the two sidewalks takes the
minimum time, although it takes only a second
longer to head straight for the English building.
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b.  The minimum cost is $122,000, obtained by going
7.5 km along the beach, then cutting across to the
island. This path saves about $29,600 over the
path straight to the island.

R5.  a.  i.  Maximum acceleration = 9 at t = 3; minimum
acceleration = –40 at t = 10

ii.  Maximum velocity = 36 at t = 6; minimum
velocity = –  at t = 10

iii.   Maximum displacement =  at t = 9;
minimum displacement = 0 at t = 0

b.  i.  Let t = number of days Dagmar has been saving.
Let V(t ) = real value (in constant day zero
pillars) of money in account after t days.

V(t) = 50t(0.50.005t  )
ii.  Dagmar’s greatest purchasing power will be after

about 289 days because (t) goes from positive
to negative at t = 288.5390... .

R6.  a.  i.  and ii.

b.  i. (1) = 7.7154...  + 3.5256...
(1) = 5.8760...  + 4.6292...
(1) = 7.7154...  + 3.5256...

ii.

iii.   Speed = 7.4804...  7.48 units/min
The object is speeding up at 8.2423... 
8.24 units/min2.

iv.  4.5841...  4.58 units
v.  (t) + (t) =

(5 cosh t + 5 sinh t)  + (3 sinh t + 3 cosh t)
The y-coordinate is 0.6 times the x-coordinate,
so the head lies on y = 0.6x, one asymptote of
the hyperbola.

CHAPTER 11

Problem Set 11-1

1.

F = 10.8268...  10.83 lb in the strip
W = 2.1653...  2.17 ft-lb

3.  Integral = 69.1289...

5.  W  = 80 ft-lb

Problem Set 11-2

1.  800 ft-lb

3.  50k

5.  1, 396, 752.0937...  1.4 million ft-lb

7.  a.  117, 621, 229...  117.6 million ft-lb
b.  250, 925, 288.4...  250.9 million ft-lb

9.  a.  1504.7320...  1504.7 in.-lb
b.  –566.9574...  567 in.-lb
c.  937.7746...  937.8 in.-lb
d.  Carnot (kar-N ); Nicolas L onard Sadi Carnot,

1796-1832, was a French physicist and a pioneer
in the field of thermodynamics.

Problem Set 11-3
1.  a.  m = 8.1419...k

b.  m = 108.1103...

3.  a.  m = 40.5 k
b.  m = 546.75 k
c.  m = 105.3 k
d.  The solid in part b has the largest mass.

5.  a.  Prediction: The cone on the left, with higher
density at its base, has greater mass because
higher density is in the larger part of the cone.

b.  For the cone on the left, m = 1305  oz.
For the cone on the right, m = 1035  oz.
 the cone on the left has the higher mass, as

predicted in part a.

7.  

9.  m = 4.82   15.14 g
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11.  a.  m = 

b.  m = 

c.  m = kr4

13.  m = 8.6261...

Problem Set 11-4

1.  a.  V = 40.5
b.  Mxz = 121.5
c.  The centroid is at (0, 3, 0).

3.  a.  m = 170.1375...k
b.  Mxz = 612.4952...k
c.  The center of mass is at (0, 3.6, 0).
d.  False. The centroid is at (0, 3, 0), but the center of

mass is at (0, 3.6, 0).

5.  a.   = 1.3130...
b.   = 1.5373...
c.  False. For the solid,  is farther from the yz-plane.

7.  Construct axes with the origin at a vertex and the
x-axis along the base, b.
Slice the triangle parallel to the x-axis.

The width of a strip is 

9.  a.  Slice the region parallel to the y-axis so that each
point in a strip is about x units from the y-axis,
where x is at the sample point (x, y ).
dA = y dx = sin x dx
A =  sin x dx = 2

dMy = x dA = x sin x dx
My =  x sin x dx = 3.1415... = 

 · A = My   =  , Q.E.D.

b.  M2y = 5.8696...
c.   = 1.7131...

11.  a.  

b.  

c.  

13.  a.  Set up axes with the x-axis through the centroid.
dM2 = y dA = y2 · B dy

b.  i.  Stiffness = 288k
ii.  Stiffness = 8k

A board on its edge is 36 times stiffer.
c.  i.  Stiffness = 160k

ii.  Stiffness = 448k (2.8 times stiffer!)
d.  Increasing the depth does seem to increase

stiffness greatly, but making the beam very tall
would also make the web very thin, perhaps too
thin to withstand much force.

15.  a.  V = 2 2r2 R

b.  r = 

Problem Set 11-5
1.  a.  F = 2.8444...k

b.  Mx = 2.1880...k
c.  The center of pressure is at .

3.  a.  A = 1186.6077...  1186.6 ft2

b.  F = 1,199,294.1645...  1.199 million lb
c.  Mx = 13,992,028.2564...  13.992 million lb-ft
d.  The center of pressure is at about (0, 11.67) ft.
e.  The centroid is at about (0, 16.92) ft.

The centroid is different from the center of
pressure.

f.  The center of buoyancy is at about (0, 8.66) ft.

5.  a.  A = 763.9437...  763.9 ft2

b.  F = 4863.4168...k
c.  Make k  0.0197... tons/ft2.

7.  a.  dM2x =  (0.25(x – 4) – (x – 4)1/3)3 dx

b.  M2x = 0.5333...

9.  The integrals in Problems 7 and 8 can be written in
the form

 f(x, t) dt dx

The result is called a double integral because two
integrals appear.

Problem Set 11-6

1.  13,200 calories

3.  a.  P(x) = 0.002x2 + 3x + 500
b.  P(700) = $3580/ft
c.  The cost is about $2,666,667.
d.  The savings is about $1,250,000.
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5.  a.

b.  F  has a step discontinuity at x = 2.
c.  W = 600 in.-lb
d.  W   1266  in.-lb
e.  Total work  1866  in.-lb
f.  Yes, a piecewise-continuous function such as this

one can be integrable. See Problem 27 in Problem
Set 9-10 (Improper Integrals).

7.  M2y = 33.5103...k g-cm2

9.  a.  m = 2000 – 5t
b.  a = 1400(400 – t)–1

c.  v(t) = 1400 ln 

d.  v(20) = 71.8106...  71.81 m/s;
s = 711.9673...  712.0 m

11.  a.  W = 0.5707...k
b.  W = 0.3926...k

13.  a.  W = 113.0973...  $113.1 million
b.  W = 71.4328...  $71.4 million
c.  W = 163.9911...  $164.0 million
d.  This problem is equivalent to volume by

cylindrical shells, in which the value of the land
per square unit takes the place of the altitude of
the cylinder. It is also equivalent to the water flow
in Problem 4 of this problem set.

e.  Answers will vary.

15.  a.  f(x) = 9 – x2 = (3 – x)(3 + x) = 0 only at x = ±3
g(x) = – x3 – x2 + 3x + 9 = –  (x – 3)(x + 3)2 = 0

only at x = ±3.

b.  Af  =  (9 – x2) dx = 36

Ag = 

To simplify algebraic integration, you could use

Af = 2  (9 – x2) dx

Ag = 2  (9 – x2) dx, where the odd terms

integrate to zero between symmetrical limits.
Thus, the two integrals are identical.

c.  The maximum of  f is at x = 0; the maximum of g
is at x = 1.

d.   = 0.6
e.  False. For the symmetrical region under the graph

of  f, the centroid is on the line through the high
point. But for the asymmetrical region under the
graph of g, the high point is at x = 1 and the
centroid is at x = 0.6.

f.  False: area to left = 17.1072 and area to right =
18.8928

g.  S = – 17.7737...
h.  By symmetry, the centroid of the area under f is

on the y-axis, so  = 0. Then
dS = x3dA = x3(9 – x2 ) dx
S = x3(9 – x2 ) dx = 0 (odd function integrated
between symmetrical limits).
The “skewness” being zero reflects the symmetry
of this region. It is not skewed at all.

i.

17.  In Problem 16, R =  = 1.2390... and L = 4.6467... .
2 RL = 2 (1.2390...)(4.6467...) = 36.1769... , which
equals S, Q.E.D.

Problem Set 11-7

R0.  Answers will vary.

R1.  W = 129.6997...  129.7 ft-lb

R2.  a.  W = –  k ft-lb

b.  W = 11.2814...  11.28 in.-lb
R3.  a.  m = 57.6 k

b.  m = 64

R4.  a.  

b.  M2y = 3.5401...

R5.  F = 3,736,263.2708...  3.736 million lb

R6.  a.  

(or r(x) = 30e –ln 0.6x/10000 = 30e0.00005108256...x)
b.  C = 6,965,243.17...  $6.965 million
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CHAPTER 12

Problem Set 12-1

1.

The graph of P5 fits the graph of f reasonably well for
about – 0.8 < x < 0.6.
The graph of P5 bears no resemblance to the graph of
 f  at x = 2 and at x = – 2, for example.

3.  P5(0.5) = 11.8125, P6(0.5) = 11.90625, and f(0.5) = 12
 P6(0.5) is closer to f(0.5) than P5 (0.5) is.

P5(2) = 378 , P6(2) = 762, and f(2) = – 6
 P6(2) is not closer to f(2) than P5 (2) is.

5.  P0(1) = 6 P0(–1) = 6
P1(1) = 12 P1(– 1) = 0
P2(1) = 18 P2(– 1) = 6
P3(1) = 24 P3(– 1) = 0
P4(1) = 30 P4(– 1) = 6
For x = 1, the sums just keep getting larger and larger
as more terms are added. For x = – 1, the sums
oscillate between 0 and 6. In neither case does the
series converge. If the answer to Problem 4 includes
x = 1 or x = – 1, the conjecture would have to be
modified.

7.  A geometric series; the common ratio

Problem Set 12-2

1.  Series: 200 – 120 + 72 – 43.2 + 25.92 – 15.552 + · · ·
Sums: 200, 80, 152, 108.8, 134.72, 119.168, . . .

The series converges to 125.
Sn will be within 0.0001 unit of 125 for all values of
n  28.

3.  a.  Series:  7(0.8n – 1 ) = 7 + 5.6 + 4.48 + · · ·
Sums: 7, 12.6, 17.08, 20.664, 23.5312, . . .
The amount first exceeds 20 g at the 4th dose.
The total amount never exceeds 40 g.

See closed dots in the graph below.

b.  0, 5.6, 10.08, 13.664, 16.5312, . . .
See the graph in part a. The open circles show the
partial sums just before a dose.
After the 7th dose, the amount remains above
20 g.

c.  See the graph in part a.

5.  a.  Months Dollars

0 1,000,000.00
1 1,007,500.00
2 1,015,056.25
3 1,022,669.17

b.  Worth is $1,093,806.90; interest is $93,806.90
c.  The first deposit is made at time t = 0, the second

at time t = 1, and so forth, so at time t = 12, the
term index is 13.

d.  9.3806...% APR
e.  After 93 months

7.  a.  Sequence: 20, 18, 16.2, 14.58, 13.122, . . .
b.  S4 = 20 + 18 + 16.2 + 14.58 = 68.78 ft
c.  S = 200. The ball travels 200 ft before it comes to

rest.
d.  20-ft first cycle: t = 1.5762... s

18-ft second cycle: t = 2.1147... s
e.  The series of times converges to 30.7155, so the

model predicts that the ball comes to rest after
about 43.4 s.

9.  (0) = 6 and (0) = 6; (0) = 12 and
 (0) = 12; (0) = 36 and (0) = 36

Conjecture: P(n)(0) = f  (n)(0) for all values of n.

Problem Set 12-3

1.  (x) = 10e2x; (x) = 20e2x; (x) = 40e2x;
 f (4)(x) = 80e2x

3.  c0 = 5; c1 = 10; c2 = 10
c0 and c1 are the same as for P1 (x).
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5.

7.  P3(1) = 31.6666666...
P4(1) = 35.0000000...
 f(1) = 5e2 = 36.9452804...

 P4(1) is closer to f(1) than P3 (1), Q.E.D.

9.  

11.  

Problem Set 12-4
1.  a. n  f(n)(x)  f(n)(0)     P(n) (0)    cn

0 ex 1 c0 1
1 ex 1 c1 1

2 ex 1 2!c2

3 ex 1 3!c3

 + · · · , Q.E.D.

b.  

c.  

d.

e.  The interval is about – 1 < x < 1.
f.  The interval is – 0.2237... < x < 0.2188... .
g.  The interval is – 1.5142... < x < 1.4648... .

3.  a.  S3(0.6) = 0.564642445...
sin 0.6 = 0.564642473...
 S3(0.6)  sin 0.6, Q.E.D.

b.   sin 0.6 – S1(0.6) = 0.0006424733...
t2 = 0.000648
sin 0.6 – S2(0.6) = – 0.00000552660...
t3 = –0.00000555428...
sin 0.6 – S3(0.6) = 0.0000000276807...
t4 = 0.0000000277714...
In each case the tail is less in magnitude than the
absolute value of the first term of the tail, Q.E.D.

c.  Use at least 9 terms.

5.  a.  P(1) = 0 = f (1)
(1) = 1 = (1)
(1) = – 1 = (1)
(1) = 2 = (2), Q.E.D.

b.  

c.  

d.

e.  S10(1.2) = 0.182321555...
ln 1.2 = 0.182321556...
S10(1.95) = 0.640144911...
ln 1.95 = 0.667829372...
S10(3) = – 64.8253968...
ln 3 = 1.0986122...
S10(x) fits ln x in about 0 < x < 2. This is a wider
interval of agreement than that for the fourth
partial sum, which looks like about 0.3 < x < 1.7.
S10(1.2) and ln 1.2 agree through the 8th decimal
place. The values of S10(1.95) and ln 1.95 agree
only to 1 decimal place. The values of S10(3) and
ln 3 bear no resemblance to each other.

7.  a.  

b.

Both partial sums fit the graph of  f  very well for
about –0.9 < x < 0.9. For x > 1 and x < – 1, the
partial sums bear no resemblance to the graph
of f .
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Problem Set 12-5

1.  

3.  

5.  

7.  1 + u + u2 + u3 + u4 + u5 + · · ·

9.  

11.  

13.  

15.  

17.  1 – x4 + x8 – x12 + x16 – · · ·

19.  

21.  

23.  P4(x) = – 8 + 3(x – 2) + 0.35(x – 2)2 + 0.085(x – 2)3

– 0.002(x – 2)4

25.  a.  f(0.4) = 1.694912
We must assume that the series converges for
x = 0.4.

b.  f(– 1) = c0 = 2
 (–1) = c1 = 0.5

(– 1) = 2!c2 = 2(–0.3) = –0.6
(– 1) = 3!c3 = 6(–0.18) = –1.08

 f  (4)(– 1) = 4!c4 = 24(0.02) = 0.48

c.  g(x)  2 + 0.5x3 – 0.3x6 ; g(1) = 2.2
d.  (0) = 0 and (0) = 0, so the second derivative

test does not give enough information. So test
(x) on either side of x = 0. g(x) is increasing on

both sides of x = 0, so g(0) is neither a maximum
nor a minimum.

e.  

27.  

29.  

31.  

33.  Both give cos  + · · · .
Substitution gives the answer more easily in this case.

35.  S4(1.5) = 0.40104166... ; ln 1.5 = 0.40546510...
Error = 0.00442344...
Fifth term = (1.5 – 1)5 = 0.00625

The error is smaller in absolute value than the first
term of the tail.

37.  a.  4 S9(1) = 3.04183961...
  = 3.14159265...
The error is about 3%.

b.  4 S49(1) = 3.12159465...
  = 3.14159265...
The error is about 0.6%.

c.  

= 3.14159257...
  = 3.14159265...
The answer differs from  by only 1 in the 7th
decimal place. The improvement in accuracy is
accounted for by the fact that the inverse tangent
series converges much more rapidly for x = 1/2
and x = 1/3 than it does for x = 1.

39.  Define , the ith term of the
general Taylor series. So, f(x) = 
We must assume  that is,
the nth derivative of an infinite series is the infinite
sum of the nth derivatives of the individual terms.

For 

For 

= 

For 

for x = a.

So,  for i < n  and i > n, and
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Thus,  evaluated at x = a is

an(a) = f  (n)(a).

41.  a.  

b.  

c.  r = |x – 1|
d.  r = 1.1 for x = – 0.1

r = 1 for x = 0
r = 0.9 for x = 0.1
r = 0.9 for x = 1.9
r = 1 for x = 2

e.  The series converges to ln x whenever the value of
x makes r < 1 and diverges whenever the value of
x makes r > 1.

f.  r = |x – 1| < 1  – 1 < (x – 1) < 1  0 < x < 2

Problem Set 12-6

1.  a.  

b.  The open interval of convergence is (– 4, 4).
c.  The radius of convergence = 4.

3.  a.  

b.  The open interval of convergence is (– 2, – 1).
c.  The radius of convergence = .

5.  a.  

b.  The series converges for all values of x.
c.  The radius of convergence is infinite.

7.  L = x2 · 0 < 1 for all x and the series converges for
all x.

9.  L = x2 · 0 < 1 for all x and the series converges for
all x.

11.  L = |x|· 0 < 1 for all x and the series converges for
all x.

13.  L = |x| · 
L =  for all x  0; L = 0 at x = 0.
 the series converges only for x = 0.

15.  cosh 10 = 

L = 102 · 0 = 0 < 1  series converges

17.  a.  The open interval of convergence is (– 1, 1).

b.

The graphs fit very well for – 1 < x < 1. The partial
sums diverge from tan–1 x for x outside this
interval.

c.  S3(0.1) = 0.09966865238095...
d.  Tail = 0.00000000011021...
e.  The first term of the tail is 0.00000000011111... ,

which is larger than the tail.

19.  a.  

b.

The partial sum is reasonably close for
approximately – 1.5 < x < 1.5.

c.  The series converges for all x because
L = x2 · 1 · 0 < 1 for all x.

d.  Erf x does seem to be approaching 1 as x
increases, as shown by the following table
generated by numerical integration.

 x erf x

1 0.8427007929...
2 0.9953222650...
3 0.9999779095...
4 0.9999999845...
5 0.9999999999...

21.  a.  Given L = limn    where L < 1. By the
definition of limit as n  , there is a number
k > 0 for any  > 0 such that if n > k, then  is
within  units of L. Thus,

 < L +  , Q.E.D.
b.  L < 1  1 – L > 0

So, take any  < 1 – L
 L +  < L + 1 – L
 L +  < 1

c.  For all integers n > k,
0   < L +   0  tn < (L + )n

746 © 2005 Key Curriculum Press Answers to Selected Problems



and (L + )n < (L + )n – k for all n > k because
L +  < 1, so 0  tn < (L + )n – k, Q.E.D.

d.  Because 0 = tn < (L + )n – k for all n > k, it follows
that the tail after tn satisfies
0  tn + 1 + tn + 2 + tn + 3 + · · ·

< (L + )n + 1 – k + (L + )n + 2 – k + (L + )n + 3 – k + ···
= (L + )n + 1 – k[1 + (L + ) + (L + )2 + · · · ]
which converges because L +  < 1.

e.  The tail of the series is increasing and is bounded
above by

(L + )n + 1 – k[1 + (L + ) + (L + )2 + ··· ]

So the series converges, Q.E.D.

23.  The open interval of convergence is (0, 2).

25.  L = 0 if x = 0 and is infinite if x  0.
 the series converges only if x = 0.

Problem Set 12-7

1.  a.  

b.  

c.  Hypotheses: (1) signs are strictly alternating,
(2) |tn| are strictly decreasing, and
(3) 
Upper bound is 1/120.

d.  Absolute convergence means that 
converges.
If a convergent series were not absolutely
convergent, it would be called conditionally
convergent.

e.  When you show absolute convergence, you find the
partial sums of |tn|. The parital sums must be
increasing because |tn| is positive. |tn | is
decreasing because the series is convergent.

3.  a.  S5 = 1.463611...

b.  

The graph shows the tail bounded above by
(1/x2) dx = 0.2.

The series converges because the sequence of
partial sums is increasing and bounded above
by 0.2.

c.  1/1001 < R1000 < 1/1000
S = 1.644934...
The answer is correct to at least three decimal
places.

d.  About 20 million terms

5.  a.  

The series converges because it meets these
hypotheses:
(1) strictly alternating signs, (2) strictly decreasing
|tn|, and (3) tn  0.

b.  (1/x) dx = 
The series  diverges, so the given series
does not converge absolutely.

c.  S1000 = 0.692647...; S1001 = 0.693646...;
ln 2 = 0.693147...
|S1000 – ln 2| = 0.0004997... , |S1001 – ln 2| =
0.0004992... , |t1001| = 1/1001 = 0.00009900...
 both partial sums are within |t1001| of ln 2.

d.  No term is left out.
No term appears more than once.
The series converges to  ln 2.
Conditional convergence means that whether the
series converges, and, if so, what value it
converges to, depends on the condition that you
do not rearrange the terms.

7.  a.  t3 = –  0.67 = –0.00000555428571...

b.  S1(0.6) = 0.6 – 0.63 = 0.564

S2(0.6) = 0.6 –  0.63 +  0.65 = 0.564648

c.  R1 = sin 0.6 – S1 (0.6) = 0.0006424...
R2 = sin 0.6 – S2 (0.6) = – 0.0000055266...
|t2| = 0.000648
 |R1| < |t2|

|t3| = 0.0000055542...
 |R2| < |t3|

d.  The terms are strictly alternating in sign.
The terms are strictly decreasing in absolute value.
The terms approach zero for a limit as n  .
 the series converges by the alternating

series test.

9.  a.  

Compare with the p-series with

 a positive

real number.
 the series converges by the limit comparison

test.

Answers to Selected Problems © 2005 Key Curriculum Press 747



b.  The p-series with p = 2 begins 
These terms form a lower bound, not an upper
bound, so the direct comparison test fails.

c.  If n started at 1, the first term would be 1/0, which
is infinite.

11.  a.  

 the series converges because L < 1.

b.  

This is the Maclaurin series that converges to e1.
c.  L = 

 the test fails because the limit of the ratio is
infinite.

13.  Divergent harmonic series

15.  It converges because it is an alternating series
meeting the three hypotheses.

17.  It converges because it is a geometric series with
common ratio 1/4, which is less than 1 in absolute
value.

19.  Converges by comparison with:
Geometric series with t0 = 1 and r = 1/6

21.  Diverges; use an integral test or compare with a
harmonic series

23.  It converges because it is an alternating series
meeting the three hypotheses.

25.  It diverges by the ratio test.

27.  It diverges because tn does not approach zero.

29.  It diverges by the integral test.

31.  It diverges because tn does not approach zero.

33.  x = 1: – 1 + 1 – 1 + 1 – 1 + · · ·
Diverges by the nth term test.
x = 9: 1 + 1 + 1 + 1 + 1 + · · ·
Diverges by the nth term test.
Complete interval is (1, 9).

35.  

Converges by the alternating series test.

Diverges. p-series with p = 0.5, which is less than 1.
Complete interval is [– 4,– 2).

37.  The interval of convergence is (2, 4).

39.  The interval of convergence is [– 1, 1).

41.  The interval of convergence is [– 6,– 4].

43.  The interval of convergence is [– 1, 1].

45.  The intervals of convergence are (– , – 4) and (4, ).
47.  a.  Assume all the blocks have equal mass = m with

the center of mass at the center of the block and
equal length = L.
Write Hn = the distance the nth block overhangs
the (n + 1)th block. (n = 1 for the top block.)
Note that according to the rule, Hn = the distance
between the rightmost edge of the nth block and
the center of mass of the pile of the top n blocks.
Now the center of mass of the nth block is  L
units from its rightmost edge, and the center of
mass of pile of the top n – 1 blocks is 0 units from
(i.e., right on top of) the edge of the nth block
according to the rule.
Therefore the center of mass of the pile of the top
n blocks is  units from
the edge of the nth block, that is,  Hn = L, Q.E.D.

b.  5 blocks
c.  To make a pile with overhang H, find an n such

that  (this is possible
since the harmonic series diverges to infinity).
Then a stack of n blocks will have total overhang.
H1 + · · · + Hn – 1

(The achieved overhang is greater than H, so one
may pull blocks slightly back—moving blocks back
can only make the pile more stable—until the
overhang equals H exactly.)

d.  Slightly more than two-and-a-quarter card lengths

Problem Set 12-8

1.  a.  S5(4) = 27.2699118...
b.  S5(4) is within 2 of cosh 4 in the units digit.
c.  cosh 4 – S5(4) = 0.0383... , which is well within the

upper bound found by Lagrange’s form.

3.  a.  S14(3) = 20.0855234...
b.  S14(3) is within 3 units of e3 in the 4th decimal

place.
c.  e3 = 20.085536923...

S14(3) = 20.085523458...
e3 – S14 (3) = 0.00001346... , which is within the
upper bound found by Lagrange’s form.

5.  At least 7 terms (n = 6)

7.  At least 32 terms

9.  c = cosh–1 1.0309... = 0.2482... ,
which is between 0 and 2.
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11.  cos 2.4 = 1 – 2.88 + 1.3824 – 0.2654208 +
0.0273004... – · · ·
The terms are strictly alternating. They are
decreasing in absolute value after t1, and they
approach zero for a limit as n  .
Therefore the hypotheses of the alternating series
test apply.
8 terms (n = 7)

13.  a.  S10 = 1.19753198...
0.00413223... < R10 < 0.005
S  1.20209810...
Maximum error: 0.00043388... (about 3 decimal
places)

b.  By using the method of part a, you find you should
use 46 terms.
By calculating exactly, you would use
approximately 317 terms, considerably more than
the 46 terms with the other method.

15.  a.  S10 = 1.9817928...
The series converges because the terms of the tail
starting at t1 are bounded above by the convergent
 p-series with p = 2.

b.  0.0906598... < R10 < 0.0996686...
S  2.0769570...
2 decimal places
100 terms

17.  By Lagrange form, |R10| < 0.0004617...;
by geometric series, |R10| < 0.00006156...
The geometric series gives a better estimate of the
remainder than does the Lagrange form.

19.  a.  b = 4.9557730... radians
b.  c = – 1.32741228... radians
c.  d = 0.243384039... radians
d.  |R5(x)| < |t6( /4)| = 3.8980...  10–13,

which is small enough to guarantee that sin x will
be correct to 10 decimal places.
Direct calculation would take about 349 terms.

e.  Answers will vary.

21.  a.  There is a number x = c in (x, a) such that

b.  

c.  There is a number x = c in (a, x) such that

Integrate once to get (a).

Integrate again to get f(x).

d.  Mathematical induction

23.  Using the Lagrange form of the remainder, the value
of ex is given exactly by

and c is between 0 and x.

Because all derivatives of ex equal ex, the value of M
for any particular value of x is also ex, which is less
than 3x if x  0 (or 1 if x < 0).

 which

approaches 0 as k   by the ratio technique.
Because the remainder approaches zero as n
approaches infinity, ex is given exactly by

Problem Set 12-9

R0.  Answers will vary.

R1.

P5(x) and P6 (x) are close to f(x) for x between about
–0.7 and 0.6 and bear little resemblance to f(x)
beyond ±1.
P5(0.4) = 14.93856
P6(0.4) = 14.975424
 f(0.4) = 15

 P6(0.4) is closer to f(0.4) than P5 (0.4) is,  Q.E.D.
P5(0) = 9 = f(0)

(0 = 9 = (0)
(0) = 18 = (0)
(0) = 54 = (0)

Pn(x) is  a subseries of a geometric series.

R2.  a.  About 19.5 mm increase in 10 days
About 30 mm increase eventually

b.  The state must invest $81,754.00 now in order to
make the last payment.
It must invest $4,182,460.05 now to make all
19 payments.
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R3.  c0 = 7, c1 = 21, c2 = 31.5, c3 = 31.5

R4.  a.  e0.12 = 1.127496851...
S3(0.12) = 1.127488, which is close to e0.12 .

b.  cos 0.12 = 0.9928086358538...
S3(0.12) = 0.9928086358528, which is close.

c.  sinh (0.12) = 0.1202882074311...
S3(0.12) = 0.1202882074310... , which is close.

d.  ln 1.7 = 0.530628251...
S20(1.7) = 0.530612301... , which is close.
ln 2.3 = 0.83290912...
S20(2.3) = – 4.42067878... , which is not close.

R5.  a.  A Maclaurin series is a Taylor series expanded
about x = 0.

b.  

c.  

d.  

= x ln (x + 1) + ln (x + 1) – x + C (C = C1 – 1)

which is the same as the series in part c.

e.  

f.  

g.  f(x) = 5 + 7(x – 3) – 3(x – 3)2 + 0.15(x – 3)3 + ···

R6.  a.  

b.  The open interval of convergence is (2, 8).
The radius of convergence is 3.

c.  L = x2 · 0 < 1 for all x.
The series converges for all x, Q.E.D.

d.  

Error = e1.2 – S4 (1.2) = 0.02571692...
First term of tail is t5 = 0.020736
The error is greater than t5, but not much greater.

e.

The open interval of convergence is (0, 2). Both
partial sums fit ln well within this interval. Above
x = 2, the partial sums diverge rapidly to .
Below x = 0, the partial sums give answers, but
there are no real values for ln x.

R7.  a.  S10 = 4463.129088
b.  S – S10 = 536.870912, which differs from the limit

by about 10.7%.
c.  “Tail”
d.  “Remainder”
e.  0.004132... < R10 < 0.005

The series converges because the tail is bounded
above by 0.005.
S = 1.202098... , accurate to about three decimal
places.

f.  

 the series converges because L is a positive real
number.
The terms of the F series begin

Although the F series converges, its terms
(after t1) are less, not greater, than the
corresponding terms of the S series, so the
comparison test is inconclusive.

g.  2/1! + 4/2! + 8/3! + 16/4! + 32/5!+ = 2 + 2 +
1.3333... + 0.6666... + 0.2666... + ··· = 

The terms are decreasing starting at t2, which can
be seen numerically above or algebraically by the
fact that the next term is formed by multiplying
the numerator by 2 and the denominator by more
than 2.
R1 is bounded by the geometric series with first
term 2 and common ratio 1.3333.../2 = 2/3.
Because |common ratio| is less than 1, the
geometric series converges (to 2/(1 – 2/3) = 6).
Thus, the tail after the first partial sum is bounded
above by a convergent geometric series, Q.E.D.

h.  The given series converges because, as written, it
meets the three hypotheses of the alternating
series test. It does not converge absolutely because
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replacing all – signs with + signs gives the
divergent harmonic series.
The given series is the Taylor series for ln x
expanded about x = 1 and evaluated at x = 2. The
remainders approach zero, so the series converges
to ln 2.
The series can be rearranged like this:

The series in parentheses is the original series that
converges to ln 2. So the series as rearranged
converges to 0.5 ln 2, Q.E.D.

i.  1/10001
j.  i.  [2.9, 3.1]

ii.  (–3, 1)
k.  i.  The tail after S0 is bounded above by the

convergent geometric series with first term 10
and common ratio 0.5. Thus, the series
converges. (Other justifications are possible.)

ii.  It diverges because tn  0.2, not 0, as n  .

iii.   Converges. The general term can be rewritten
3(2/5)n, so the series is a convergent geometric
series with common ratio r = 2/5.

iv.  Diverges. p-series with p = 1/3, which is not
greater than 1.

v.  Converges by the ratio technique.

R8.  a.  The error is less than 0.03.
b.  At least 34 terms (n = 33)
c.  Using the Lagrange form of the remainder, the

value of cosh 4 is given exactly by

Because the remainder approaches zero as k
approaches infinity, cosh 4 is given exactly by

.

d.  c = cosh–1 1.00328... = 0.0809... , which is in the
interval (0, 0.6).

e.  At least 35 terms

f.  0.000002512... < R50 < 0.000002666...
The series converges because the sequence of
partial sums is increasing, and the tail after S50 is
bounded above by 0.000002512... .
S = 1.082323235...
About 7 decimal places

Problem Set 12-10
Cumulative Review Number 1

1.  Limit, derivative, indefinite integral, definite integral:
See the definitions in the text.

2.  a.  Continuity of a function at a point: See Section 2-4.
b.  Continuity of a function on an interval: See Section

2-4.
c.  Convergence of a sequence: A sequence converges

if and only if  exists.
d.  Convergence of a series: A series converges if and

only if the sequence of partial sums converges.
e.  Natural logarithm: See Section 3-9.
f.  Exponential: ax = ex ln  a

3.  a.  Mean value theorem: See Section 5-5.
b.  Intermediate value theorem: See Section 2-6.
c.  Squeeze theorem: See Section 3-8.
d.  Uniqueness theorem for derivatives: See Section

6-3.
e.  Limit of a product property: See Section 2-3.
f.  Integration by parts formula: See Section 9-2.
g.  Fundamental theorem of calculus: See Section 5-6.
h.  Lagrange form of the remainder: See Section 12-8.
i.  Chain rule for parametric functions: See Section

4-7.
j.  Polar differential of arc length: See Section 8-7.

4.  a.  (x) = 
b.  (x) = ax ln a
c.  (x) = axa – 1

d.  (x) = xx ln x + xx

e.  

f.  

g.  

h.  

i.  Limit = 

j.  Limit = e–3 = 0.04978...
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5.  a.

b.  If x = 9, y  5.413... , which agrees with the graph.

6.  a.  p = k(40 – y )
b.  A = 1066.6... yd2

c.  F  = 17,066.6...k lb
d.  M = 292,571.4...k lb-yd
e.  The center of pressure is at (0, 17 ).

7.  a.  z = 30 – 0.5y
b.  Maximum at y = 20; minimum at y = 0
c.  3840 truckloads
d.  L = 92.9356...  92.9 yd

8.  Speed = 2.9943...  2.99 ft/s

9.  

L < 1 for all values of t, so the series converges for all
values of t.
The third partial sum is S2(0.6) = 0.5881296 is
correct within ±1 in the sixth decimal place.
Si 0.6  0.588128809...

10.  A = 103.6725...  103.7 ft2  (exactly 33  )

11.  At t = 10, V  = 253.9445...  253.9 million gal.

Cumulative Review Number 2
1.  Derivative: See Sections 3-2 and 3-4.

2.  Definite integral: See Section 5-4.

3.  Mean value theorem: See Section 5-5.

4.  (x) = g(x)

5.   

6.  

7.  –ln|x + 3| + 4 ln |x – 2| + C

8.  

9.  The open interval of convergence is 2 < x < 8.
10.  500
11.   = 39
12.  f(4) = 16

 f(3.99) = 15.9201, which is within 0.08 unit of 16.
 f(4.01) = 16.0801, which is not within 0.08 unit of 16.
Thus,  = 0.01 is not small enough to keep f(x)
within 0.08 unit of 4.

13.  V  =  ; A dx  2140 ft3

14.  A = 6.2831  6.28 ft2  (exactly 2 )

15.  A = 17.6021...  17.6 square units
16.  A = 256 ft2

17.  L = 42.5483...  42.55 ft

18.  F = 113,595.73...  113,600 lb
19.  Limit = 0

20.  There is a maximum at x = e because  goes from
positive to negative there.

21.  There is a point of inflection at x  4.48 ft because
  changes sign there.

22.

23.  

L = |x – 1|
L < 1  0 < x < 2
At x = 0, the series is   which is
a divergent harmonic series.
At x = 2, the series is   which
converges because it meets the three hypotheses of
the alternating series test.

24.  46 terms
25.  If the velocity is 0 ft/s at time t = 0, the ship speeds

up, approaching approximately 34 ft/s asymptotically
as t increases.
If the velocity is 50 ft/s at time t = 0, the ship slows
down, again approaching 34 ft/s asymptotically as t
increases.

26.   = (–1/t2 )  + (– 4 sin 2t)

 interval of convergence is 0 < x  2, Q.E.D.
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Cumulative Review Number 3

1.

2.  See Sections 3-2 and 3-4 for definitions of derivative.
Graphical meaning: slope of tangent line
Physical meaning: instantaneous rate of change

3.  g(x) =  f(x) dx if and only if (x) = f(x).

4.   f(t) dt =  Ln =  Un where Ln and Un
are lower and upper Riemann sums, respectively,
provided the two limits are equal.

5.  l’Hospital’s rule
limit = –0.2

6.  = sec2(sin 5x) · 5 cos 5x; chain rule

7.  

8.  

9.  

10.  

11.  5 ln |x + 3| – 2 ln |x – 1| + C
12.  

13.  Fundamental theorem of calculus
See Section 5-6 for statement.

14.  See Figure 5-5b.

15. (x) = h(x)

16.  The only point of inflection is at x = 2.

17.  L  2.3516...
18.  a.  ,

so the interval converges to 8.
b.  Average value = 0.5

19.  A  13.3478...
20.   (1) = 2  – 3

Speed =  = 3.6055...
The distance from the origin is decreasing at
2.2135... .

21.  V   3.5864...
22.  a.   = 0  x = 2

A(0) = 0 , A(4) = 0 , A(2) >
0Thus, the maximum area is at x = 2, Q.E.D.

b.  The maximum-volume cylinder is at x = 2 .

23.  V   394  ft3

24.  a.  f(x) =  e-t 2

 dt

b.  L = x2 · 0 < 1 for all values of x, and thus the
series converges for all values of x, Q.E.D.
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Glossary

The following are descriptions of the major terms used in calculus, along with
references to page numbers where formal definitions and statements can be found.
For references to the many other significant terms used in this text, please see
the index.

Absolute maximum (pp. 95, 372, 379):  The highest value
that a function attains. Also called the global maximum.

Absolute minimum  (p. 379):  The lowest value that a
function attains. Also called the global minimum.

Absolutely convergent (p. 628):  Describes a series that
converges even if all terms are made positive.

Acceleration (pp. 93, 313):  The instantaneous rate of
change of velocity.

Alternating harmonic series (p. 635):  A harmonic series
in which the terms have alternating signs.

Antiderivative (pp. 92, 96, 198, 313): g(x) is an
antiderivative of f(x) if and only if g′ (x) = f(x). Also
called an indefinite integral.

Average value of a function (p. 512):  The integral of f(x)
from x = a to x = b divided by the quantity (b – a).

Calculus:   Literally means “calculation.” Evolved from
the same root word as “calcium” because centuries ago
calculations were done using pebbles (calcium
carbonate). An appendix to Isaac Newton’s Principia is
entitled The Calculus of Infinitesimals, which means
calculating with quantities that approach zero as x
approaches a particular value.

Carrying capacity (pp. 348, 352):  The maximum
population that can be sustained by a particular
environment.

Catenary (p. 469):  The shape formed by a chain that
hangs under its own weight.

Center of mass (pp. 558):  The point at which the mass
of a solid can be concentrated to produce the same first
moment of mass.

Center of pressure (p. 568):  The point at which the
entire force on a surface can be concentrated to produce
the same force as the first moment of force.

Centroid (p. 558):  An object’s geometric center, found by
dividing the first moment of area or volume with respect
to an axis by the area or volume.

Chain rule (pp. 103, 312):  The method for finding the
derivative of a composite function, namely, the derivative
of the outside function with respect to the inside
function multiplied by the derivative of the inside
function with respect to x.

Composite function (pp. 101, 102, 312):  A function of
the form f(g(x)), where function g is performed on x,
then function f is performed on g(x).

Concave up (or down)  (pp. 371, 379):  The graph of a
function (or a portion of the graph between two
asymptotes or two points of inflection) is called
concave up when its “hollowed out” side faces up; it is
called concave down when its “hollowed out” side faces
down.
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Conditionally convergent (p. 627): Describes a series
that is not absolutely convergent, but may converge to
different numbers depending on the order in which the
terms are arranged.

Constant of integration (p. 96):  Two antiderivatives of
the same function differ by a constant at most. The
constant term of an antiderivative equation is called the
constant of integration.

Continuity (p. 47):  A function is continuous at x = c if
and only if f(c) is the limit of f(x) as x approaches c.

Converge (pp. 483, 589, 593):  An improper integral or
series converges if it approaches a finite number as a
limit.

Corner (p. 379):  A point on a graph at which the
function is continuous, but there is a step change in the
first derivative.

Critical point (pp. 372, 379):  A point on a graph at
which the first derivative is either zero or undefined.

Cusp (pp. 47, 379):  A point on a graph at which the
function is continuous, but the derivative is
discontinuous.

Cylindrical shells (p. 395):  The slicing of a solid of
revolution into thin shells so that each point in the shell
is virtually the same distance from the axis of rotation as
the sample point is.  Cylindrical shells are used for
setting up integrals for calculating the volume, mass,
moment, and so on of a solid object.

Definite integral (pp. 15, 207, 313):  Physical meaning:
The product (dependent variable)(change in independent
variable) for a function in which the dependent variable
may take on different values as the independent variable
changes throughout an interval. Graphical meaning: The
area of the region under the graph of f(x) from the
x-value at the beginning of an interval to the x-value at
the end of that interval.

Dependent variable (p. 4):  A variable whose values
depend on the value of another variable.

Derivative (pp. 4, 10):  Physical meaning: The derivative
of a function f at x = c is the instantaneous rate of change
of f(x) with respect to x at x = c. Graphical meaning: The
slope of the line tangent to the graph at x = c.

Difference quotient (p. 74):  The ratio (change in
 f(x))/(change in x). The limit of a difference quotient as
the change in x approaches zero is the derivative.

Differentiability (p. 154):  The property possessed by a
function at x = c if f ′ (c) exists. Function f is
differentiable on an interval if and only if f ′ (x) exists for
all values of x in that interval.

Differential (p. 190):  If y = f(x), then the differential dx
is the same quantity as Δx, a change in x; and the
differential dy is equal to f ′ (x) dx. Thus, the quotient
dy ÷ dx is equal to the derivative, f ′ (x). The differential
dy is also the change in y along a tangent to the graph,
rather than along the graph itself.

Differential calculus: A term for calculus of derivatives
only.

Differential equation (pp. 226, 269, 318):  An equation
that contains the derivative of a function. A solution of a
differential equation is a function whose derivative is the
differential equation.

Differentiation (p. 87):  The process of finding the
derivative of a function.

Discrete points (p. 60):  Points that are disconnected.

Displacement (pp. 93, 501):  The directed distance of an
object from a given reference point at a given time.

Diverge (pp. 483, 589, 593):  An improper integral or
series diverges if it does not approach a finite number as
a limit.

Dot product (p. 524):  The dot product of two vectors is
the product of their magnitudes and the cosine of the
angle formed when the vectors are placed tail-to-tail.
e (p. 289):  A naturally occurring constant equal to
2.71828... used as the base for the natural logarithm and
natural exponential function to make the calculus of
these functions simpler.

Euler’s method (p. 341):  A numerical method for solving
a given differential equation by assuming the graph
follows tangent segments for short distances from point
to point.

Even function (pp. 136, 230):  A function f that has the
property f(–x) = f(x) for all x in its domain.

Existence theorem (p. 62):  A type of theorem that
asserts the existence of a number or other mathematical
object having a certain property or satisfying a required
condition.

Explicit relation (p. 169):  A function for which f(x) is
given in terms of x and constants only. For instance,
 f(x) = 5x2 gives f(x) explicitly in terms of x.

Extreme value theorem (pp. 60, 63):  The theorem that if
 f is continuous on the closed interval [a, b], then f has a
maximum and a minimum on [a, b].

Function (p. 4):  A relationship between two variable
quantities for which there is exactly one value of the
dependent variable for each value of the independent
variable in the domain.
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Fundamental theorem of calculus (pp. 271, 313):  The
theorem that tells how to calculate exact values of
definite integrals by using indefinite integrals. In its
alternate form, the theorem tells how to find the
derivative of a definite integral between a fixed lower
limit of integration and a variable upper limit of
integration (sometimes called the fundamental theorem
of integral calculus).

General solution (p. 318):  A family of functions that
contains all possible solutions to a given differential
equation.

Global maximum (pp. 372, 379):  See absolute
maximum.

Global minimum (pp. 372, 379):  See absolute minimum .

Grapher: A graphing calculator or computer used to
generate graphs of given functions.

Harmonic series (p. 624):  A series in which successive
terms are reciprocals of the terms in an arithmetic
sequence.

Heaviside method (p. 462):  A method for transforming
a rational expression into partial fractions.

Hyperbolic functions (p. 469):  Functions with
properties similar to the trigonometric (circular)
functions, but defined by points on a unit hyperbola
rather than by points on a unit circle.

Hypothesis (p. 212):  The “if” part(s) of an “if/then”
statement.

Image theorem (pp. 60, 63):  The theorem that if f is
continuous on the interval [a, b], then the image of f on
[a, b] is all real numbers between the minimum of f(x)
and the maximum of f(x) on [a, b], inclusive.

Implicit differentiation (pp. 118, 150):  The process of
differentiating without first getting the dependent
variable explicitly in terms of the independent
variable.

Implicit relation (p. 169):  A relationship between two
variables in which operations may be performed on the
dependent variable as well as the independent variable.
For example, x2 + y2 = 25.

Improper integral (pp. 482, 483):  A definite integral in
which either one or both limits of integration are infinite
or the integrand is undefined for some value of x
between the limits of integration, inclusive.

Indefinite integral (pp. 92, 96, 313):  See antiderivative.

Independent variable (p. 4):  A variable whose values are
not dependent on the value of another variable.

Indeterminate form (pp. 33, 289):  An expression that
has no direct meaning as a number, for example, 0/0, 00,

Infinite discontinuity (pp. 46, 56):  The feature of a
graph or equation that occurs where f(x) increases
without bound as x approaches some value c. Also called
vertical asymptote.

Infinite form (p. 56):  An expression of the form
(nonzero)/(zero), which indicates a value that is larger
than any real number.

Infinitesimal (p. 583):  A quantity that approaches zero
as Δx approaches zero, such as dy, dA, dV, and so on.

Initial condition (p. 319):  A given value of x and f(x)
used to find the constant of integration in the solution to
a differential equation.

Integrability (p. 207):  The property possessed by a
function if the definite integral exists on a given interval.

Integrable (p. 207):  A function is integrable on interval
[a, b] if its integral exists on that interval.

Integral calculus: A term for calculus of integrals only.

Integration: The process of finding either the definite
integral or the indefinite integral of a function.

Integration by parts (p. 437):  An algebraic method for
finding the antiderivative of a product of two functions.

Intermediate value theorem (p. 60):  The theorem that,
for continuous functions, given any number y between
 f(a) and f(b), there is a number x = c between a and b
for which f(c) = y.

Interval of convergence (p. 614):  The interval of values
of x for which a given power series converges.

Invertible (pp. 147, 148):  A function is invertible if its
inverse relation is also a function.

Lagrange form of the remainder of a Taylor series
(p. 636):  A way to find an upper bound on the error
introduced by using only a finite number of terms of a
Taylor series to approximate the value of a function. The
remainder is bounded by a multiple of the first term of
the tail of the series after a given partial sum.

l’Hospital’s rule (pp. 296, 314):  A property for finding
limits in the form 0/0 or  by taking the derivative of
the numerator and the denominator (sometimes spelled
l’Hôpital’s rule).

Limit (pp. 4, 10, 33):  A number that a function value f(x)
approaches, becoming arbitrarily close to it, as x
approaches either a specific value or infinity.
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Limits of integration (p. 207):  The values a and b in the
expression  f(x) dx.

Linearization of a function (p. 191):  The process of
finding the linear function that best fits function f for
values of x close to x = c. This function is
 y = f(c) + f ′ (c)(x – c), or, equivalently, y = f(c) + f ′ (c)dx.

Local linearity (pp. 76, 190):  A function is locally linear
at x = c  if values of the function are approximated well
by values of the tangent line for values of x near c.

Local maximum: See relative maximum.

Local minimum: See relative minimum .

Logarithmic differentiation (p. 291):  An implicit
differentiation process in which the natural logarithm of
a function is taken before differentiating, usually so that
variables can be removed from exponents.

Logistic differential equation (pp. 349, 352):
An equation that expresses the rate of change of a
population that is constrained by a carrying capacity.

Logistic function (logistic equation) (pp. 339, 352):
A solution of the logistic differential equation, used to
model population growth where there is a maximum
sustainable population.

Maclaurin series (p. 605):  A Taylor series expanded about
x = 0. Sine, cosine, exponential, and hyperbolic functions
can be calculated using only the operations of arithmetic
by first expanding the function as a Maclaurin series.

Magnitude (p. 523):  The length of a vector or the size
of a quantity. The magnitude of a vector is also called
its norm.

Maximum: See relative maximum.

Mean value theorem (pp. 211, 313):  The theorem that
expresses sufficient conditions for a function graph to
have a tangent line parallel to a given secant line at a
value of x = c  between the endpoints of the secant line.

Minimum: See relative minimum .

Moment (p. 558):  The product of a quantity such as
force or mass and the power of a distance from a point,
line, or plane at which that quantity is located.

Natural exponential function (p. 288):  An exponential
function with base e.

Natural logarithm function (p. 313):  A logarithmic
function with base e. The natural logarithm function is
the classic example of a function defined as a definite
integral between a fixed lower limit and a variable upper
limit: (1/t) dt.

Neighborhood (p. 108):  An open interval that contains a
given domain value.

Newton’s method (p. 182):  A method of finding the zero
of a function.

Norm (pp. 265, 523):  See magnitude.

Normally distributed (p. 256):  A distribution of data
that is symmetric, with most data points close to the
mean and fewer farther away from the mean.

Odd function (p. 136):  A function f that has the
property f(–x) = –f(x) for all x in its domain.

One-sided limit (pp. 47, 48):  The value that a function
 f(x) approaches as x approaches a value c from only one
direction.

Order of magnitude (p. 301):  A range of magnitude,
from some value to ten times that value.

Parameter (p. 161):  The independent variable in a
parametric function.

Parametric chain rule (pp. 161, 313):  The method
for finding the derivative of a function defined
parametrically, namely, the derivative of y with respect
to t divided by the derivative of x with respect to t.

Parametric function (pp. 131, 160):  A function in which
two variables each depend on a third variable. For
example, the x- and y-coordinates of a moving object
might both depend on time.

Partial fractions (p. 351):  Simple rational expressions
that can be summed to form a given rational algebraic
expression.

Partial sum (p. 593):  The nth partial sum of a series is
the sum of the first n terms of the series.

Piecewise function (pp. 48, 313):  A function defined by
different rules for different intervals of its domain.

Plane slices (finding volumes by) (p. 245):  A technique
for finding the volume of a solid by slicing it into slabs of
approximate volume dV = (area) (dx) or (area) (dy) then
integrating to find the total volume.

Plateau point (pp. 372, 379):  A point on a graph at
which the derivative is zero, but the point is not a
maximum or minimum.

Point of inflection (pp. 372, 379):  A point at which a
graph changes from concave up to concave down or
vice versa. Points of inflection occur where the
second derivative of a function is either zero or
undefined.

Power series (p. 589):  A series (with an infinite number
of terms) in which each term contains a power of the
independent variable.
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Principal branch (p. 148):  The branch of an inverse
trigonometric relation with range restricted to make the
corresponding inverse trigonometric function.

Radius of convergence (p. 616):  The distance from the
midpoint of the interval of convergence to one of its ends.

Ratio technique (ratio test) (p. 616):  A technique for
determining the interval of convergence for a power series
by finding the values of x for which the absolute value of
the ratio of adjacent terms can be kept less than 1.

Reduction formula (p. 445):  A formula whereby a
complicated antiderivative can be expressed in terms of a
simpler antiderivative of the same form.

Related rates (p. 314):  A type of problem in which an
unknown rate is calculated, given one or more known
rates.

Relative maximum (pp. 95, 372, 379):  A function has a
local maximum at (c, f(c)) if f(c) is greater than all other
values in a neighborhood of x = c. Also called maximum
or local maximum.

Relative minimum (pp. 372, 379):  A function has a local
minimum at (c, f(c)) if f(c) is less than all other values in
a neighborhood of x = c. Also called minimum or local
minimum.

Removable discontinuity (pp. 33, 35, 46):  If a function
is discontinuous at x = c, but may be made continuous
there by a suitable definition of f(c), then the
discontinuity is removable. For instance,
 f(x) = (x2 – 25)/(x – 5) is discontinuous at x = 5 because
of division by zero, but the discontinuity can be removed
by defining f(5) = 10.

Riemann sum (pp. 189, 206, 313):  A sum of the form
∑ f(x) dx in which each term of the sum represents the
area of a rectangle of altitude f(x) and base dx. A
Riemann sum gives an approximate value for a definite
integral. The limit of a Riemann sum as dx approaches
zero is the basis for the formal definition of a definite
integral.

Rolle’s theorem (p. 211):  The property that expresses
sufficient conditions for a function graph to have a
horizontal tangent for some value of x = c between two
zeros of the function.

Sample point (p. 205):  A point x in a subinterval for
which a term of a Riemann sum, f(x) dx, is found; or the
corresponding point (x, f(x)) on the graph of f itself.

Scalar quantity (p. 523):  A quantity, such as time, speed,
or volume, that has magnitude but no direction.

Separating the variables (pp. 269, 318):  The most
elementary technique for transforming a differential
equation so that it can be solved.

Simpson’s rule (pp. 254, 314):  A numerical way of
approximating a definite integral by replacing the graph
of the integrand with segments of parabolas, then
summing the areas of the regions under the parabolic
segments. The technique is similar to the trapezoidal
rule, except that the graph is replaced by segments of
quadratic functions rather than by segments of linear
functions.

Slab (p. 245):  A slice of a solid, taken perpendicular to
an axis.

Slope field (p. 334):  A graphical representation of the
slope specified by a differential equation at each grid
point in a coordinate system. A slope field, which can be
generated by a grapher, allows graphical solutions of
differential equations.

Solid of revolution (p. 245):  A solid formed by rotating a
planar region about an axis.

Speed (p. 93):  The absolute value of velocity.

Squeeze theorem (p. 108):  The theorem that if f(x) is
always between the values of two other functions
and the two other functions approach a common limit
as x approaches c, then f(x) also approaches that
limit.

Step discontinuity (pp. 35, 46):  A discontinuity that
occurs at x = c if f(x) approaches different numbers
from the right and from the left as x approaches c.

Tail (p. 624):  The terms of a series remaining after a
given partial sum; or the sum of these terms.

Tangent line (pp. 75, 190):  A tangent line to a curve at a
given point is the line that passes through (x, f(x)) and
has the same slope as the curve at that point.

Taylor series (p. 605):  A power series representing a
function as non-negative integer powers of (x – a). The
coefficients of the terms are such that each order
derivative of the series equals the corresponding
order derivative of the function at the point at which
x = a.

Term index (pp. 590, 593):  The value n in the term tn.

Terminal velocity (p. 340):  The maximum velocity that a
falling object can attain.

Theorems of Pappus (p. 567):  For volume, Volume =
(area of rotated region)(distance traveled by centroid).
For surfaces, Area = (length of rotated arc)(distance
traveled by centroid).

Transcendental (p. 289):  Describes a number that is
irrational and cannot be expressed using a finite number
of algebraic operations.
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Trapezoidal rule (p. 20): A numerical way of
approximating a definite integral by slicing the region
under a graph into trapezoids and summing the areas of
the trapezoids. The technique is similar to Simpson’s rule,
but the graph is replaced by segments of linear functions
rather than by segments of quadratic functions.

Trigonometric substitution (p. 455):  An algebraic
method for finding an antiderivative in which the
integrand involves quadratics or square roots of
quadratics.

Uniqueness theorem for derivatives (p. 313):  The
theorem that if two functions have identical derivatives
everywhere in an interval and have at least one point in
common, then they are the same function.

Vector (p. 523):  A quantity that has both magnitude and
direction. Position, velocity, and acceleration vectors are
used to analyze motion in two or three dimensions.

Velocity (pp. 93, 313):  The instantaneous rate of change
of displacement.

Vertical asymptote (pp. 46, 54):  A vertical line x = c that
the graph of a function does not cross because the limit
of f(x) as x approaches c is infinite.

Washers (p. 244):  The slicing of a solid of revolution into
thin slices so that each point in the washer is virtually
the same distance from a plane perpendicular to the axis
of rotation as is the sample point. Washers are used to
set up integrals for calculating the volume, mass,
moment, and so on of a solid object.
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A
Absolute Value Definition of Limit, 67
Absolute vs. Conditional Convergence

Problem 1, 633
Absolute vs. Conditional Convergence

Problem 2, 633
Acceleration Antiderivative from Graph

Problem, 99
Acceleration Date Problem, 538
Accuracy for ln x Series Value, 611
Accuracy Interval for ln x Series, 611
Advertising Project, 331
Aircraft Carrier Landing Problem, 22
Airplane Problem, 185
Airplane Wing Problem I, 571
Airplane Wing Problem II,  571
Algebraic Derivatives of the Other Five

Inverse Hyperbolic Functions, 481
Algebraic Solution of the Logistic

Equation, 357
Algebraic Techniques Problems, 368
Allergy Spray Dosage Problem, 594
Alternating Series Remainders Property

Problem, 633
Altimeter Problem, 121
Another Definition of p Problem, 496
Another Indefinite Integral  of Secant,

492
Another Integral  of csc x, 496
Another Theorem of Pappus Problem,

580
Answer Verification Problem, 469
Antiderivative of Zero, 221
Antiderivative Problem, 146
Application of Pappus’ Other Theorem,

580
APR Problem, 120
Arc Length of a Parabola Problem, 458
Area and Volume Problems, 367
Area by Planimeter Project, 426
Area Check Problem, 241
Area of an Ellipse, Parametrically, 459
Area of an Ellipse Problem, 458

Area Problem 1, 237
Area Problem 2, 238
Area Problem 3, 238
Area Problem 4, 238
Area Problem, 443, 465, 469
Area Problem I, 453
Area Problem II,  453
Areas and Integration by Parts, 443
Astroid Problem, 166
Average Cost of Inventory Problem, 512
Average Radius Problem, 459
Average Temperature Problem, 512
Average Value Problem, 539
Average Velocity for Constant

Acceleration Problem, 512
Average Velocity for Other Accelerations

Problem, 512
Average Velocity from Acceleration

Problem, 511
Average Velocity Problem, 539
Average Versus Instantaneous Velocity

Problem, 99
Average Vitamin C Amount Problem,

512
Average Voltage Problem, 513

B
Bacteria Culture Problem, 13
Bacteria Problem, 320, 353
Bacteria Spreading Problem, 177
Balloon Problem, 177
Balloon Volume Problem, 106
Barn Ladder Problem, 178
Base Runner Problem, 177
Base e for Natural Logarithms Problem,

287
Baseball Line Drive Problem, 159
Baseball Problem, 534
Beam Moment Problem, 565
Beanstalk Problem, 106
Beaver Logistic Function Problem, 360
Biceps Problem, 644

Bicycle Frame Design Problem, 159
Biological Half-Life Problem, 125, 322
Black Hole Problem, 140
Board Price Problem, 5
Boiling Water Problem, 12
Bouncing Ball Problem, 595
Bouncing Spring Problem, 135
Bowl Problem, 479
Bridge Problem, 522
Buckminster’s Elliptical Dome Problem,

557
Building Problem, 391
Bungee Problem, 26
Burette Experiment, 331

C
Calvin and Pheobe’s Commuting

Problem, 518
Calvin and Phoebe’s Acceleration

Problem, 70
Calvin’s Swimming Problem, 501
Campus Cut-Across Problem, 539
Can You Duplicate This Graph?, 478
Car on the Hill Problem, 506
Car Problem, 97
Car Trade-In Problem, 321
Carbon Dioxide Problem, 127
Carbon-14 Dating Problem, 322
Cardioid Area Problem, 453
Carnot Cycle Problem, 552
Catch-Up Rate Problem, 140
Centroid Cut-Out Experiment, 564
Centroid of a Semicircle Problem, 567
Centroid of a Triangle Experiment, 564
Chain Problem, 406
Chair Work Problem, 547
Chapter Logo Problem, 426
Check the Answer by Graph Problem,

44
Check the Answer by Table Problem, 44
Chemical Reaction Problem, 321
Chemotherapy Problem, 308
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Chuck’s Rock Problem, 65
Circle Area Formula Problem, 459
Circle Problem, 166, 173
Cissoid of Diocles Problem, 182
City Land Value Problem, 578
Clock Pendulum Acceleration from

Velocity Problem, 98
Clock Problem, 125, 167
Column Scroll Problem, 420
Comparison Test for the Exponential

Function Series, 633
Compound Interest Differential

Problem, 195
Compound Interest Problem, 121, 217,

287, 292, 595
Compound Interest Problem I, 323
Compound Interest Problem II,  323
Compound Interest Problems, 367
Compound Interest Second Derivative

Problem, 99
Concavity Concept Problem, 384
Cone of Light Problem, 179
Cone Volume Formula Proof Problem,

250
Cone Volume Problem, 247
Confirmation of Quotient Rule Problem,

141
Confirmation of Secant Derivative

Formula, 145
Confirmation of Tangent Derivative

Formula, 145
Confirmation of the Product Rule, 136
Conical Cup Problem, 581
Conical Nose Cone Problem, 393
Conical Reservoir Problem, 552
Conical Water Tank Problem, 178
Conjectures?, 131
Connection Between a Zero First

Derivative and the Graph, 384
Continued Exponentiation Function

Problem, 309
Continuity of Polynomial Functions, 52
Continuity Proof Problem, 160
Continuous Compounding of Interest

Problem, 300
Convergence and Divergence Problem,

604
Convergence of Sequences Proof, 635
Converse of a Theorem, 220
Converse of the Intermediate Value

Theorem?, 61
Cooling Tower Problem, 413
Corollary of the Mean Value Theorem,

220
Corral with Short Wall Project, 394
Cosine Function Problem, 63
Cosine Function Series Problem, 603
Cosine of Area Problem, 448
Coyote and Roadrunner Problem,

364
Cubic Circle Problem, 173
Cubic Function Problem I, 82
Cubic Function Problem II,  82
Cubic Parabola Region Problem, 582

Cubic Paraboloid Problem I, 411
Cubic Paraboloid Problem II,  411
Cup Problem, 391
Curvature Project, 537
Curve Sketching Review Problem, 241
Cylinder in Cone Problem, 393
Cylinder in Cubic Paraboloid Problem,

424
Cylinder in Paraboloid Problem, 392,

522
Cylinder in Sphere Problem, 393
Cylinder-in-the-Cone Problem I, 521
Cylinder-in-the-Cone Problem II,  521

D
Dam Leakage Problem, 325
Dam Problem, 570, 648
Darth Vader’s Problem, 178
Daylight Problem, 113
Daylight Research Project, 113
Definite Integral  Surprise!,  203
Definition of e Problem, 293
Degree-Days Problem, 239, 577

u and x Problem, 106
Deltoid Problem, 166
Dependence on Initial Conditions

Problem, 339
Depreciation Problem, 292
Derivation of the Lagrange Form of the

Remainder, 642
Derivation of the Memory Equation

Problem, 309
Derivative dy/dx for Polar Coordinates

Problem, 421
Derivative Graph and Table Problem,

141
Derivative Meaning Problem, 14
Derivative of a Parametric Function,  131
Derivative of a Power Formula, 92
Derivative of a Power Induction

Problem, 136
Derivative of a Product of Two

Functions, 131
Derivative of a Quotient of Two

Functions, 131
Derivative of a Rational Power,  172
Derivative of a Sum of n Functions

Problem, 92
Derivative of an Integral  with Variable

Upper and Lower Limits, 310
Derivative of Base-b Logarithm Function

from the Definition of Derivative, 294
Derivative of Cosecant Problem, 144
Derivative of Cotangent Problem, 144
Derivative of the Cosine Function,  114
Derivative of the Sine Function,  114
Derivative Two Ways Problem, 136
Derivative Verification Problem, 480
Derivatives and Continuity Problem, 67
Derivatives of a Geometric Series, 596
Derivatives of the Pythagorean

Properties of Hyperbolic Functions,
480

Difference Quotient Accuracy Problem,
84

Different Axis Problem I, 248
Different Axis Problem II,  249

Proof, 160
Differential Equation Generalization

Problem, 331
Differential Equation Problem, 495
Differential Equation Problems, 368
Differential Equations Leading to

Polynomial Functions, 361
Direct Comparison vs. Limit

Comparison Test Problem, 634
Discrete Data Problems, 367
Displacement by Simpson’s Rule

Problem, 263
Displacement from Velocity Indefinite

Integral  Problem, 99
Displacement from Velocity Problem,

260
Displacement Problem 1, 237
Displacement Problem 2, 237
Displacement Problem, 262
Distance from Velocity Problem, 202
Divergence by Oscillation Problem, 485
Divided Stock Pen Problem, 388
Diving Board Problem, 578
Door-Closer Problem, 293
Dot Product Problem, 536
Double Argument Properties Problem,

136
Double Integration Variable Pressure

Problem, 572
Double-Argument Properties of

Hyperbolic Functions, 480
Double-Integration Airplane Wing

Problem, 572
Duct Problem, 391

E
Electric Car Problem, 17
Electrical Circuit Problem, 329
Elevated Walkway Problem, 517
Elevated Walkway Problem Revisited,

518
Elevator Project, 508
Ellipse Area Formula Problem, 459
Ellipse Length Investigation Problem,

407
Ellipse Problem, 165, 177
Ellipsoid Mass Problem, 564
Ellipsoid Problem, 413, 459, 563
Elliptical Nose Cone Problem, 393
Elliptical Path Problem, 533
Elliptical Table Problem, 23
Epidemic Problem, 464
Equation from Graph Problem, 67
Equivalent Answers Problem, 465
Error Function,  619
Error Function Problem, 256
Error Function Problem, Revisited, 259
Escape Velocity Problem, 340
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Escape Velocity Problem by Euler’s
Method, 346

Euler’s Method for a Restricted Domain
Problem, 347

Every Real Number Is the ln of Some
Positive Number, 309

Exact Derivative Problem, 45
Exact Integral  Conjecture Problem 1, 23
Exact Integral  Conjecture Problem 2, 24
Exact Integral  of the Cube Function

Project, 211
Exact Integral  of the Square Function by

Brute Force Project, 210
Exact Value of a Derivative Problem, 27
Exit Sign Problem, 152
Exponential and Polynomial Function

Look-Alike Problem, 385
Exponential Function Problem, 63, 83
Exponential Function Series Problem,

603
Exponential Horn Problem, 248
Exponential Region and Solid Problem,

564
Extreme Value Theorem, 63

F
Fatal Error Problem, 407
Ferris Wheel Problem, 112, 181
Field Worth Problem, 577
Figure Skating Problem, 535
Film Festival Problem, 362
Flat Tire Problem, 14
Flooded Ship Problem, 552
Floodgate Problem, 573
Foot Race Problem, 62
Football Problem, 23
Force and Work Problem, 311
Formal Definition of Limit Problem,

28
Formula Proof Problem I, 92
Formula Proof Problem II,  92
Fox Population Problem, 12
Fran’s Optimal Study Time Problem,

521
Freeway Exit Problem, 226
Freight Elevator Problem, 542
Fundamental Theorem Another Way,

226

G
Gamma Function and Factorial Function,

486
Gateway Arch Problem, 479
General Cylinder in Cone Problem, 393
General Derivative of the Inverse of a

Function,  153
General Solution of the Logistic

Differential Equation, 355
General Volume of a Sphere Problem,

251
Generalization Problem, 324
Generalized Wedge Problem, 250

Geometric Series as an Upper Bound
Problem, 642

Glacier Problem, 69
Golden Gate Bridge Problem, 406
Golf Course Problem, 240
Gompertz Growth Curve Problem, 362
Graph of an Interesting Function,  126
Graphical Analysis Problem, 153
Graphical Program for Euler’s Method,

345
Graphical Verification Problem, 106
Graphing Problems, 367
Group Discussion Problem, 114

H
Hanging Chain Experiment, 479
Hanging Chain or Cable Problem, 477
Heat Capacity Problem, 258, 575
Heat Problem, 239
Hemispherical Railroad Problem, 541
Higher Math Problem, 90
Highway Cut Problem, 251
Historical Problem: Newton’s Method,

182
Historical Problem, 612
Hole in the Cylinder Project, 426
Horn Problem, 249
Horse Race Theorem, 541
Hot Tub Problem, 330
Hot Tub Problem, Continued, 363
How Euler’s Method Works, Problem 1,

344
How Euler’s Method Works, Problem 2,

344
How Your Grapher Works Problem, 83
Hyperbola Area Problem, 459
Hyperbola Problem, 173
Hyperbolic Function Graphing Problem,

476
Hyperbolic Radian Problem, 480
Hyperbolic Sine and Cosine Series

Problem, 603
Hyperbolic Substitution Problems, 477
Hyperboloid Problem, 459

I
Ida’s Speeding Ticket Problem, 511
Image Theorem, 63
Implicit Relation Problem I, 406
Implicit Relation Problem II,  406
Indefinite Integral  Problem, 92
Infinite Curvature Problem, 384
Infinite Derivative Problem, 426
Infinite Overhang Problem, 635
Infinite Pain Bucket Problem, 486
Infinitesimals of Higher Order, 583
Infinity Minus Infinity Problem, 300
Inflation Problem, 539
Initial Condition Not x = 0 Problem,

323
Inscribed Squares Problem, 594
Integral  Bound Problem, 641

Integral  of a Sum Property, 203
Integral  of cos5 x Another Way, 449
Integral  of csch x Problem, 496
Integral  of ln Generalization Problem,

443
Integral  of ln Problem, 309
Integral  of Secant Cubed Problem, 449
Integral  of sech x Problem, 496
Integral  of the Natural Logarithm

Problem, 437
Integral  of the Reciprocal Function

Problem, 259
Integral  Table Problem, 203
Integral  Test Problem 1, 632
Integral  Test Problem 2, 632
Integral  Verification Problem, 480
Integration by Parts Problem, 480
Integration Surprise Problem, 480
Intermediate Value Theorem Versus

Mean Value Theorem, 221
Introduction to Antiderivatives and

Indefinite Integrals, 92
Introduction to Reduction Formulas

Problem, 443
Introduction to Riemann Sums, 203
Introduction to the Derivative of a

Product, 126
Introduction to the Theorem of Pappus,

566
Inverse Hyperbolic Function Graphing

Problem, 477
Inverse Tangent Series and an

Approximation for , 611
Inverse Tangent Series Problem, 604,

618
Involute Problem, 167

J
Journal Problem, 45, 84, 114, 142, 146,

204, 221, 227, 280, 287, 295, 301, 348,
368, 385, 395, 401, 443, 454, 488, 519,
612

K
Kepler’s Law Problem, 421
Kinetic Energy Problem, 177

L
Ladder in the Hall Problem, 390
Ladder Problem, 390
Lateral Area of a Cone Problem, 413
Lateral Area of a Frustum Problem, 414
Lava Flow Problem, 286
Leaking Bucket Problem, 551
Leaky Tire Problem, 123
Length of a Circle Problem, 407
Length of a Spiral in Polar Coordinates,

460
L’Hospital’s Rule, Graphically, 300
L’Hospital’s Surprise Problem!, 300
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Light on the Monument Problem, 145
Limaçon Area Problem, 453
Limit Comparison Test Problem, 633
Limit Comparison vs. Ratio Test

Problem, 634
Limit Meaning Problem, 14
Limit of a Constant Problem, 44
Limit of a Constant Times a Function

Problem, 43
Limit of a Function Plus a Function

Problem, 43
Limit of a Product Problem, 44
Limit of a Quotient Problem, 44
Limit of Riemann Sums Problem, 210,

400
Limit of (sin x)/x , Numerically, 114
Limit of (sin x)/x Problem, 113
Limit of x Problem, 44
Limits Applied to Derivatives Problem,

39
Limits Applied to Integrals Problem, 58
Line Problem, 420
Line Segment Problem, 166
Lissajous Curves, 168
ln Curved Surface,  Problem I, 411
ln Curved Surface,  Problem II,  411
Local Linearity Problem, 76
Local Linearity Problem I, 194
Local Linearity Problem II,  195
Local Maximum Property Problem,

394
Local Nonlinearity Problem, 77
Logistic Curve Problem, Algebraically,

465
Look Ahead Problem 1, 277
Look Ahead Problem 1 Follow-Up, 278
Look Ahead Problem 2, 286
Look Ahead Problem 3, 292
Look Ahead Problem 3 Follow-Up, 295
LP Record Project, 420
Luke and Leia’s Trash Compactor

Problem, 177

M
Maclaurin Series for ex  Converges to ex ,

643
Magnet Problem, 581
Mass of Earth Problem, 557
Mathematical Induction Problem—The

Limit of a Power,  45
Maximum and Minimum Points  of a

Cubic Function,  384
Maximum and Minimum Values of

Continuous Functions, 221
Mean Value Theorem for Quadratic

Functions, 263
Mean Value Theorem Problems, 367
Mean Value Theorem Proof Illustrated

by Graph and by Table, 220
Meg’s Velocity Problem, 506
Memory Retention Problem, 307, 360
Merchandise Sales Problem, 354
Minimal Path Discovery Problem, 517

Minimal Path Generalization Problem,
517

Misconception Problem, 90
Mistake Problem, 407
Moment of Arc Length Problem, 579
Moment of Inertia Problem, 577
Moment vs. Volume Problem, 583
Motel Problem, 388
Motor Oil Viscosity Problem, 521

N
Naive Graphing Problem, 384
Natural Log Series Problem, 604
Negative Initial Condition Problem,

323
Negative Velocity Problem, 18
New Jersey Turnpike Problem, 219
New York to Los Angeles Problem, 540
Newton’s Law of Cooling Problem, 330
Nitrogen-17 Problem, 321
Number Problem I, 520
Number Problem II,  521
Numerical Answer Check Problem, 153
Numerical Derivative Error Problem, 84
Numerical Program for Euler’s Method,

345
Numerical Versus Exact Derivative

Problem, 91

O
Oblique Cone Problem, 262
Odd and Even Functions Derivative

Problem, 136
Oil Truck Problem, 571
Oil Viscosity Problem, 425
Oil Well Problem, 189, 582
“Old Problem” New Problems, 464
One-Problem Test on Linear Motion and

Other Concepts, 540
Open Box I, 388
Open Box II (Project), 389
Open Box III, 389
Open Box IV (Project), 389
Order of Magnitude of a Function

Problem, 301
Ovals of Cassini Project, 173

P
 p-Integral  Problem, 485
 p-Series Problem 1, 641
 p-Series Problem 2, 641
 p-Series Problem 3, 641
Painted Wall Problem, 578
Parabola Problem, 165
Parabola Surprise Problem!, 406
Parabolic Path Problem I, 532
Parabolic Path Problem II,  532
Parabolic Path Problem III, 534
Parabolic Region Problem, 241
Paraboloid Mass Problem, 563

Paraboloid Moment Conjecture Problem,
583

Paraboloid Problem, 411, 563
Paraboloid Surface Area Problem, 412
Paraboloid Volume Formula Problem,

248
Paraboloid Volume Problem, 246
Paraboloidal Tank Problem, 552
Parametric Curve Problem, 401
Parametric Function,  131
Pathological Function,  385, 643
Pendulum Experiment, 113, 168
Pendulum Problem, 5, 112
Periodic Motion Problem, 506
Phoebe’s Space Leak Problem, 364
Phoebe’s Speeding Problem, 575
Physics Formula Problem, 507
Piecewise Continuity Problem, 487
Pig Sale Problem, 522
Pipeline Problem, 517
Pipeline Problem, Near Miss, 518
Pizza Delivery Problem, 44
Planetary Motion Problem, 179
Playground Problem, 112
“Plus C” Problem, 233
Point of Inflection of a Cubic Function,

384
Point of Light Problem, 145
Pole Dance Problem, 137
Popeye and Olive Problem, 538
Population Problem, 269, 278, 318
Postage Stamp Problem, 63
Power Formula for Various Types of

Exponents, 91
Power Line Problem, 478, 542
Practical Calculation of Pi Problem, 647
Predator-Prey Problem, 361
Present Value Problem, 644
Product of n Functions Conjecture

Problem, 135
Product of Three Functions Problem, 135
Program for Arc Length by Brute Force,

407
Program for Riemann Sums Problem,

210
Program for Trapezoidal Rule from Data

Problem, 23
Program for Trapezoidal Rule Problem,

22
Project—The Angle Between the Radius

and the Tangent Line, 422
Proof of the Power Rule for Negative

Exponents, 141
Proof of the Uniqueness Theorem, 311
Proof Problem, 443
Properties of ln Problem, 280
Punctured Tire Problem, 319, 359
Pyramid Problem, 249

Q
Quartic Function Problem I, 82
Quartic Function Problem II,  82
Quartic Parabola Tank Problem, 521
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R
Rabbit Population Overcrowding

Problem, 339
Rabbit Population Problem, 292
Radar Problem, 152
Radio Dial Derivative Problem, 279
Radio Wave Integral  Problem, 264
Radioactive Decay Second Derivative

Problem, 100
Radioactive Tracer Problem, 121
Railroad Curve Problem, 159
Ramjet Problem, 359
Ratio of Terms Problem, 612
Reciprocal Curved Surface Problem I,

411
Reciprocal Curved Surface Problem II,

411
Rectangle in Parabola Problem, 392
Rectangle in Sinusoid Problem, 391
Rectangle Problem, 178
Reduction Formula for sinnax dx, 449
Regular Deposits Problem, 595
Related Rates Problems, 366
Removable Discontinuity Problem 1, 39
Removable Discontinuity Problem 2, 39
Repeated Roots Problem, 136
Resort  Island Causeway Problem, 539
Riemann Sum Limit Problem, 248
Riemann Sum Sketching Problem, 227
Riemann Sums with Unequal

Increments, 265
River Bend Problem, 536
River Crossing Problem, 52
Robinson Crusoe Follow-Up Problem,

518
Robinson Crusoe Generalization

Problem, 518
Robinson Crusoe Problem, 518
Rock in the Air Problem, 12
Rocket Car Problem, 577
Rocket Problem, 506, 520
Rocket Problems, 365
Roller Coaster Problem, 536
Roller Coaster Velocity Problem, 12
Rolle’s Theorem Proof Illustrated by

Graph and by Table, 219
Rolling Tire Problem, 13
Root Mean Square Deviation Problem,

513
Root Technique, 620
Rotated Ellipse Problem, 184
Rotated Rectangle Generalization

Problem, 390
Rotated Rectangle Problem, 390
Rotated Sinusoid Problem, 411
Rotation of Solids  Problem, 565
Rover’s Tablecloth Problem, 182
Rumor Problem, 464
Rumor-Spreading Experiment, 356

S
Sample Point Problem, 210
Scuba Diver Problem, 516

Scuba Diver Problem Revisited, 518
Searchlight Problem, 59
Secant Curve Region Problem, 564
Second Moment of Area Problem, 564
Second Moment of Volume Problem, 581
Second Moments for Plane Regions

Problem, 565
Second Moments for Solid Figures, 565
Semicubical Parabola Problem, 165
Sequences vs. Series Problem, 633
Series Solution of a Differential

Equation, 647
Series with Imaginary Numbers

Problem, 646
Shark Problem, 125
Ship Problem, 650
Ship’s Bulkhead Problem, 570
Shortest-Distance Problem, 389
Signum Function,  52
Simpson’s Rule Program, 259
Simpson’s Rule Review Problem, 469
Simpson’s Rule Versus Trapezoidal Rule

Problem, 258
Sin x for Any Argument Using a Value of

x in [0, /4] Problem, 642
Sine Series Problem, 603
Sine-Integral  Function,  619
Sine-Integral  Function Problem, 256
Sinusoid Length Investigation Problem,

407
Sinusoid Problem I, 82
Sinusoid Problem II,  82
Sinusoidal Land Tract Problem, 578
Sinusoidal Path Problem, 535
Sinusoidal Region Problem, 241
SketchpadTM Project, 179
Skewness Problem, 579
Sky Diver Problem Revisited, 127
Sky Diver’s Acceleration Problem, 98
Slide Problem, 18
Slope Fields on the Grapher, 341
Snail Darter Endangered Species

Problem, 355
Snell’s Law of Refraction Problem, 519
Snowflake Curve Problem, 596
Softball Line Drive Problem, 218
Spaceship Problem, 21, 73, 124, 507, 551
Spaceship Work Problem, 487
Special Limit Problem, 620
Speeding Piston Project, 183
Sphere Expansion Differential Problem,

195
Sphere Rate of Change of Volume

Problem, 412
Sphere Total Area Formula Problem,

412
Sphere Volume and Surface Problem,

412
Sphere Volume Problem, 13, 251
Sphere Zone Problem, 412
Spherical Water Tower Problem, 552
Spider and Clock Problem, 541
Spiral Path Problem, 533
Spiral Problem, 407

Spleen Mass Problem, 257
Spleen Mass Problem, Revisited, 259
Spring Problem, 168, 551
Squeeze Theorem Introduction Problem,

67
Squeeze Theorem, Numerically, 113
Squeeze Theorem Problem, 114
Stadium Problem, 406
Steepness of a Hill Problem, 195
Storage Battery Problem, 424
“Straight Point” Problem, 426
Subdivision Building Problem, 353
Submarine Pressure Hull Project, 394
Submerging Cone Problem, 541
Subway Problem, 506
Sum of the Squares and Cubes Problem,

264
Sunrise Time Differential Problem, 196
Surprise Function Problem!, 52
Sweepstakes Problem I, 328
Sweepstakes Problem II,  329
Sweetheart Problem, 62
Swim-and-Run Problem, 516
Swimming Pool Average Depth Problem,

512
Swimming Pool Chlorination Problem,

364
Symmetric Difference Quotient Problem,

84

T
Table Moving Problem, 552
Table of Integrals Problem, 494
Tacoma Narrows Bridge Problem, 135
Tangent Lines as Limits of Secant Lines,

77
Tangent Series Problem, 612
Tangent to a Graph Problem, 28
Taylor Series Proof Problem, 612
Temperature Versus Depth Problem, 69
Tensile Strength Test Problem, 258
Terminal Velocity Problem, 339
Terminal Velocity Problem by Euler’s

Method, 347
Theater in the Round Problem, 585
Theorem of Pappus Problem, 567
Theorem of Pappus Proof, 567
Three-Dimensional Vector Problem,

537
Three-Hole Project, 427
Time-for-Money Interest Problem, 122
Tin Can Generalization Project, 391
Tin Can Leakage Problem, 324
Tin Can Problem, 390
Tire Pump Work Problem, 279
Tolerance Problem (Epsilon and Delta),

83
Toroid Problem, 567
Total Cost Problem, 240
Track and Field Problem, 389
Trapezoidal Rule Error Problem, 24
Triangle Centroid Problem, 581
Triangle under Cotangent Problem, 392
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Triangle under Exponential Curve
Problem, 392

Triangular Cross Section Problem, 249
Trigonometric Substitution for Negative

Values, 460
Trough Problem, 570
Truck Passing Problem, 542
Truck Problem, 520
Tugboat Problem, 177
Tunnel Problem, 575
Two Cone Problem, 556
Two Constants Problem, 51
Two Cylinder Problem, 556
Two Values of Constant Problem, 52
Two-Corral Problem, 388
Two-Field Problem, 388

U
Unbounded Region Area Problem, 443
Unknown Integral  Problem, 400
Upper Bound Problem, 496
Uranium Fuel Pellet Problem, 556
U.S. Population Project, 356

V
Values of ex  from Values of e–x, 642
Vapor Pressure Project, 332
Variable Attraction Problem, 576
Variable Density Problem, 581
Various Axes Problem, 425
Velocity from Displacement Problem, 98
Velocity Problem, 257
Velocity Vector Limit Problem, 534
Vitamin C Problem, 308
Vocabulary Problem 1, 632
Vocabulary Problem 2, 632
Volume of an Ellipsoid Problem, 251
Volume of an Unbounded Solid Problem,

486
Volume Problem 1, 256
Volume Problem 2, 256
Volume Problem, 443, 465, 469, 619
Volume Problem I, 453
Volume Problem II,  453
Volume Rotating About the x-axis

Problem 1, 247
Volume Rotating About the x-axis

Problem 2, 247

W
Walking Problem, 22
Washer Slices Problem, 248
Water Heater Project, 332
Water Lily Problem, 364
Water over the Dam Problem, 22
Water Pipe Problem, 576
Wedge Problem, 250
Weir Problem, 568
“Which One Wins?” Problem, 620
Wind Force Problem, 581
Wire-Pulling Problem, 576
Witch of Agnesi Problem, 167
Work Problem 1, 238
Work Problem 2, 239
Work Problem, 59, 580
Worth of Land Problem, 263

Z
Zero Times Infinity Problem, 59
Zero to the Zero Problem, 300
Zone of a Paraboloid Problem,

413
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General Index

A
absolute maximum (global maximum),

95, 372, 379, 755
absolute minimum (global minimum),

372, 379, 755
absolute value

derivative of inverse secant and,
151

displacement vs. distance and,
502

integral of the reciprocal function
and, 275

speed as, 93, 96
vector quantities, 523

absolute value definition of a limit,
67

absolute value functions, 6
absolutely convergent, 615, 628, 755
acceleration, 92–96

antiderivative of, 96, 99
defined, 93, 755
integral of, 504
negative vs. positive signs of,

93–94
as second derivative, 93, 94–95,

96
time/displacement and, 504–505
units of, 93
vector of, 523, 525–526, 528–530

Agnesi, Maria Gaetana, 167
algebra, with fractions, 108
algebraic derivative, 88
algebraic functions, 433
amplitude, 110
antiderivatives

definition of, 96, 755
See also indefinite integrals

antidifferentiation. See integration
techniques

applications. See definite integral
applications; derivatives:
applications

arc length. See plane curve length

arctangent,  148–149
area

of a circle, 454–455, 457
definite integrals of, generally,

573–574
of an ellipse, 251
of a frustum, 408–409
graphical estimation of, 15–16
lateral, 413–414
maximizing, 386
negative, 228
Pappus, theorem of, 580
in polar coordinates, 415–416
pressure and, 567–569
of a rectangle, 205
second moment of, 562–563
Simpson’s rule and, 253–254
of a surface of revolution, 407–410,

580
of a trapezoid, 19
trapezoid rule and, 18–20
of a triangle,  107
between two graphs, 234–236

arithmetic series, 624
astroid, 166
asymptotes, 54, 55

vertical, 41, 46, 53, 54, 760
average deviation. See root mean square

deviation
average radius, 459
average rate of change, 3–4
average value of a function, 509–510,

755
average velocity, 508–509, 526, 527–528

B
backward difference quotient, 78–79,

84
bell curve, 493
binomial theorem, 87
Boole, George, 48
Boolean variables, 48

boundary condition, 319
Bowditch curves, 168
branch, 48

C
calculus. See definite integrals;

derivatives; indefinite integrals;
limits

calories, 550
Carnot cycle, 552–553
carrying capacity, 348, 755
Cassini, Giovanni Domenico, 173
catenary, 406, 469, 475–476, 755
center of mass, 558, 560–561, 755
center of pressure, 568, 569, 755
centroid, 558, 755

of a plane, 560, 561–562
of a solid, 559–560

chain rule,  103–105, 143, 755
differentials and, 193
parametric, 161

chords
arc length and, 402–403
area of a surface of revolution and,

408, 409
circle(s)

area of, 454–455, 457
cubic, 173
graphs of implicit  relations as, 170
involute of, 167
osculating, 538

cissoids, 182, 419
common ratio, 590, 593
comparison test for convergence,  625
completeness axiom, 60, 213
components of a vector, 524, 525–526,

530
composite functions, 101, 102–105,

199–201, 755
compound interest, 592
computer algebra systems (CAS),

445–446
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concave up (or down),  373, 755
Euler’s method and, 343
points of inflection and, 373
second derivative and, 371, 373–380
trapezoid rule and, 209
See also curvature; curves

conchoid of Nicomedes, 419
conclusion, 212–213
conditionally convergent, 626–628,

756
cone(s)

frustums of, 408–409, 414
lateral area of, 413
maximizing volume of, 386–387
related rates and, 175–176
volume of, 175

constant function, 42, 88
constant of integration, 756

differential equations and, 318–319
integration by parts and, 435, 436,

438
constant times a function

definite integral properties and, 230,
231

derivative of, 88
indefinite integral of, 198–199, 230,

231
limit of, 41

constants
common ratio, 590, 593
of cubic parabolas, 371
exponents as, 85
of proportionality, 317, 326, 328, 330,

460
continued exponentiation, 309
continuity,  45–49, 756

at a point,  47
on an interval,  47
critical features and, 374–375
cusps and, 47
defined, 47
differentiability and, 154–157
extreme value theorem, 63, 756
graphers as approximating, 60
image theorem, 63, 757
intermediate value theorem and,

60–61
limit-function interchange for,

296–298
mean value theorem and, 212–213
piecewise, 487–488
Rolle’s theorem and, 213

convergence of improper integrals,
481–484, 756

convergence of series, 589, 593, 756
absolute, 615, 628
alternating signs test for,  626–628
comparison test for,  625
conditional, 626–628
error analysis for, Lagrange error

bound, 635–640
geometric series, 591–592, 593, 625
harmonic series, 624, 628, 629
integral test for,  622–624, 630

interval of convergence,  612, 613–614
least upper bound postulate and,

635
limit comparison test for,  625–626,

631
limits and, 591, 593, 615–616, 620,

625–626
 p-series, 622–624, 626–628, 630–631,

639–640
radius of, 616–617
ratio technique (ratio test) for,

614–617, 629–630
root technique (root test) for,  620
sequence convergence and, 621–622
summary of tests for, 628–629
tail of series and, 629

converse,  defined, 220
corners, 379, 756
corollary, defined, 220
cosecant function

derivative of, 142, 143
integral of, 302
integration of even powers of, 451
inverse, 149, 151, 468
reduction formulas for, 447
See also trigonometric entries

cosine function
derivative of, 100–101, 109
double-argument properties for,

450–451
graphs of, 100, 109–111
integral of, 199–200, 302
integration of odd powers of, 449–450
integration of squares of, 450–451
inverse of, 149, 151, 468
parametric equations, 160–163
power series for, 606
reduction formulas for, 447
transformation of, 109–111
See also trigonometric entries

cotangent function
derivative of, 142, 143
integral of, 302
inverse, 149, 151, 468
reduction formulas for, 447
See also trigonometric entries

critical points, 372–380, 756
See also maxima and minima

cubic circle, 173
cubic functions

critical features of, 371, 377–378,
384

graphs of (parabolas), 371–374
locally cubic, 598

cubic parabolas, 371–374
curvature

calculation of, 537
concavity and, 373–374
radius of, 537
slope and, 374
up or down. See concave (up or down)

curves
Bowditch, 168
distance traveled on, 531

doubly curved surface, 408
Lissajous, 168
normal distribution, 256–257, 619
plane. See plane curve length
snowflake (fractal), 596

cusps, 47, 379, 756
cylindrical shells, 554–555, 574, 756

D
dead reckoning, 257
decimals,  and irrational numbers, 602
definite integrals, 14–16, 756

algebraic method of. See fundamental
theorem of calculus

applications of. See definite integral
applications

definition of, 206–207
elliptic integrals, 404
exact value of, 20
by grapher,  252
graphs of, 15–16, 231, 234–236,

253–254
improper integrals, 481–484, 623,

630, 757
integrands negative and positive, 228,

231
limits of integration. See limits of

integration
mean value theorem for, 510
meaning of, 16
properties, 228–231
Riemann sums and. See Riemann

sums
by Simpson’s rule,  253–255
sum of, with same integrand, 229,

231
between symmetric limits, 229–230,

231
table of values and, 20–21
trapezoidal rule and, 18–21, 209,

253
by trigonometric substitution, 457
upper bounds for, 231

definite integral applications, 233–236
area and. See area
center of mass, 560–561
centroids, 559–560, 561–562
length of a plane curve, 402–404
mass, 553–555
moment, 558–563
pressure, 567–569
variable-factor products, generally,

573–575
volume. See volume
work,  548–550

deltoid, 166
density, 553
dependent variable, 4, 6, 756
derivatives, 4, 756

applications. See acceleration;
maxima and minima; velocity

of composite functions, 101
at critical points, 372–380
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derivatives (continued)
definition as a function, 79, 86
definition at a point,  74
of a derivative. See second derivative
difference quotients and, 74
differentials compared to, 192–194
of exponential functions, 115–117,

120, 201–202, 290–291
of geometric series, 596
grapher calculation of, 78–81
graphing,  7–10, 73, 78–81
of hyperbolic functions, 471–472
of implicit  relations, 169–171
of inverse hyperbolic functions,

473–474
of inverse trigonometric functions,

149–151
of logarithmic functions, 118–119,

272–273, 274, 284–285
mean value. See mean value theorem

for derivatives
meaning of, 10
notation for, 85–86, 89
numerical computation of, 8–10
of parametric functions, 160–163
physical meaning of, 3–4
of power functions, 85–89
of product of two functions,

132–134
of quotient of two functions,

137–139
second. See second derivative
summary of techniques, 489
symbols for, 74, 79, 85–86, 89
tangent line slope and, 75
techniques for. See differentiation
third, 385, 596
of trigonometric functions, 100–101,

103, 108–109, 142, 143
uniqueness theorem for, 281–283,

760
of vector functions, 525–531

difference quotient, 74–75, 756
defined, 74
formulas for, 84
graphing,  75, 78–79
Rolle’s theorem and, 214

differentiability, 756
continuity and, 154–157
contrapositive of, 155
defined, 154
definition at a point,  154
definition on an interval,  154
local linearity and, 190–191
mean value theorem and, 212–213
of piecewise functions, 156–157
Rolle’s theorem and, 213

differential equations, 226, 756
Euler’s method and, 341–343
logistic, 348–352, 357, 758
population and, 269, 318–319, 460
separating the variables to solve,

318–320, 324–325
series solution of, 647

slope fields and, 333–336
solving, 318–320, 324–328

differentials
of arc length, 403
defined, 193, 756
derivative quantities compared to,

192–194
integration by parts and, 435
of volume for cylindrical shells, 396

differentiation
chain rule.  See chain rule
of composite functions, 101, 102–105
of constant function, 88
of constant times a function, 88
defined, 87, 756
of exponential functions, 115–117
implicit. See implicit  differentiation
inverse trigonometric functions,

149–151
logarithmic, 291, 758
of logarithmic functions, 117–119
of power function, 87–88
of sum of two functions, 88
of trigonometric functions, 108–109,

142–143
See also derivatives

dilating a function, 92
dilation,  110, 115
Diocles,  182
direct proportion property of

exponential functions, 317
converse of, 324

direction fields. See slope fields
discontinuity

continuity compared to, 45
infinite, 46, 53, 56, 757
removable, 33, 35, 46, 56, 759
step, 35, 46, 48–49, 759

discrete points, 60, 756
disks,  243
displacement, 93, 756

as antiderivative, 99
average velocity and, 508–509
distance distinguished from, 501
integrals for, 502–503
moment and. See moment
time intervals and, 502–505

distance
displacement distinguished from,

501
integrals for, 502–503
time intervals and, 502–503
vector equations and, 531

ditto marks, 445
divergence of improper integrals, 482,

483, 756
divergence of series, 589, 593, 756

geometric, 592
by oscillation, 593

domain endpoints, 373, 380
dot products, 524–525, 756
double-argument properties

for hyperbolic functions, 480
for sine and cosine,  450–451

doubly curved surface, 408
“drowning swimmer” problems, 516
drug dosage, 591–592

E
e, 116–117, 756
Earth, 557
elementary functions, 433
elementary transcendental functions,

466, 597
ellipse(s)

area of, 251
graphing,  161
length of, 404

elliptic integral,  404
embedded terms, 622
endpoints, 373, 380
energy, 550
equal vectors, 523
equal-derivative theorem, 220

converse of, 220
equations, general vs. particular, 6
equiangular spiral, 422–423
error function of x, 256–257, 619
escape velocity, 347
Euler, Leonhard, 341
Euler’s method, 341–343, 756
evaluation of an integral,  197
even functions, 136, 229–230, 756
existence theorem, 62, 756
expanding the function as a power

series, 599
explicit relations, 169, 756
exponential functions

continued exponentiation, 309
definition with e expressing,

289–290
derivative of, 115–117, 120, 201–202,

290–291
direct proportion property of, 317,

324
general equation for, 6
indefinite integrals of, 201–202, 290
indeterminate forms, 298, 300
logarithmic differentiation of, 291
natural. See natural exponential

functions
power functions compared to, 115
power series for, 597, 598–599
properties of, summarized, 304

exponents
constant, 85
fractional, 91, 171
inverse function notation and,

147–148
negative, 91

extended mean value theorem, 104
extreme value theorem, 63, 756

F
factorial function, defined, 487
factorial reciprocal series, 626
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family of functions, 318
first-order infinitesimal,  583
force

moment of. See moment
variable. See work
variable pressure, 567–569

forward difference quotient, 78–79,
84

four-leaved rose, 419
fractal curves, 596
fractional exponents,  91, 171
fractions, partial,  351, 460–462,

463–464, 758
frustums of cones, 408–409, 414
Fuller, Buckminster, 557
functions, 4, 756

absolute value. See absolute value
average value of, 509–510, 755
composite, 101, 102–105, 199–201
continuity of. See continuity
derivative. See derivative
dilation of, 92, 110
even, 136, 229–230, 756
exponential.  See exponential

functions
factorial, 487
gamma, 487
hyperbolic. See hyperbolic functions
inside, 101, 102, 104, 193, 199–200
inverse. See inverse functions
invertible, 147, 148, 757
linear. See linear functions
linearization of, 190–191, 757–758
locally quadratic, 598
logarithmic. See logarithmic functions
logistic, 348–352, 357, 758
notation, 6
odd, 136, 229–230, 758
outside, 101, 102, 104, 296
piecewise. See piecewise functions
polynomial.  See polynomial functions
power. See power functions
power series for. See power series
quadratic. See quadratic functions
rational algebraic. See rational

algebraic functions
of same order, 625–626
signum, 52
sine-integral,  252, 619–620
strictly increasing or decreasing, 209
summary of types of, 6
transformation of, 109–110, 115
trigonometric. See trigonometric

functions
vector, 523, 525–531

fundamental theorem of calculus, 757
constant Riemann sums and,

222–224
defined, 224
derivative of an integral form,

270–271
proof of, 224–225
properties of definite integrals and,

228–231

G
gamma function, defined, 487
Gaussian distributions, 256–257
general solution, 318–319, 757
geometric series

convergent, 591–592, 593, 625
defined, 590, 593
derivatives of, 596
divergent, 592
properties of, 593
See also power series

global maximum (absolute maximum),
95, 372, 379, 755

global minimum (absolute minimum),
372, 379, 755

Gompertz function, 362
graphers, 757

continuity approximate on, 60
definite integrals by, 252
derivative calculation on, 78–81
difference quotients and, 78–79
discrete points on, 60
power series on, 601, 602

graphs and graphing
acceleration, 504–505
asymptotes and, 55
continuity,  46
convergent series, 622–623, 624
of cubic functions, 371–374
cusps, 47, 379
of definite integrals, 15–16, 231,

234–236, 253–254
of derivatives, 7–10, 73, 78–81
difference quotient, 75, 78–79
differential equation solutions,

333–336, 341–343
discontinuities, 46
implicit  relations, 170
infinite limits, 53
of inverse trigonometric functions,

149
limits, 34–37
local linearity, 76, 191
number-line, 373
parabolas. See parabolas
parametric equations, 161–163
polar coordinates, 414
of power series, 601–602
sigmoid, 362
sinusoids. See sinusoids
sketching derivatives, 89
“under” the graph, defined, 15
velocity, 503

H
h, 86
harmonic series, 624, 757
heat capacity, 330
heat transfer coefficient, 330
Heaviside method, 461–462, 757
Heaviside, Oliver,  462
Hooke’s law, 238
horizontal asymptotes, 54

horizontal dilation,  110
horizontal translation, 110
hyperbolic cosine,  469–470, 475–476,

478, 606
hyperbolic functions, 757

cosine,  469–470, 475–476, 478, 606
definitions of, 470–471
derivatives of, 471–472
double-argument properties of,

480
equation of hanging chain or cable,

478
indefinite integrals of, 472–475
inverse, 473–475
power series for, 606, 638

hyperboloids, 413, 459
hypotenuse,  negative, 150
hypotheses, 212–213, 757

I
identity function, limit of, 42
image theorem, 63, 757
implicit  differentiation, 118, 150, 757

related rates and, 174–176
technique of, 171

implicit  relations, 169–171, 757
improper integrals, 481–484, 623, 630,

757
increments, 205
indefinite integrals

composite functions, 199–201
constant times a function, 198–199,

230, 231
defined, 96, 197
of exponential functions, 201–202,

290
of hyperbolic functions, 472–473
of inverse hyperbolic functions,

474–475
of inverse trigonometric functions,

466–468
notation for, 197–198, 199
of power function, 200–201
power series for, 608–609, 619–620
of rational functions, 460–462,

463–464
reciprocal functions, 259, 269, 270,

274
reduction formulas and, 444–447
of sum of two functions, 199,

230, 231
summary of techniques, 489
symbol for, 197, 198
See also integration techniques

independent variable, 4, 103, 757
indeterminate form, 33, 56, 757

approaching numbers other than 1,
108

divergent series and, 627
e as, 289
infinity in, 59, 300, 301
l’Hospital’s rule and, 295–298
limit theorems and, 40–43
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indeterminate form (continued)
limits of, finding, 42–43, 295–298
removable discontinuity of, 33, 35,

46, 56, 759
sine and, 107–108
types of, summarized, 301
zero as exponent as, 298, 300
zero times infinity as, 59

inductance, 329
inequalities

limits and, 107–108
Riemann sums and, 207

inertia,  moment of, 563, 577
infinite, 56
infinite discontinuity, 46, 53, 56, 757
infinite form, 56, 757
infinite limits, 52–56

definitions of, 54
graphs of, 53
l’Hospital’s rule and, 298
notation for, 53
orders of magnitude and, 301
piecewise functions, 56
vertical asymptotes, 41, 46, 53, 54,

760
infinite radius of convergence,  617
infinitesimal,  583, 757
infinitesimals of higher order, 397,

583–584
inflection point,  371, 372–380, 758
initial condition, 319, 757
inside functions

defined, 102
derivatives of composite functions

and, 101, 102, 104
differential of, 193
indefinite integrals and, 199–200

instantaneous rate, 3–4, 7
See also derivative

integrability, 207, 757
integrable, 207, 757
integral sign, 197
integral test for convergence,  622–624,

630
integrals. See definite integrals;

indefinite integrals; integration
techniques

integrand, 197
integration, 197, 757
integration by parts, 757

choosing the parts for, 437
constant of integration and, 435, 436,

438
of inverse trigonometric functions,

467–468
of natural logarithm function, 441
rapid repeated, 438–441
reappearance of original, 439–440
reassociate factors between steps,

440–441
reduction formulas and, 444–446
technique, 434–436
trigonometric properties and,

439–440

integration techniques
by partial fractions, 460–462,

463–464
by parts. See integration by parts
rational functions of sin x and cos x

by u = tan (x/2), 492
rationalizing algebraic substitutions,

491–492
by trigonometric substitution,

454–457
intercept property of natural

logarithms, 282
intermediate value theorem, 60–61,

757
converse of, 61–62
corollary of (image theorem), 63

interval of convergence,  612, 613–614,
757

See also convergence of series
inverse functions

defined, 119, 146–148
derivative of, general formula,

153
hyperbolic, 473–475
inverse relations vs., 147
linear functions, 146–148
natural exponential/logarithmic,

117–118, 119, 289
notation for, 147–148
properties of, 119
trigonometric. See inverse

trigonometric functions
inverse hyperbolic sine of x, 473
inverse relations, 147–148
inverse trigonometric functions,

148–151
definitions of, 149
derivatives of, 149–151
graphs of, 149
integration of, 466–468
inverse relations vs., 147, 148
power series for, 606, 607–608
principal branch and, 148
range restriction and, 148

invertible functions, 147, 148, 757
involute of a circle, 167

J
joules, 550
journal, 24–25, 493–494

K
Kepler’s second law, 421
Kepler’s third law, 421
knots, 257
Koch, Helge von, 596

L
Lagrange form of the remainder of a

Taylor series, 635–640, 757
Lagrange, Joseph Louis, 636

Laurent series, 643
least upper bound postulate, 635
Leibniz,  Gottfried, 89
lemma, 63
length, moments of, 579
length of plane curves. See plane curve

length
l’Hospital, G. F.  A. de, 295
l’Hospital’s rule,  295–298, 314, 757
limacon

arc length of, 417
area of, 415–416
defined, 414

limit comparison test, 625–626,
631

limit theorems
as distributive properties, 64
limit of a constant function, 42
limit of a constant times a function,

42
limit of a product of two functions,

40–41, 42
limit of a sum of two functions,

40–41, 42
limit of the identity function (limit

of x), 42
limits, 4, 757

convergent series and, 591, 593,
615–616, 620, 625–626

definition, 34
definition, algebraic (absolute value),

67
definition, verbal, 10
derivatives, 10
e as indeterminate, 289
of exponential functions, 116
graphical approaches to, 34–37
inequalities and, 107–108
infinite. See infinite limits
of integral exact value, 20
of nth root of n, 620
one-sided, 47–49, 56, 758
positive values in, 36–37
of Riemann sum, 207–208
secant line and, 77–78
squeeze theorem, 108, 759
and zero numerator/denominator. See

indeterminate form
See also limit theorems; limits of

integration
limits of integration, 207–208, 228, 758

function of x as upper, 275–276
reversal of, 228–229, 231
variable upper, 270–276
variable upper and lower, 310

limniscate of Bernoulli, 419
linear combination of power functions,

85
linear functions

general equation for, 6
inverses of, 146–148
linearization of a function and,

190–191
tangent line as, 190
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linearization of a function, 190–191, 758
line(s)

secant, 77–78
slope of. See slope
tangent. See tangent line(s)

Lissajous curves, 168
lituus, 420
local linearity, 76, 190–191, 758
local maximum (relative maximum), 95,

372–380, 759
local minimum (relative minimum),

372–380, 759
locally quadratric/cubic/quartic

functions, 598
log of a power, 118
log of a product,  118
log of a quotient, 118
logarithmic differentiation, 291, 758
logarithmic functions

change-of-base property of, 283–284
definitions, 117–118
derivatives of, 118–119, 272–273, 274,

284–285
natural. See natural logarithmic

functions
properties of, 118, 304

logistic differential equations, 348–352,
357, 758

logistic function, 348–352, 758
lower limits of integration, 207–208, 228

M
Maclaurin, Colin, 605
Maclaurin series, 605–610, 637–638, 758
magnitude, 301, 523, 758
mass

center of, 558, 560–561, 755
first  moment of, 560–561
second moment of (moment of

inertia), 563, 577
of variable-density object, 553–555

maxima and minima, 372–380
analysis technique for problems of,

387
area problems, 386
definitions of, 372, 379
equation given, finding from, 377–378
figure illustrating, 378–379
graphing of, 372–377
minimal path, 514–516, 517
properties of, 380
second derivative test for,  378, 380
volume problems, 386–387
See also concave (up or down);

curvature
mean value theorem for derivatives, 211,

758
and converse of the equal-derivative

theorem, 220–221
corollary of, 220
defined, 212–213
Lagrange form and, 637
proof of, 214–217

mean value theorem for integrals, 510
minimal path, 514–516, 517
minimum. See maxima and minima
molal heat capacity, 258
moment, 558, 758

definition of nth, 558
first, 558–562, 568, 569
of force,  568, 569
of inertia,  563, 577
of length, 579
second, 562–563, 577
torque,  550, 558, 569

motion
linear, 501–505
vectors. See vectors

N
natural exponential functions, 758

indefinite integrals of, 201
as inverse of natural logarithm,

117–118, 119, 289
Lagrange form and, 637, 638
as own derivative, 116–117, 120
properties of, summarized, 303

natural logarithmic functions
definition, algebraic, 119, 758
definition as definite integral,

271–272
derivative of exponential functions

and, 290–291
derivatives of (as reciprocal), 118–119,

272–273, 274
integral of, 441
integral of exponential functions and,

290
integral of reciprocal function and,

274–275
as inverse of natural exponentials,

117–118, 119, 289
power series for, 606, 613, 614–616,

629, 638–639
properties of, 282–285, 290–291
properties of, summarized, 303
uniqueness theorem proving, 283

nautical mile, 257
necessary conditions, 215
negative exponents,  91
neighborhood,  108, 758
Newton, Isaac,  182
Newton’s law of cooling, 330
Newton’s method, 182–183, 758
norm. See magnitude
norm of the partition, 265
normal component, 528, 530
normal distributions, 256–257, 619
notation

critical features, 373, 378
derivatives, 85–86, 89
differentiable functions, 132
function, 6
hyperbolic functions, 469, 470
indefinite integrals, 197–198, 199
inverse functions, 147–148

limit, 28
logarithms, 117
one-sided limit, 53
polar coordinates, 414
Q.E.D., 43
sigma, 600

nth derivative, 596
nth partial sum, 590
number-line graphs, 373
numbers

completeness axiom, 60
e, 116–117, 288–289, 756
neighborhood of a, 108
rational,  60
real, 60
transcendental, 289, 759

O
odd functions, 136, 229–230, 758
one-sided limits, 47–49, 56, 758

See also infinite limits
operator, 89, 198
opposite of a vector, 523
order of magnitude, 301, 758
oscillation, 593
osculating circle, 538
outside functions, 101, 102, 104, 296
ovals of Cassini, 73

P
 p-integral,  485
 p-series, 622–624, 626–628, 630–631,

639–640
Pappus, 567
Pappus, theorems of, 566–567, 580, 759
parabolas

cubic, 371–374
length of, 402–403
semicubical, 165
Simpson’s rule and, 253–255

paraboloids, 441
parameter, 161, 758
parametric chain rule,  161, 758
parametric equations

defined, 161
length of curves specified by, 404
vector equation and, 531

parametric functions, 758
derivatives of, 160–163
related rates and, 174–176
second derivative of, 163–164

partial fractions, 351, 460–462,
463–464, 758

partial sum of a series, 590, 593, 758
particular equation, 6
particular solution, 319
partition, 205, 265
phase displacement, 110
piecewise functions, 758

continuous, 488
critical features of, 374–375
differentiability of, 156–157
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piecewise functions (continued)
infinite limits and, 56
integral of the reciprocal function, 274
one-sided limits and, 48–49, 56

plane curve length (arc length), 401–404
centroid of, 560
moments of, 579
parametric equations, 404
in polar coordinates, 417
vector equations and, 531

plane slices, finding volumes by,
242–246, 395, 574, 758

plane(s), centroid of, 560, 561–562
planimeter, 426
plateau point,  372, 379, 758
point of inflection, 371, 372–380, 758
point-slope form, 190
polar axis, 414
polar coordinates

angle between the radius and the
tangent line, 422

arc length, 417
area of a region,  415–416
defined, 414
derivative for, 421
integration of squares of sine and

cosine,  450
notation for, 414

pole, 414
polynomial functions

defined, 85
general equation for, 6
infinite number of terms. See power

series
Taylor, 605

population
differential equations and, 269,

318–319, 460
logistic function and, 348–352

position vector, 523
See also vectors

power functions
constant exponents,  85
critical features of, 375–377
derivative of, 85–89
exponential functions compared to,

115
general equation for, 6
indefinite integrals of, 200–201
length of graph, 404
linear combination of, 85
negative or fractional exponents,  91
power rule,  86–87
reduction formulas and, 444–447
special powers of trigonometric

functions, 449–451
power, limit of a, 45
power rule,  86–87

for fractional exponents,  171
for negative exponents,  141
reciprocal functions not using, 269,

270
power series, 589, 758

coefficients for, generally, 605

convergence of. See convergence of
series

derivatives of, 599–600
error function and, 619
expanded about x = 0, 599
expanding the function as a, 599
for exponential functions, 597,

598–599
general form definition, 599
Laurent series, 643
Maclaurin series, 605–610, 637–638,

758
for rational functions, 597, 598–599,

606, 607
remainder of, 621, 635–640
summary of eight basic,  606
tail of, 603, 621, 629
Taylor series, 605–610, 634–639,

759
vocabulary relating to, 593, 621

present value, 644
pressure, 567–569
principal branch, 148, 759
product of two functions

derivative of, 132–134
integration of. See integration by

parts
limit of, 42

product of vectors, 524–525
product property of natural logs,

282–283
product rule,  133
proportions

constant of proportionality, 317, 326,
328, 330, 460

direct proportion property, 317, 324
rate of change and. See differential

equations
Pythagorean properties

of hyperbolic functions, 471
See also trigonometric entries

Q
Q.E.D., 43
quadratic functions

as differential equation solution,
324–325

general equation for, 6
integration by trigonometric

substitution, 454–457
locally quadratic, 598
Simpson’s rule and, 253–254

quantities, vector vs. scalar, 523
quartic function, locally, 598
quotient, difference.  See difference

quotient
quotient of two functions, 42, 137–139
quotient rule,  138

R
radius of convergence,  616, 759
radius of gyration, 563

range restriction,  148
rate of change

average, 3–4
instantaneous, 3–4, 7
mean value of. See mean value

theorem
of speed, 530

rates, related, 174–176, 759
ratio technique (ratio test), 614–617,

629–630, 759
rational algebraic functions

general equation for, 6
improper fractions, 463
integration by partial fractions,

460–462, 463–464
proportionality constant and, 460
repeated linear factors, 464
unfactorable quadratics, 463–464

rational numbers, 60
real numbers, 60
reciprocal functions

integral of, 259, 269, 270, 274–275
as natural logarithm derivative,

118–119, 272–273, 274
rectangle(s)

area of, 205
integration with. See Riemann sums

reduction formulas,  444–447, 759
refraction, Snell’s law of, 519
related rates, 174–176, 759
relations

explicit, 169, 756
implicit, 169–171, 757
inverse, 147–148

relative maximum (local maximum), 95,
372–380, 759

relative minimum (local minimum),
372–380, 759

remainder of a series, 621, 635–640
removable discontinuity, 33, 35, 46, 56,

759
resistance, 329
Riemann, G. F.  Bernhard, 205
Riemann sums,  189, 204–209, 759

chord length sum, 402–403
constant, 222–224
defined, 205
definition of definite integrals and,

206–207
infinitesimals of higher order and,

583–584
left, midpoint, and right, 206,

208–209
limits of, 207–208
lower and upper, 206–209
partitions, 205, 265
unequal increments, 265

Rolle, Michel, 213
Rolle’s theorem, 211, 759

defined, 213
mean value theorem and, 214–217
proof of, 213–214

root mean square deviation, 513–514
root technique (root test), 620
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S
same order of functions, 625–626
sample points, 205, 759
scalar projection,  525
scalar quantity, 523, 759
secant function

derivative of, 142, 143
integral of, 302
integration of even powers of, 451
inverse, 149, 150–151, 468
reduction formulas for, 446, 447
See also trigonometric entries

secant lines, 77–78
second derivatives

acceleration as, 93, 94–95, 96
and concave up or down, 371,

373–380
defined, 94
at inflection point,  378
of parametric functions, 163–164
symbol for, 94
test for maxima/minima, 378, 380

semicubical parabola, 165
separating the variables, 269, 318–320,

324–325, 759
sequence of partial sums,  593
sequences,  593

convergence of, 621–622
See also series

series
arithmetic,  624
convergence of. See convergence of

series
factorial reciprocal, 625
geometric. See geometric series
harmonic, 624
 p-series, 622–624, 626–628, 630–631,

639–640
power. See power series
sigma notation for, 600
vocabulary relating to, 593, 621

sigma notation, 600
sigmoid graph, 362
signum function, 52
Simpson’s rule,  253–255, 759
sine function

derivative of, 100–101, 103, 108–109
double-argument properties for,

450–451
graphs of, 100, 109
integral of, 302
integration of odd powers of,

449–450
integration of squares of, 450–451
inverse, 149, 151, 468
limits and, 107–108
parametric equations, 160–163
power series for, 599–602, 607,

613–614
reduction formulas for, 444–445,

447
See also hyperbolic functions;

trigonometric entries
sine-integral function, 252, 619–620

sinusoids, 82, 100, 109–111, 160–161
skewness, 579
slabs, 245, 759
slope

corners and, 379
cusps and, 379
formula for, 85
point-slope form, 190
See also slope of tangent line

slope fields, 333–336, 759
slope of tangent line

derivative as, 75
differential ratio as, 190
linearization of a function and,

190–191
parametric chain rule and, 161

Snell,  Willebrord, 519
Snell’s law of refraction, 519
snowflake curve, 596
solids

average radius of, 459
centroid of, 559–560
mass of. See mass
of revolution, defined, 245, 759
surface area of, 407–410, 580
volume of. See volume

speed, 18, 93, 96, 530, 759
sphere(s),  volume of, 13
spherical  shells, 412
spiral, equiangular, 422–423
square root functions, integration of,

454–457
squeeze theorem, 108, 759
standard deviations, 256–257
statistics, 256–257, 493
step discontinuity, 35, 46, 48–49, 759

See also piecewise functions
subintervals, 205
substitution

trigonometric, 454–457, 460, 760
u = tan (x/2), 492

sufficient conditions, 212, 215
sum of two functions

definite integral properties and, 230,
231

derivative of, 88
indefinite integrals of, 199
limit of, 40–41, 42

sums, of vectors, 524
surface of revolution, area of, 407–410,

580
symbols

curvature, 537
definite integral,  206
dependent variable, 6
derivative, 74, 79, 85–86, 89
ditto marks, 445
indefinite integral,  197–198
infinity, 53
limit, 28
logarithm, 117
natural exponential function, 117
one-sided limit, 48
polar coordinates, 414

second derivative, 94
vectors, 523–524

symmetric difference quotient, 78–79, 84
symmetric limits, integral between,

229–230, 231

T
tail, 603, 621, 629, 759
tangent, 107
tangent function

derivative of, 142, 143
integral of, 302
inverse, 148, 149–150, 151, 467–468,

606, 607–608
limits and, 107
reduction formulas for, 447
See also trigonometric entries

tangent line(s),  759
defined, 190
equation for, finding, 190–191
estimation of, 7
as graphical interpretation of

derivative, 75
instantaneous rate and, 7
linearization of a function and,

190–191
secant line, as limit of, 77–78
slope of, 75, 161, 190–191

tangential component, 528, 529–530
Taylor, Brook, 605
Taylor polynomial,  605
Taylor series, 605–610, 634–639, 759
term index, 590, 593, 759
terminal velocity, 98, 340, 347, 759
terms of series, 590, 593, 622
theorems of Pappus, 566–567, 580, 759
third derivatives, 385, 596
three-leaved rose, 419
tolerance, 79
toroids, 567
torque,  550, 558, 569
transcendental functions

elementary, 466
as power series, 597
See also exponential functions;

inverse trigonometric functions;
logarithmic functions;
trigonometric functions

transcendental numbers, 289, 759
transformations, 109–110, 115
trapezoidal rule,  18–21, 209, 253, 760
trapezoids, area of, 19
trigonometric functions

derivatives of, 100–101, 103, 108–109,
142, 143

double-argument properties, 450–451
general equation for, 6
integrals of, 199–200, 302
integration by parts and, 439–440
integration by reduction formulas,

444–447
integration by u = tan (x/2)

substitution, 492–493
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integration of even powers, 451
integration of odd powers, 449–450
integration of squares, 450–451
inverse. See inverse trigonometric

functions
inverse relations of, 147, 148
limits and, 107–108
parametric functions, 160–163
power series for, 599–602, 606, 607
reduction formulas for, 444–445, 446,

447
summary of properties of, 659–660
transformation of, 109–111

trigonometric substitution, 454–457,
460, 760

U
u = tan (x/2) substitution, 492
undefined, 56

See also indeterminate form
“under” the graph, 15
uniqueness theorem for derivatives,

281–282, 760
product property of ln and, 282–283
proof that ln is a logarithm and, 283

unit circle, 470
unit hyperbola, 470
unit vectors, 524
units

of acceleration, 93
of torque,  550
of velocity, 93
of work,  547, 550

upper limits of integration, 207–208, 228

V
variables

dependent, 4, 6, 756

independent, 4, 103, 757
separating the, 269, 318–320,

324–325, 759
vector functions, 523, 525–531
vector projection,  525
vector quantity, 523
vectors, 523–530, 760

acceleration, 523, 525–526, 528–530
addition/subtraction with, 524
components of, 524, 525–526, 530
dot products of, 524–525
magnitude of, 523
symbols for, 523–524
three-dimensional, 537
velocity, 523, 525–526

velocity, 92–96
as antiderivative, 99
average, 508–509, 526, 527–528
critical points of, 372
defined, 93, 760
as derivative, 93, 96
derivative of. See acceleration
displacement and, 505
escape, 347
improper integrals and, 481–482
as integral of acceleration, 504
negative vs. positive signs of, 93–94,

502–503
speed compared to, 18, 93
terminal, 98, 340, 347, 759
units of, 93
vector of, 523, 525–526

vertical asymptotes, 41, 46, 53, 54,
760

vertical dilation,  109–110, 110, 115
volume

centroid, 559–560
of a cone, 175
finding by cylindrical shells, 395–398,

574

finding by plane slices, 242–246, 395,
574

finding by spherical  shells, 412
first  moment of, 559
general strategy for definite integrals,

574
maximizing, 386–387
second moment of, 563
of a sphere, 13
theorem of Pappus for, 567

W
washers, 244, 760
Witch of Agnesi, 167
“with respect to,” 103, 199
work,  548

definition, 548
move part of object whole

displacement, 549–550
move whole object part of the

displacement, 548–549
units of, 547

Y
 y = argsinh x, 473
Yates, Robert C., 182

Z
zero

denominator.  See discontinuity
infinitesimals of higher order, 397,

583–584
numerator and denominator.  See

indeterminate form
radius of convergence,  617

zero vector, 523
zeros of a function, Newton’s method

for finding, 182–183
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